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In many fluid-structure-interaction problems, the added mass is one of important interests. In 
the present study, we propose a simple and efficient method to specify fluid-force coefficients 
of a three-dimensional oscillating object in viscous fluid. The solving method is based on a 
discrete singularity method DSM. Then, we apply the DSM to some three-dimensional basic 
objects such as square-cross-section cylinders with various aspect ratios. Furthermore, we 
conduct experiments, and reveal the fluid-force coefficients of them comparing between 
computations and experiments, which show good agreement. 
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1. INTRODUCTION 
 In many fluid-structure interaction problems, we often needed to consider the fluid forces caused by 
arbitral accelerated motions of fluid and/or solid objects. Such forces have been understood using the concept 
of “the added mas,” “the virtual mass,” “the carried mass” or “included mass.” Then, the added mass is one of 
important and essential interests in various engineering aspects such as marine vehicles and structures. In 
general, we need to consider the added mass of the fluid in arbitral accelerated motion. One of the simplest 
and the most fundamental accelerated motion is a periodical-forcing case, that is, (1) a sinusoidally-oscillating 
solid object in stationary fluid and (2) a stationary solid object in sinusoidally-moving fluid. Both the cases (1) 
and (2) are identical under the assumption of infinitesimal amplitudes, as one can be approximatelly converted 
into the other by considering the Floude-Krylov force.1) & 2) So, we now consider the case (1). Due to the 
importance of the added mass, there have been many past studies in concern, which are mainly related with 
two-dimensional flow.3) - 13) However, there have been a few researches concerning the three-dimensional 
flow around a three-dimensional object,16) - 21) despite its importance in various industrial aspects. 
 In the present study, we propose a simple method where the solving method is based on a discrete 
singularity method (hereinafter, referred to as DSM) in order to specify the added mass of a three-dimensional 
object, as well as our previous studies14) & 15) for a two-dimensional object. In this method, we consider an 
incompressible viscous fluid under the assumption of an infinitesimal oscillation amplitude of an object, and 
properly modify the three-dimensional full Navier-Stokes equations, namely, into linear equations the 
Brinkman equations. In two-dimensional-flow problems, we can introduce complex-variable functions 
supposing the Gauss-Argand planes. Instead, in the present three-dimensional-flow problems, we employ a 
fundamental solution of the Brinkman equations proposed by Tsai22) as a singularity of the DSM. Furthermore, 
we conduct experiments, and attempt to reveal the fluid-force coefficients of them comparing between 
computations and experiments. 
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2. MODEL, GOVERNING PARAMETERS AND FLUID FORCE  
(1) Model 
 Figure 1 shows the concept of model. A three-dimensional object sinusoidally oscillates in stationary 
and infinite fluid with incompressibility and viscosity. The object’s displacement is given by x = Asin(ωt), y = 
0 and z = 0, where t denotes time.  
 
(2) Governing parameters 
 Dimensionless governing parameters are kinetic Reynolds number S (≡ 𝜔𝜔𝐿𝐿2/𝜈𝜈)  and 
Keulegan-Carpenter number KC (≡  2𝜋𝜋𝜋𝜋/𝐿𝐿), where L and ν denote a characteristic length scale and the 
viscosity of fluid, respectively. In the present study, we discuss various square-cross-section cylinders with 
low aspect ratios as the oscillating object. Figure 2 is those models. The cylinders with an aspect ratio b/a 
oscillates in the x direction, where a and b denote a side length and a height of the cylinder, respectively. V is 
the volume of the cylinder, and L is an equivalent diameter de (≡ (6V/π)1/3 = (6a2b/π)1/3). We consider both the 
cylinder in transverse oscillation like figure(a) and the cylinder in axial oscillation like figure(b). Tables 1 and 
2 summarise the range of the governing parameters in computation and experiment, respectively. 
 
(3) Fluid force 
 We solely consider the three-dimensional object whose cross section is symmetric on an arbitrary 
plane parallel to the x-axis. Then, the flow can be symmetric to the x-axis on every planes parallel to the x-axis, 
as well. In such a case, as the y- and z-components Fy and Fz of the fluid force F acting on the object is 
cancelled out into zero, the x-component Fx is exclusively meaningful. Following to Chen,6) we normalise Fx 
as a non-dimensional fluid force Hx. The real part Re(Hx) and the imaginary part Im(Hx) of Hx denote an 
added-mass coefficient and a negative damping coefficient, respectively. Then, we refer to Im(Hx) as a 
damping coefficient. —In some cases, we conventionally use the drag and inertia coefficients CD and CM as 
alternates to Re(Hx) and -Im(Hx). The definitions of CD and CM are given by the Morison’s equation.28)— 
 
3. NUMERICAL PROCEDURE 
(1) Linear approximation 

 The governing equations for incompressible and viscous flow are the three-dimensional  
Navier-Stokes equations and the continuity equation. We linearly approximate them under the assumption of 
an infinitesimal amplitude, and get the Brinkman equations and continuity equation as the present governing 
equations.14) & 15) 
 
(2) DSM 
 Now, we consider a DSM5), 14), 15), 24) - 27) to solve the linearly-approximated governing equations, 
numerically. A fundamental solution of the governing equations; namely, a three-dimensional Brinkmanlet is 
given by Tsai (2008).22) Figure 3 shows an analytical model of the DSM for a square cross-section cylinder, 
where singularities and control points are arranged inside and on the cylinder, respectively. 
 
4. EXPERIMENTAL PROCEDURE 
(1) Theory 
 We consider the Newton’s second law of motion of a pendulum in fluid. In the small angle 
approximation,29) we get the coordinate s measured along the arc of the pendulum in damping free oscillation 
as follows. 
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where C denotes the damping factor. The mass corresponding to the gravitational force is mg, and the mass 

, 
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reacting to acceleration is mi for the pendulum. ωn denotes the natural frequency (angular frequency at C = 0), 
and 𝜁𝜁 denotes the damping ratio. a (≡ ) is the natural frequency in a, which is taken to be 
equivalent to that in vacuum. We should note that √1 − 𝜁𝜁2 = 0.999 1.000 ≈ 1 as for the present experiments. 
Then, Re(Hx) and −Im(Hx) are given by the following equations. 

Re(Hx) (=  CM) = (ωa

ωn
)

2
(
ρo
ρ

− 1) −
ρo
ρ

 and −Im(Hx) = 
2𝜁𝜁ωn

ωn
 (
ρo
ρ

 + CM)   ,         (2) 

where ρ and ρo are the densities of fluid and the object, respectively. Both ωn and 𝜁𝜁ωn are obtained from the 
time history of the object’s motion in damping free oscillation. 
 
(2) Experimental apparatus 
 Figure 4 shows the schematic diagram of the present experimental apparatus. Figure(a) represents an 
overall view. We fill a tank made from acrylics with water. And, a pendulum in water is hung above the tank 
by a knife edge. A high-speed video camera is perpendicularly installed to the oscillating plane of the 
pendulum. The recorded motion of the pendulum is analysed using a picture-correlation method. And, we can 
observe the time history of the object’s motion in damping free oscillation. Figure(b) shows the dimensions of 
the pendulum and the tank. Figure(c) shows the details of the pendulum.  
 
5. RESULTS AND DISCUSSION 
(1) Linear theory 
  Figure 5 summarises the computational results for the cylinders with b/a = 0.55.0 in transverse 
oscillation, in a range of S = 1010,000. That is to say, this figure shows Re(Hx) and Im(Hx) as functions of S 
in figures(a) and (b), respectively. An arrow in figure(a) is the experiment for the cylinder at S >> 1 with b/a = 
1.0 (cube).11) A dashed line in each figure is the analytical solution for a sphere.17)  

We can see that Re(Hx) and Im(Hx) have remarkable tendencies being independent of b/a. Namely, 
Re(Hx) monotonically decreases and asymptotes to a certain value (potential theory), with increasing S. 
Im(Hx) monotonically decreases with increasing S, as well as Re(Hx). In contrast with Re(Hx), Im(Hx) 
asymptotes to zero at S = ∞. Of course, these tendencies of Re(Hx) and Im(Hx) are the same as those for a 
sphere as shown in figure. The tendencies are appropriate, as the viscosity of fluid relatively decreases with 
increasing S.  

Besides, we can discuss the effects of b/a upon Re(Hx) and Im(Hx). Namely, both Re(Hx) and 
Im(Hx) monotonically increase with increasing b/a. Both these b/a effects becomes less remarkable, when S 
increases. Thus, Im(Hx) becomes close to zero at S > 103 being independent of b/a. ―From a quantitative 
point of view, both Re(Hx) and Im(Hx) for a square cylinder with b/a =0.5 are almost identical to those for a 
sphere at any S.―Both the b/a effects seem acceptable, because we regard the equivalent diameter as the 
present characteristic length scale. As for the b/a effect upon Re(Hx), the projected area of a cylinder on the 
plane perpendicular to the direction of forced oscillation increases with increasing b/a. As for the b/a effect 
upon Im(Hx), the total surface area of a cylinder increases, when b/a increases from about unity. 

As well as the cylinders in transverse oscillation, we get the computational results for the cylinders 
with b/a = 0.55.0 in axial oscillation. Again, we can see that Re(Hx) and Im(Hx) have remarkable tendencies 
being independent of b/a. These tendencies are the same as those in transverse oscillation. In contrast, the 
effects of  b/a upon Re(Hx) and Im(Hx) are different from those in transverse oscillation. Namely, Re(Hx) 
monotonically decreases with increasing S.This b/a effect upon Re(Hx) does not become less remarkable, 
when S increases. Im(Hx) almost coincides with one another, then Im(Hx) is approximately determined by 
only S being independent of b/a. The b/a effect upon Re(Hx) seems acceptable. Because the projected area of a 
cylinder on the plane perpendicular to the direction of forced oscillation decreases with increasing b/a. As for 
the b/a effect upon Im(Hx), we need further study over wider ranges of parameters than the present study.  

 lg /
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(2) Experiments 
a) Non-linearity 
 In this sub-section, we consider the experiment for a square-cross-section cylinder at S =4,900 with 
b/a = 1.0 (cube) in transverse oscillation as an example, comparing with the linear theory at KC = 0 
(computational solution). 
 Figures 6(a) and (b) show the experimental Re(Hx) and Im(Hx) as functions of KC, respectively. In 
each figure, a dashed line denotes the linear theory for comparison. In the present study, we conduct the all 
experiments in condition of sinθ ≈ θ. ―In a preliminary experiment, we have demonstrated that we can 
suppose translation motion, if the angle θ of a pendulum is less than 5°.― 
 At first, we see figure(a) (Re(Hx)). When KC decreases from 13 to zero, Re(Hx) tends to 
monotonically decrease and to approaches to a constant value. More specifically, this approaching manner 
seems complicated. Thus, we divide the range of KC into two: namely, a small-amplitude range at KC ≲ 2 and 
a large-amplitude range at KC ≳ 2. In the small-amplitude range, the approaching manner can be exponential. So, we 
approximate the experimental results by an empirical formula such as Re(Hx) = 0.76(1 + 0.07KC3.9) using the least 
squares method, whose curve is drawn by a solid line in the figure. According to this empirical formula, we 
see that the approaching constant value at KC = 0 is 0.76, which almost coincides with the linear theory 
(0.73). 
 Second, we see figure(b) (Im(Hx)). When KC decreases from 13 to zero, Im(Hx) as well as Re(Hx) 
tends to monotonically decrease and to approaches to a constant value. More specifically, this approaching 
manner seems complicated. Thus, we divide the range of KC into two: namely, a small-amplitude range at 
KC ≲ 2 and a large-amplitude range at KC ≳ 2. ―We should note that these two ranges are the same as those of 
Re(Hx). This fact suggests that the non-linearities in the two ranges are not qualitatively the same each 
other.― In the small-amplitude range, the approaching manner can be exponential, as well as Re(Hx). So, we 
approximate the experimental results by an empirical formula such as Im(Hx) = 0.15(1 + 0.59KC1.6) using the least 
squares method, whose curve is drawn by a solid line in the figure. According to this empirical formula, we 
see that the approaching constant value at KC = 0 is 0.15, which almost coincides with the linear theory 
(0.13). 
b) Comparison between linear theory and experiment 
 Figure 7 summarises the experiment for a square-cross-section cylinder in transverse oscillation at 
KC = 0, which are predicted on the basis of such empirical formula as Figure 6. Figure 7(a) and (b) show 
Re(Hx) and -Im(Hx) as functions of S, respectively. In each figure, solid lines denote the linear theory, and a 
dashed line denotes the linear theory for a sphere. We can confirm that Re(Hx) by the experiment agree well 
with that by the linear theory at any S and b/a. As for the experiment in axial oscillation as well as that in 
transverse oscillation in Figure 7, we can again confirm that both Re(Hx) and Im(Hx) by the experiment agree 
well with those by the linear theory at any S and b/a. 
 
6. CONCLUSION 
 In order to specify the added mass of basic three-dimensional objects such as square-cross-section 
cylinders with various aspect ratios, we have solved linearly-modified three-dimensional Navier-Stokes 
equations considering an incompressible viscous fluid under the assumption of an infinitesimal oscillation 
amplitude of an object. Furthermore, we have conducted experiments, and revealed the fluid-force coefficients 
of the cylinders comparing between computations and experiments, which show good agreement. 
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Figure 1: Model: an oscillating 3D object in stationary fluid.

 
 
 

(a) A cylinder oscillating perpendicularly to the cylinder’s axis and 
perpendicularly to a pair of opposing cylinder’s lateral faces.

(b) A cylinder oscillating parallel to the cylinder’s axis.

Figure 2: Model: an oscillating square-cross-section cylinder (right square prism)
with an aspect ratio b/a in stationary fluid.
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Table 1: Parameters in linear analyses.

 

Table 2: Parameters in experiments.

 
 
 

 
Figure 3: An analytical model of DSM for a corner of a square-cross-section cylinder. 

(a) Overall view

(b) Dimensions of a pendulum and a tank (unit: mm) 

 
(c) Details of a pendulum 

Figure 4: Schematic diagram of experimental apparatus.
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(a) Re(Hx) 

 

 

(b) -Im(Hx) 
 

 

Figure 5: Analytical results of Hx as a function of S 

for square-cross-section cylinders with b/a = 0.55.0 in transverse oscillation. 
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(a) Re(Hx) 

 

 

 

(b) -Im(Hx) 

 
Figure 6: Experimental results of Hx at S = 4,900 against KC 

for a square-cross-section cylinder with b/a = 1.0 (a cube) in transverse oscillation. 
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(a) Re(Hx) 

 
(b) -Im(Hx) 

Figure 7: Experimental results of Hx at KC ≅ 0 as a function of S for 
square-cross-section cylinders with b/a = 1.04.0 in transverse oscillation. 
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