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Second-Order Supersonic Small Disturbance Theory

By

Keiichi KARASHIMA

Summary. A study of plane and axially symmetric supersonic flow is made for the
approximate inviscid theory of such comparatively thick bodies that the linearized equation
does not adequately predict an essential feature of flow. The second-order small distur-
bance equations are derived for plane and axially symmetric motions involving shock waves
and the range of applicability is shown from order estimation of the error involved in the
approximation. .

For very high supersonic Mach numbers it is shown that the present approach is reduced
to the first-order hypersonic small disturbance theory proposed by Van Dyke and, therefore,
a single small disturbance theory may predict the flow at all supersonic speeds above the
trasonic.

Several examples are numeritally calculated for two-dimensional biconvex circular-arc
airfoils, cones and a paraboloid-arc half-body of revolution with respect to their surface
pressure distribution and initial shock wave curvature, etc., and compared with full solu-
tions and other approximate solutions when available.

Experimental measurement of surface pressure distribution and observation of shape of
the shock wave are made for a paraboloid-arc half-body of revolution with fineness ratio of
6.693 and for Mach numbers of 2, 3 and 8, and the results are compared with those of the
present theory and others.

It is concluded that the present theory agrees well with the method of characteristics and
the experimental results also confirm the present approach.

SYMBOLS
(=, 7) non-dimensional Cartesian or cylindrical coordinates system norma-
lized by length of the body
W, v) components of local velocity vector
o density
p pressure
(2, 7) reduced coordinates system
(u, v) reduced form of velocity components
o reduced density
4 reduced pressure
M free stream Mach number
Bs local shock wave angle
0 semi-vertex angle of body
T maximum slope of shock wave

thickness of body

)
o
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2 ‘ K. Karashima
0 conical parameter defined by r/x
T strained radial coordinate
) strained conical parameter
L4 stream function
w entropy function
S(x) shape function of shock wave
C, pressure coefficient
J;;’ g } functions in series expansion for stream function
[, m coefficients in series expansion of shock shape
Wy, Wy, W, coefficients in series expansion of w
ay, @y, Ay coefficients in differential equation (see Eq. (3.4.6))
91, 92, 93 coeflicients in solution of g (see Eq. (3.4.10))
hy,h : : . ‘
:, hj} coefficients in solution of % (see Eq. (3.4.17))
%y, i2 3 3 H )
Gy, ,0-4} coefficients in solution of ¢ (see Eq. (3.4.19))
A, B,C,D

EFG]T } coefficients in differential equation (see Eq. (4.3.8) and Eq. (4.3.16)

Subscripts:

s value at shock wave

b value on the surface of body

0 value at the tip of pointed body of revolution

00 value in free stream

() derivative with respect to argument *

1. INTRODUCTION

Most of the supersonic flows past plane or axially symmetric bodies with an
attached shock wave can be solved numerically with required accuracy by use of
the method of characteristics. However, if the flow properties in the disturbed
field due to a body are small compared with those in the undisturbed flow, it
may be expected that the small disturbance approximation will predict the flow
field with ample accuracy. In this sense, in treating the supersonic flows past
aerodynamic bodies with attached shock waves, there have been developed many
simplified theories, which are based upon the assumption of small disturbance due
to thin bodies.

The linearized theory [ /], [2], which is the simplest form of all small distur-
bance theories, has been belived to be of practical value and often used to esti-
mate the flow properties in the disturbed field. The basic assumption made in
the linearized theory is in that the body is so thin that the shock wave can be
replaced by isentropic compression waves. Although the body can be always
chosen to be so thin that the linearization assumption is approximately valid,
such a choice often seems to be very severe for practical use. For example, the
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Second-Order Supersonic Small Disturbance Theory 3

error in surface pressure coefficient for a plane wedge with semi-vertex angle of
15° and at Mach number of 2 is about 30 percents relative to the exact value.

In order to increase the accuracy of solution higher-order approximations
have been developed, for example, by Lighthill [3] for plane flow and by Van
Dyke [4] for axially symmetric flow, etc.. The assumption made in the shock-
expansion method proposed originally by Lighthill [3] was proved to be reason-
able by Eggers and Syvertson [5] by means of method of characteristics, even
if the body thickness may be comparatively large. Thus the shock-expansion
method seems to be most accurate and convenient of all approximate methods for
plane flow, when it is used in estimation of the flow properties on the surface of
the body with an atsached shock wave. However, in estimation of the flow pro-
perties in the disturbed field downstream of the shock wave, the same laborious
work is necessary even for the shock-expansion method as will be required in the
the characteristics net work.

Contrary to the shock-expansion method, the second-order theory proposed by
Van Dyke [4] for axially symmetric flow was derived on the basis that all
higher-oder terms in the fundamental equation are considered to be perturbations
from basic linearized equation. Being essentially based upon the assumption of
potential flow, this theory together with the linearized theory seems to grow in-
creasingly inaccurate as either the body thickness or the free stream Mach number
increases.

On the other hand, the flow in the region of leading edge or pointed apex of
curved bodies has been investigated in detail by many authors with particular
emphasis on the initial surface pressure gradient and shock wave curvature.
Among these works Kraus [6] presented detailed charts for two-dimensional
curved airfoils by use of method of characteristics and Shen and Lin [7] investi-
gated the flow in the neighborhood of the sharp nose of a body of revolution by
means of a perturbation scheme. Having not been made for entire flow field,
these analyses seem to have significance as being the first-step in clarifying the
general problem of flow past an arbitrary body with an attached shock wave. It
must, however, be noted that the first-order solution in Shen and Lin’s analysis
shows a logarithmic singularity at the initial semi-vertex angle and the initial
surface pressure gradient becomes infinite even for regular body shape. This
result seems to be unrealistic, since the method of characteristics does not indicate
such a singularity.

More recently, Van Dyke [8] proposed a well-refined hypersonic small distur-
bance theory, in which the non-linearity in the fundamental equations and shock
wave conditions is considered to be an essential feature of the flow. In his ana-
lysis he gave a criterion for first-order hypersonic small disturbance flow and
derived a useful similarity law, which was shown to be further combined with
the supersonic simirarity law [8], [9]. Moreover, this theory seems to be of
practical value in the sense that it does not indicate such a singularity as was pre-
sented by Shen and Lin. However, since the basic assumption made in this theory
becomes severe for comparatively low supersonic Mach numbers, the theory seems
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4 K. Karashima

to be inaccurate as Mach number decreases.

As is well known, the degree of disturbance downstream of the shock wave is
directly associated with the strength of the shock wave. For low supersonic Mach
numbers the shock wave slope is not so small compared with unity even if the
body thickness is small. For such flow the first-order theory, which is developed
in such a way that the full solution is expanded in a power series with respect to
a representative value of the shock wave slope, becomes inaccurate. Therefore,
a higher-order approximation must be made in order to obtain better agreement
with the full solution.

Present paper has a purpose to give an analytical approach to the second-order
plane and axially symmetric supersonic small disturbance flows. With particular
emphasis on presenting an unified theory for plane and axially symmetric motions
involving shock waves at all supersonic Mach numbers above the transonic, the
second-order small disturbance equations are derived on the basis of appropriate
assumptions and applied to several simple examples. The fact that the analytical
method used in the present approach is the same as Van Dyke developed in the
first-order small disturbance theory indicates, therefore, significance that the
present approach corresponds to a second-order theory relative to Van Dyke’s
first-order theory at hypersonic Mach numbers as well as being an extension of
the hypersonic theory to comparatively thick bodies at low supersonic Mach
numbers. In this sense, the present theory may be regarded as an unified, appro-
ximate theory for predicting both supersonic and hypersonic flows past plane
and axially symmetric bodies with attached shock waves.

In order to confirm the present theory an experimental measurement of surface
pressure was made for a paraboloid-arc half-body of revolution and the results

are compared with present theory, method of characteristics and other approxi-
mate theories.

2. Basic ASSUMPTIONS AND EQUATIONS

Consider a steady supersonic flow involving an oblique shock wave which
emanates from tip of a body. Since viscous no-slip condition requires large
perturbation of flow properties near the surface of the body, viscosity and heat
conduction must be primarily neglected in the small disturbance theory. There-
fore, the flow is assumed to be inviscid and non-conductive. The body is assumed
to be thin in the sense that the streamwise slope of its surface is everywhere small
compared with unity. This assumption is, in turn, interpreted into a statement
that the body curvature must be of the same order as maximum slope of the sur-
face. The so-called hypersonic is not particularly distinguished from the super-
sonic in the present approach.

There are two representative parameters which are used as measures of degree
of disturbance in flow field downstream of a shock wave. The one is body thick-
ness and the another is shock wave slope. From a mathematical point of view,
all small disturbance methods which are developed for vanishing by thin bodies
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Second-Order Supersonic Small Disturbance Theory 5

may be regarded as an asymptotic form in series expansion of the full theory with
respect to body thickness. Thus, the first-order theory is obtained as the leading
term of the series, in which the body thickness is assumed to be very small com-
pared with unity.

The basic assumption made in Van Dyke’s first-order hypersonic small distur-
bance theory thus derived is in that the terms of order of zé are negligible com-
pared with unity, where = and J denote shock wave slope and characteristic body
thickness such as maximum flow deflection angle through shock wave, respecti-
vely. This assumption seems to be reasonable for very high Mach numbers, since
7 becomes of order of 4§, so that z6=0(é%).

For comparatively low supersonic Mach numbers, however, r is not so small
compared with unity, even if the body may be thin. As a result z6 becomes of
order of § and, consequently, the first-order theory is increasingly inaccurate as
Mach number decreases. In order to reduce the error in approximation even for
the ordinary supersonic, higher-order terms in the series must be retained. There-
fore, the second-order small disturbance flows may have such an assumption as

58
0<1, —<XL1. (2.1)
T
This indicates that the terms of order of #*/r are negligible in the present ap-
proach. For very high Mach numbers, however, it becomes

3

oL, (2.2)
T

so that the error in this second-order theory grows to the same order as that in
Van Dyke’s theory in limiting case when Mach number tends to infinity.

"r'.’
A

Te(X)

FicURE 1. Plane or axially symmetric body.

Let the origin of a Cartesian or cylindrical coordinates system be taken at the
leading edge of the airfoil for plane flow or at the pointed apex of the body of
revolution for axially symmetric flow, ¥-axis being aligned with the free stream
direction, and 7-axis being normal to %-axis (see Fig. 1). If the shape of the shock
wave is given as
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6 K. Karashima
7, =15(%), (2.3)
‘Z’_g =tan §,=<S'(3), (2.4)
then, the flow properties just aft of the shock wave are
72 2 2 73S
—t =1 — , 2.5
B, GEDM 741 145" @22
v, 2 7S’ ( l+rzS’2)
= 1— , 2.5b
U, 7+1 147287 M32S2 (2.56)
by _ (r+1)M?**S" (2.5¢)
P (r—1)M**S"*+2(1+728%%) ° '
P 2r ( M?*2S? )
=1 -1}, .
P * 7r+1\ 147287 (2.34)

where 8,, %, v, p and # denote local shock wave angle, components of local velocity
vector in Z- and 7-directions, density and pressure, respectively, and subscripts oo
and s indicate conditions in free stream and just downstream of the shock wave,
respectively. r is the maximum slope of the shock wave, which is, in general,
given at its root for conventional convex body, so that S’ (%) does not exceed unity.
Another boundary condition is given on the body surface as

(tangency) V=% (Z_;" ar 7=7,(2), (2.6)

where 7,(%) denotes body surface.

As is seen in Egs. (2.5a) to (2.5d), the boundary conditions at the shock wave
consist of terms of M %, M?:? and z>. This fact indicates that the flow does no
longer be predicted by a single parametric representation (similarity parameter)
as is done by fr, in the linearized theory or by Mz, in Van Dyke’s hypersonic
small disturbance theory, where 8=+M*—1.

The differential equations which govern the flow field are

(continuity) (%) + () + 022 =0, (2.7a)
T
(z-momentum) Uz +vuz+ .%T)ﬁ: 0, (2.7b)
(r-momentum) W5,+17%;+—:}_—?,:0 , (2.7¢)
(B (P
(entropy) u(-ﬁ’) + v<—_“>_ =0, (2.7d)
pT z or/)r
where '
=0 for plane flow
og=1 for axially symmetric flow

and where subscripts indicate differentiation and 7 is the ratio of specific heats.
Introducing a transformation of independent and dependent variables such as
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Second-Order Supersonic Small Disturbance Theory 7
=7,
2.8
T=_1-? , ( a)
T
— - 2
n=U{a+2ulz, r)}, a=14+—="\
N G+ DI
V=UeT-V(X,T),
o (2.8b)
=050(z,7),
F=PorMic'p(, 1),
and rewriting Eqgs. (2.7a) to (2.7d), then gives
(continuity) {o(a+7*u)},+ (pv),—{—o—%v— =0, (2.9a)
(x-momentum) (a+7*u)u,+vu,+ ipx =0, (2.9b)
©
(r-momentum) (a+2u)v, +ov, -I—-Lp, =0, (2.9¢)
©
(entropy) (a+z'2u)<}1r> —}-v(fr_) =0. (2.9d)
y'lz p T
The conditions along shock wave and on the body surface are written, respecti-
vely, as
2S¢
= , 2.10
r+1 1472S% ( 2)
2 S’ ( 1+728 '2>
v, = 1— , 2.10b
r+1 147287 M*2S" ( )
— (r+1)M?**S”* 2.10
O D M*S 1 2(1 158 ) ° (2.10¢)
2rM*z2S"* —(r—1)(14+7%8%)
s = s 2.10d
P T DM +25Y) (2.10d)
(tangency) v=(a+r2u)—% at r=r(z). 2.11)

3. PLANE FLow PROBLEM

3.1. Fundamental Equation
Continuity equation may be accounted by for introducing a stream function v,

v.=—pv, Y, =pla+7*u). (3.1.1)
Then, entropy equation predicts that p/p” is a function of only Y. This clearly
indicates the fact that entropy is constant along stream lines between shock waves.
Thus, a new entropy function w is defined as

P —w). (3.1.2)

pT
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8 K. Karashima

Rewriting Egs. (2.9b) and (2.9¢) by use of Egs. (3.1.1) and (3.1.2), and eliminat-
ing %, v and p, one obtains

Vaa =20V VI, =100, 0,+ 0 0" W4 X (rwp™V 0, + o o W) |

(3.1.3)
where

b do

dy

p and its derivatives which appear explicitly in right-hand side of the above

equation can be eliminated by use of Bernoulli’s law in principle, since the

system of equations has, at present, been completely closed because of four un-

knowns (u, v, p, p) to be determined and four equations (Egs. (2.9a) to (2.9d)).
Bernoulli’s equation is written as

2 2 _2_?:“ 2 r+1: 1 ________2;___> 2
L ( + o) (3.1.5)

(3.1.4)

However, it is impossible to obtain an analytical solution of Eq. (3.1.5) for p, so
that it is required to find out another expression for p to use instead of Eq. (3.1.5).
Although Bernoulli’s equation has a physical meaning of energy conservation
along a stream line, the new expression for p, be it exact or approximate, is not
always necessary to have a definite physical meaning but may be only mathe-
matical to express a quantitative relation between p and ¥ in the flow field.

This relation can be derived from a consideration that the flow behind a shock
wave is supposed to consist of a basic, uniform wedge field upon which is super-
imposed a perturbation field due to body curvature. Therefore, the velocity
components %, v in the flow field are also assumed to consist of two parts. The
one is appropriate to the basic wedge flow and the another is due to the body cur-
vature such as

w(@, ry=u,+u,(z, r), J

(3.1.6)
V&, 1)=v,+v,(x, 7),

where %,, and v,, denote reduced velocity components appropriate to the basic
wedge flow, which are given, respectively, as

2 1

Ry (3.1.7)
_ 2 1 _ 1472
T 1+T2<1 i) (G18)

and u, and v, are those due to body curvature.
On the other hand, from the definition of stream function, following expres-
sion is obtained :

2
A [T T | 1
Vo= L) (3.1.9)
Substitution of Eq. (3.1.6) into Eq. (3.1.9) gives
V. —*,=p[1+7*(u,+v,)] . (3.1.10)
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Second-Order Supersonic Small Disturbance Theory 9

Hence, if the second term in the bracket is assumed to be very small compared
with unity, the above equation may be reduced to a simple form such as

o=, —h, . (3.1.11)

Here the validity of the above assumption must be confirmed. It is readily
clear that Eq. (3.1.11) is exact for wedge flows, because both %, and v, vanish.
For flows past curved airfoils order of disturbance in the flow field may be eva-
luated from that just behind the leading edge shock wave, that is

u(x, r)+v,(2, 7)=0{(up,+v,,)} ,

where subscript s indicates condition just aft of the shock wave. Since Mach
waves that emanate from the airfoil surface interact with the shock wave, local
shock wave slope 7, is changed by 4z from its basis wedge value 7 ;

{r,zz‘—}—dr,
r,=tan f;, r=tanf,,

where S, and 8, denote 1oca1 shock wave angle and its basic wedge value, respec-

tively. The change in local shock wave slope 4r may be of order of shock wave
curvature K,

dr=Kx=0(K,).
On the other hand, the change in velocity components due to 4z is expressed by
use of shock wave relations as
2{M?**—(1+7%)}r
Up,+ Vp, = 4
R 4 DM3**(1 4787 ‘
. 04z
T 21413 ]

where

M**—(1 +r2)=—;—r5[{(r+ D+(— 1AM +2(1+13)]
#LﬂMzré,
2

o=tané,,

and where 6, is semi-angle of the basic wedge. The above relation can be re-
written by use of body curvature K, as

2
up,+v,,‘=0<—‘j-2— —%) )
in which the assumption, K,=0(d), has been used. The ratio of shock to body
curvature can be estimated from the result given by Kraus [6] by use of method
of characteristics.
1— tan?(8,—40,)
_I&z r+1 lﬁ tan® y,
K, 4cos(8,—8,) l_taln2 (,Bw—ﬁw)+__1_{ cos® ity + 1 } ’
tan? z, 2 Lcos®(B,—0,) M?sin®B,
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10 K. Karashima

where ¢, is Mach angle just aft of the shock wave. Order estimation of the
above equation gives (see Appendix 1)
K )
K, T
From these results the second term in the bracket of Eq. (3.1.10) may be found
to be of order of

3
72(up+v,,):0<%> <1,

and is negligible from the basic assumption (2.1). Thus, the validity of Eq.
(3.3.11) is confirmed and the order of error involved in the equation is O(6%/z).
By use of Eq. (3.1.11), Eq. (3.1.3) is expressed as

Vv, — 29 V., +¥iY,,
=V (rov,, o V) + V(o ¥, + o'V ¥l
—Tzw‘/’z\l’rr—Tw‘h‘P'u—w,(T‘*‘ 1)"’2#’3) (3.1.12)

where terms of order of 4*/r and 7%3* have been neglected in the above equation
(see Note, p. 49).

3.2.  Range of Applicability of Eq. (3.1.12)

In the last section the fundamental equation has been derived with an addi-
tional assumption that z%° is very small compared with unity. This assumption
is clearly valid for high Mach numbers because r25>—>4d*. For ordinary supersonic
Mach numbers, however, it increases rapidly as Mach number decreases. Never-
theless, the present theory may give a wider range of applicability than Van
Dyke’s first-order theory, since 2-momentum equation (Eq. (2.7b)), which has been =
dropped in the first-order theory, is of order of z4. In this sense, it is of interest
to clarify the range in which Eq. (3.1.12) is applicable.

25
°
o
S
o
520
K
| S}——
10
S
/ — Proesent Theory
/ —=—=—Van Dyke
. |
o 2 q 6 8 10 ©
M

FIGURE 2. Range of applicability of the present theory for plane flow, Eq. (3.1.12).
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In Fig. 2 is presented an example for variation of semi-vertex angle of the
airfoils with free stream Mach number, in which &%z and <% are used as
parameters. In the figure the hatched region bounded by lines having 6*/c =1%"
—0.05 indicates the domain in which Eq. (3.1.12) may be applicable within 5
percent error. A boundary having 7§=0.05 is also shown for comparison. The
figure shows that the present theory may be applicable to comparatively thick
airfoils at all supersonic Mach numbers above the transonic.

3.3. Application to Plane Wedge

As the simplest example, consider a supersonic flow past a wedge of semi-vertex
angle 6. In this case the flow field is conical, so that stream function and shock
wave shape have the form

Y(z, r)=2f(0), (3.3.1)
r.=Sx)=x, (3.3.2)
respectively, where @ is a conical parameter defined by
& & :

Hence, the shock wave conditions are given at §=6,=1. The flow field down-
stream of the shock wave is irroiational and uniform, so that the entropy function
is constant everywhere and is expressed as

o) M= =D [ =DM 24D T (35
= r(r+1>M2r2(1+r2)[ (r+ 1M IR

Substitution of Eq. (3.3.1) into Eq. (3.1.12) leads to the following ordinary dif-
ferential equation for f(6);

fr=0. (3.3.5)
Conditions at the shock wave are obtained from Egs. (2.10a) to (2.10d) as
fnH=1,
JEOE 7’ {G+ 1)+(T—1)72}M2+2(1+T2) . (3.3.6)
1+7? (r—1)M?3*c*42(1+7%)
The solution to Eq. (3.3.5) is, therefore, given by
f(@)=A4,0—B,, (3.3.7)
wh 1,=f1'(1),
ere A=/ , } (3.3.8)
By=—[f(1)—s"(1)].
Requiring f(#) to vanish at the surface ¢, gives the ratio of wedge to shock
wave slope
6 _ By
0= —=-—"22. 3.3.9
=77 (3.3.9)
The pressure coefficient C, is defined by the equation
C,=P—P=_ 3.3.10
aprx (3.3.10)
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12 K. Karashima

and is expressed by use of transformation of the variables as

N 1
Cp-—22'2<mp’—~ erz-“’)’ (3.3.11)

Therefore, the surface pressure coefficient for the wedge flow is given as

Cc = MM — (1473} -
TG+ +)M?

It must be noted that Eq. (3.1.11) gives an exact relation between p and stream
function for the wedge flow. Moreover, the boundary conditions are also exact.
These facts together with a result that Eq. (3.3.5) does not include any term with
7 lead to the statement that the present approach gives exact solution for the
plane wedge flow.

(3.3.12)

3.4.  Application to Convex Airfoils

Consider a supersonic flow past a convex airfoil with an attached shock wave
(see Fig. 1). In this case of flow pattern the expansion waves that emanate from
the airfoil surface interact with the shock wave and weaken it to incline more
and more to the free stream direction. The flow field downstream of the shock
wave is, therefore, no longer irrotational and change in entropy of each stream
line must be taken into consideration.

This problem can be treated by perturbation from the wedge flow as done by
Van Dyke [8] in such a way that the flow behind the shock wave will consist of
a uniform field upon which is superimposed a perturbation field due to body
curvature. Hence, the flow properties along each ray from the vertex will have =
constant values associated with the initial slope of the body plus linear variations
proportional to the initial curvature, together with higer variations if necessary.
Thus, the shock wave shape and the stream function may be written, respectively,
in the forms

1 1

r,:S(x):w—-é-lxz—?mxa—— ceee, (3.4.1)
Yz, r)=nf(0)~1x*9(0) — 2*{mh(g) +1%(6)} — - - -. (3.4.2)

In the same way the entropy function  can be expressed in the form
(W)= 0ol — ot — wgmigt— - .. .} (3.4.3a)

By use of Eq. (3.4.2) the above equation is rewritten as
w(¥)=wo[1—wlef(0) —e{wmfH(0)—wl’g(d)}---]. (3.4.3b)
The conditions just behind the shock wave are found to be given by
(V)= Ay + Ada+ (AP Am)a?+ - - - -, (3.4.42)
(=¥.)s=Bo+Bilx+(B,l*+ Bm)x®+ - - - -, (3.4.4b)

where subscript s denotes condition along shock wave, and
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Second-Order Supersonic Small Disturbance Theory 13
f=— o G+ D+G=DAM+2(1 4 i
1472 (r—1D)M?*242(147%) I
o2 M —(1+2%) é
1422 (r—1)M*242(14+7%)° 'j
fL:—[ 47 {G+D+G=DPIM*42(1+7%) 47 M?2e2 ] lg
1472 {(r—1)M324-2(14-7%))* (14722 (r— 1M 2(1 + 2]’ 4
B1=—2[M2T2~(1+12) 2—(r—1)M3*2—27° 2 M3 ]’ [3
1+2*  {G—DM**+2(1+)F 1+ — DM +2(1+7%) i
A= 2 BE=DM*P 462} (+1)+G— DM +2(1 4
{r—DM**2(1 + )P 1472

16 M2 2M373(1—37%)

A+ DML 2AI+DE A+ (G- DM+ 21 )
B,=— 2(r+1)M?3** 3(r—1)M3c*+672—2
1472 {(r—DM*24-2(1 + )P
4(r+ 1) M3*(1 —7%) 2@ =) M*HP— (1477}
(FPHG—DME 204+ G- DM 2(1 4P}
Since the stream function along the shock wave is given by ¥,=r, Eq. (3.4.3a)
can be expressed along the shock wave as

w(‘!"s):w,——-—wo[l —w,lx— (wzm—_;_wllz>x2— e —‘ .

J

(3.4.4¢)

On the other hand, from the shock conditions w, is found to be

@, =wo[ | —w,lt— (0ym—al?)a?—--- .7,
where .
_ 41— (M (122
A+ 2r M~ — DA +AHHG—DM* P +2(1+%)}

o= 2r M*z%(1 —37%) 67

(L4 2r M3 —(r—1)(1+7%)} (r—1)M3242(+7%)

. 1672 M %2
(1 +2){2rM** —(r— 1)1+ Hr — 1) M?c*+2(1 + %)}

8r(r—1)
+ GO 20 (3.4.4d)

and where «, has been given by Eq. (3.3.4). w, is obtained by comparing the
above two equations for e, as

(O}

_ 1 2
ws=w;—| ¢ ——aw; |—. (3.4.5)
2 m

Substituting Eqgs. (3.4.2) and (3.4.3b) into Eq. (3.1.12) and equating like powers
of z yields for f, g, » and ¢ the linear ordinary differential equations, respecti-
vely. Equation for f is quite the same as is given by Eq. (3.3.5) as well as its
boundary conditions corresponding to the basic wedge flow.

Equation for g, when simplified by use of Eq. (3.3.5), has a form
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14 K. Karashima

Lt~ raof " 4 rwuf {(f =6 Y0+1(f —6f )01 Yo"
— 20 oo f " f —6F — Y19 +2 1 g=ww, f7+?
+7l0u f T —0f )W f—6F —f).
With the aid of Eq. (3.3.7) the above equation can be more simplified as
(0,0 —a,0+a5)9" —(2a,0—a,)g’ +2a,9=c, (3.4.6)
where
al = Atz) ’
(12:21{01?04‘?270)055(/_{0‘{‘3—0) ’
a;=Bi—rw A}t — 727'2“)0/1630 s
c=w0w1A6+l{fig+TZBO(AO—}—EO)] .
At the shock wave the conical parameter 6, becomes

=£=l_ilx_imx2_ cees, (3.4.8)
z 2 3

(3.4.7)

b

so that Taylor expansion of V¥, and V¥, at the shock wave and comparison with
Egs. (3.4.4a) and (3.4.4b) lead to as boundary conditions on g (see Appendix 2)

sl)=—1L3g,,
, 2 (3.4.9)
g(l)=—A4,.
The solution to Eq. (3.4.6) can easily be found to be
g(ﬁ)=9102+920+93 s (3-4-10)
where *
0:=-L2a,{g' ()~ g(1)} — a0/ (D)4,
g;-j[(aa—al)g'(1)+2alg<1)——cj :
(3.4.11)

gu=— [ =0 (1) +2(a:—a)lg' (1) —g(D}+c],

4=2(a,—ay+a,).

| Equations for h(¢) and 4(6), which are simplified with the aid of Egs. (3.3.7)
and (3.4.10), are obtained, respectively, in the forms

(a,6°— a0 +a)h” —2(2a.0 —a)k’ +6a,h =2c(A,0—B,) , (3.4.12)
(@,0*—a.0+a,)i" —2(2a,0 —a,)i’ +6a,i= —b0+b,, (3.4.13)
where
bo=2A44(93—49195)+ 2w, 459, {27(r + 1)9: + (27 + 3)w, A3}
+ 200 A; [ 79:(Ao9:—27Bogy) + 01 40Bo{2(r +1)Bog, — (r + 2)A49.}]
—22%7 w0 A1 91[1(Aog:—27Bogr) 4 (r+1) Aog:]
+ 72w A7 [2(rP 4+ 1 4-2) Bogi— (r + 1) Aoge]
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+m4P%wa%£+ﬂma+an, (3.4.142)

b,=2By(95—49195) — 27059 {(r+1)9:— @1 AoBo}— (r+3)ww, A7 %9,
— 2w A} [792(2A0g3 —71Bog2)+ 0 A Bof(r+2)Bog.— 44,9,}]
+ 22w Al 95(21(2 4095 —7Bog2) + (r+1)Aq9:}
+2¢%wow; AN 7*Bi9: — (r+1) AuBog2— 4343}

20— L1 ) A5 Bl A+ < B Ao BT (3.4.14b)
The boundary conditions are given, respectively, as
h(1)=——~B,
3 (3.4.15)
h‘l(l) = “Al ’
i(1)=—1—<32’“1‘i2‘“‘-1"f-1—1) s
3 2 (3.4.16)
V(1)=g,—A4,.
The solution to Eq. (3.4.12) is easily found to have the form
h(0)=h,0*+ hy6*+h,0+h,. (3.4.17)

Substituting Eq. (3.4.17) into Eq. (3.4.12) and equating like powers of 6, then
gives two equations indicating a linear combination of the coefficients, k, (¢=
1,2,3,4). The other two equations for h, are obtained from the boundary con-
‘ditions. Thus, the all coefficients in Eq. (3.4.17) are determined by solving the
simultaneous equations for A, ;

3azh,+ash,+agh, " =cA,,
ahy+ashy+3a.h,= —cB,, ]

3.4.18
ht bt byt m=MD,J G419
3h,+ 2h,+ hy =h'(1).

In quite the same way the solution to Eq. (3.4.13) can be obtained as
1(0)=1,2+1,0°+1,0+1,, (3.4.19)
where
3a58;,+ Ayl a4, = "%‘bc s
. . . 1
A3ty +asly+ 3047, 2*2'b1 ’ (3.4.20)

Lt et 13+ i4:i(1)s
30+ 26,4+ 4 =4'(1).
Body surface is determined by vanishing of the stream function. Hence,
(Aoab_Bo)‘“lm(glag'f‘gzﬂb +9,) —ma*(h,03 4 hot3+h 0, +hy)
_laxz(i10§+i20§+i30b+i4)_‘ D :O Py
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16 K. Karashima

where 6, denotes conical parameter for the body surface and is a function of z
only. Taylor expansion of the above equation with respect to x yields for 4, an
expression

0= %‘*‘”A-I?(Eggz +AByg,+ Aig,)la
0 0
+—;1£;(h1§3 +hyA B+ hy Al + hAma?
0

+ —*“éﬁ [(Aogz + 23091)(4;393 +A-ogogz + 3391)
0
+ Ay(0, B3+ 1,834+ 1, A3By+ 1 A3 112+ - « - - (3.4.21)

Although ! and m, etc., still remain unknown at the present stage of analysis,
they can be determined by the given body shape. Thus, the plane problem can
be solved completely.

3.5. Biconvex Circular-Arc Airfoils

In order to confirm the accuracy of the present approach numerical calculations
were made for several biconvex circular-arc airfoils as simple examples. The
body shape is given by
27,

T

0,= (1—2). (3.5.1)

By comparing Eq. (3.5.1) with Eq. (3.4.21) | and m are found to be

Lo =200 _(p,),.0=0,, (3.5.2)
Ao T '

%

— .-2-.'
B S— (3.5.3)
A9y +AoBg,+ B,
m=— (Aoge+ 23091)(‘;3934“{0?_092+B§gl)+‘qo(f1{§g+ iz‘_"_iogg‘f‘iagggo‘f‘iﬁqg) %2,
AhiBi+h,AoBi4-h, AiB+ h A3

_ (3.5.9)
Initial ratio of shock to body curvature is given by the equation
K _ , (3.5.5)
v K, 4z,
and the initial slope of surface pressure coeflicient is given by the equation
1 dC,,) 7w 2( -1 de)
— % =—1% , 3.5.6
(K,, dx /z=0 2ror b dx /z=0 ( )
where
p(0)=A\(1417%6,),
(5.5.7)
(%%‘) =0: “{(29100"}'9'2)'"72(9200+293)}l }

Figs. 3a to 3c show the variation of initial ratio of shock to body curvature
with semi-vertex angle at Mach numbers of 2, 3 and 5, respectively. The results
from method of characteristics calculated by Kraus [6] and from hypersonic
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FIGURE 3c. Initial ratio of shock to body curvature for plane body, M=5.

small disturbance theory are shown in each figure for comparison. It is found that
the present theory has better agreement with the method of characteristics than
the hypersonic small disturbance theory which becomes increasingly inaccurate
as Mach number decreases.

In Figs. 4a to 4c is presented the initial slope of the surface pressure coefficient
at Mach numbers of 2, 3 and 5, respectively, and the results from method of
characteristics [6] and from hypersonic small disturbance theory [8] are also pre-
sented in each figure for comparison. The agreement between present theory
and method of characteristics is very good.

Figs. 5a to 5¢ show the surface pressure distribution for biconvex circular-arc air-
foils with thickness-chord ratios of 0.05, 0.10 and 0.15, respectively, and at Mach
number of 2. The surface pressure distributions for the same airfoils and at
Mach numbers of 3 and 5 are shown, respectively, in Figs. 6a to 6c and in Figs. 7a
o 7c.  The results from the shock-expansion method and the linearized theory
are also presented in each figure for comparison.

It must be noted here that the present theory should primarily be compared with
the method of characteristics. However, Eggers and Syvertson [ 5] tried to make
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22 K. Karashima

an over-all check on the shock-expansion method and revealed the fact that there
is no apparent difference between the pressure distributions given by the method
of characteristics and the shock-expansion method up to a Mach number of 10,
above which the latter method predicts pressures that are slightly low downstream
- of the leading edge, becoming progressively lower with increasing Mach number. L
This can be interpreted into the statement that almost all of an incident distur- 4
bance emanating on the surface of the airfoil is generally absorbed in the shock

o_o 8

Ro
0.06 1
M=15 1
004
002
| M=35
— | ___M=35_
0 . —
0 4 8 iI2 16 20 24
S (degree)

FIGURE 8. Variation of disturbance strength ratio behind an oblique
shock wave with flow deflection angle 4.

wave. In Fig. 8 is presented the “disturbance strength ratio E,” calculated by
Eggers and Syvertson [5] by use of the method of characteristics as a reference.
It is defined as the ratio of pressure gradient along a characteristic of the first
family C, to that along the second family C, at the shock wave such as
Ry=— op / op .
dc, | ac,
The fiure shows that the disturbance strength ratio is very small, thus giving an
evidence that the flow field downstream of the shock wave can be considered, with
ample accuracy, to be a region of simple wave.

Since the characteristics net-work is very much laborious, the present theory is
compared with the shock-expansion method for the reason just mentioned above.
As is seen in Figs. 5a to 7c, the present theory agrees well with the shock-expan-
sion method, which, in turn, with the method of characteristics. However, in the
case of thickness-chord ratio of 0.15 and at Mach number of 5, the present theory
seems to deviate from the shock-expansion method in the region near the trailing
edge. This does not arise from essential inaccuracy of the present theory, so that L
the deviation will be improved by taking more higher terms in series expansion
of the stream function, Eq. (3.4.2). * ]

(3.5.8)

4. AXIALLY SYMMETRIC FLow PROBLEM

4.1. Fundamental Equation

For the axially symmetric flows past pointed bodies of revolution the continuity
equation, Eq. (2.9a), may be accounted for by introducing a stream function ¥
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and the entropy function o(¥) such as
V.=—rov, V,=rplatcu), (4.1.1)
“’("’):—p} : (4.1.2)

The entropy equation is then automatically satisfied by the stream function and
entropy function. The mathematical expression indicating a relation between p
and V¥ in the flow field can be obtained from an analogous discussion as has been
made in Section 3.1. The flow downstream of a shock wave attached to a body
of revolution (see Fig. 1) is assumed to consist of a basic conical field upon which
is superimposed a disturbance field due to body curvature. Therefore, the velo-
city components %, v in the flow field are also considered to consist of two parts.
The one is appropriate to the basic conical flow and the another is due to the
body curvature. Hence,

u(x, r)=u.(z, r)+u,z, ), ] (4.1.3)

v(z, r)=v(x, r)+v,(z, 7),

where u, and v, denote reduced velocity components appropriate to the basic
conical field and %, and v, are those due to the body curvature.
From the definition of stream function it is obtained that

3 ‘!"r“,:z‘l"x =pla+r(u+v)}.

Substitution of Eq. (4.1.3) into the above equation leads to

¥ :\h ——p{l +m—2—+rz(u F )+ (u, +'v,,)} (4.1.4)
The third term in bracket of right-hand side of the above equation may be of
order of 0%/r from an order estimation analogous to the plane flow and, hence,
negligible. However, contrary to the plane problem, the velocity components
appropriate to the basic conical flow are not constant in this case, so that an order
estimation must be made for the second term in bracket of Eq. (4.1.4), which can
be made by use of conical theory proposed by Taylor and Maccoll (11).

i The conical flow has a similar solution which is analytic everywhere in the
flow field, so that an series expansion of velocity components about shock wave is
possible such as

: > }(1 —6)

e+ Ve = U, + Vo, — {(ill‘-c—>+( dv
+ 2 {(Lhe) ~(S2) Ja—or-+ora—op,

dé
where ¢ denotes a conical variable defined by 7/x, so that the shock wave is given
by =1, and where

2
G+ DM
With the aid of the conical theory, coefficient of the second term of the above

uc,+ 'Uo‘= -
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series is easily found to vanish and the coefficient of the third term is expressed as

(d“’uc>s+(d2vc ):( 2 )< 1 >’2rM2r2—(r—1)(1+12).

de? de* r+1 1472 2M 32
Therefore,
2
14 = 2
+ G D) ;iU +v,)
_ l{ 27 P2rMit—(r 1)(1'{‘72) 2 3
=14_ 1—60¥2+0{(1—6)%). (4.1.5
2 ()’+l)(1+z-2)} 2M32 (1—-6) { 3« )

‘The maximum value of the second term in right-hand side of the above equation
is given on the cone surface §=40,=4d/r, so that

,1_{ 2 }’2rM2r2—(;::—l)(lj|—zf)_<lww¢§_>’< 1 M1
2 L(r+1D)(1412Y 2M %2 t/  r+1 M*

which may be considered to be negligible compared with unity. Thus, Eq. (4.1.4)
may be expressed in a simple form

2

p:_‘kr:_f_ziz,_ (4.1.6)
r

Eq. (4.1.6) has two kinds of error; the one is due to the basic conical flow,
(1/r+1)(M?*—1/M?*), and the another is caused by neglecting the terms of order
of 6*/z. However, the former seems to be over-estimation for a reason that it has
been obtained at §/r=0, which implies that no body and, hence, no disturbance
exists in the flow field. In such a case, since the second term in right-hand side
of Eq. (4.1.5) must be canceled by sum of the remainder terms, so that the actual
error may be expected to be much less than (1/y+1)(M2—1/M?*) for finite value of
6/r. 'This circumstance implicitly suggests that the error involved in Egq. (4.1.6)
may be of order of %/r.

By use of Eq. (4.1.6) the fundamental equation for the second-order supersonic
axially symmetric small disturbance flow is found to have the form

w3¢zz - Z‘P\z\,"r\l’xr +‘Ir-3'\’frr

=L fro(¥ = L) 40w
+e Y frob b ¥ bi—row (Ve — L)

—rat (b= ) =0 G D, (4.1.7)

where terms of order of §*/r and z%)* have been neglected in the above equation
(see Note, p. 49).

In Fig. 9 is presented an example for variation of semi-vertex angle of bodies
of revolution with free stream Mach number, in which #*/r and 726* are used as
parameters. In the figure the hatched region bounded by lines having §%/r=1%9*
=0.05 indicates the domain in which Eq. (4.1.7) may be applicable within 5 per-
cents error. A boundary having z6=0.05 is also shown for comparison. Van
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FIiGURE 9. Range of applicability of the present theory for axially
symmetric flow, Eq. (4.1.7).

Dyke’s first-order theory may be applicable in the region under this boundary with-
in 5 percents error. As is seen in the figure, the present theory may be applicable
comparatively thick bodies at all supersonic Mach numbers above the transonic.

4.2. Flow Past Circular-Cones

As a simple example, consider the supersonic flow past a cone of semi-vertex
angle 8. Since the flow field is conical, the stream function and the shock shape
can be written in the forms

Yz, r)=2f(0), 0:4;_, (4.2.1)
r,=S&)=x. (4.2.2)

The shock wave being straight, the flow downstream of the shock wave is irrota-
tional and isentropic, so that the entropy function w is constant everywhere be-
tween shock waves equal to w,, which is given by Eq. (3.3.4). It follows that the
fundamental equation becomes a non-linear ordinary differential equation

f"[4f2 el (G 1 0)0F —2(r+ l)f})]

6t
r+1
=247 —rord L4200 2+ 140F)]. (423)
and the boundary conditions for f(#) at the shock wave is written as
Fy=>,
2 (4.2.4)
f,(l)on .

Another boundary condition requires that the stream function vanishes at the
<one surface.
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f(6,)=0. (4.2.5)

Numerical integration was carried out for several examples step by step inward

from the shock wave until f vanishes. However, before discussing the detailed

results of the numerical calculations, the validity of Eq. (4.1.6) must be confirmed.
For the conical flow Eq. (4.1.6) can be written as

- f'——rﬁ(zof—ﬁf') , (4.2.6)
On the other hand, Bernoulli’s equation for the conical flow has the form

&pt— 2y wep’ = f/2+2'2(2{——0f')2 ,
7l ) d (4.2.7)
a=14+—"—.
(r—1M*

Therefore, the confirmation will be made by comparing p calculated from Egq.
(4.2.6) with that from Eq. (4.2.7), which are shown in Tables 1 to 3. The values

TABLE 1. Reduced density TABLE 2. Reduced density TaBLE 3. Reduced density
in conical field. in conical field. in conical field.
M=2 §=20.77 " M=3  §=20.57 | M=5 §=20.40
Eq. (4.2.6)|Eq. (4.2.7) Eq. (4.2.6)|Eq. (4.2.7) 'Eq. (4.2.6) \ Eq. (4.2.7)
6 I P 6 PP 6 e | P

1.00 | 1.348 | 1.348 1.00 | 1.831 | 1.832 1.00 | 2.820 | 2.821
0.90 1.458 1.467 0.90 1.967 1.971 0.95 ‘ 2.937 . 2.939
08.0 1.528 1.538 0.80 2.061 2.063 0.90 i 3.025 3.028
0.70 1.589 1.597 0.70 2.154 ! 2.155 0.85 | 3.09 i 3.092
0.60 1.644 ! 1.642 0.6605i 2.163 i 2.166 0.80 | 3.132 ! 3.132
0.5031 1.691 ; 1.668 ' 0.79100 3.133 - 3.134

of f and f’ used in the computation are those obtained from Eq. (4.2.3). As is
seen in the tables, the agreement between Eq. (4.2.6) and Eq. (4.2.7) is found to be
quite good. Since the final value of # in each table indicates cone surface, the
error in p calculated from Eq. (4.2.6) is within 0.1 percent relative to the one
from Eq. (4.2.7) except for the case of Mach number of 2, for which it is at most
2 percents. Comparatively large error for M =2, however, is due clearly to the
large value of r (=0.7536). For smaller semi-vertex angle than 20° the error
will be reduced, thus confirming the validity of Eq. (4.1.6).

In Figs. 10a to 10c are presented the variations of surface pressure coefficient
for cone at Mach numbers of 2, 3 and 5, respectively, with semi-vertex angle. In
each figure the results obtained from linearized theory, exact conical theory [/0]
and hypersonic small disturbance theory [8] are also shown for comparison. As
is seen in the figures, the agreement between present theory and the exact conical
theory is quite good for semi-vertex angle up to 15°, above which the former
predicts pressures that are slightly high in comparison with the latter. However,
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28 K. Karashima

the error is only about 5 percents at semi-vertex angle of 20°. It must be re-
markable that the linearized theory seems to be useful for semi-vertex angle up
to 5°, above which is increasingly inaccurate. This trend grows as Mach number
increases. The first-order hypersonic small disturbance theory is found to be less
accurate than the present theory.

Figs. 11a to 11c show the variation of shock wave angle for cone with semi-
vertex angle in which the results from the exact conical theory and the hypersonic
small disturbance theory are also presented for comparison. The agreement
between present theory and the exact conical theory is found to be fairly good
except for a fact that the present theory gives slightly lower evaluation for the
shock wave angle than the exact one. The hypersonic small disturbance theory
seems to be less accurate than the present, as is seen in the figures.

50 50
3 f
£ a0} S a0t
g <
30 301
20F 20¢F
—— Present Theory —- Present Theory
Ior—mm1— —eee Exact Conlcal | o ——-— Exact Conical
—.— Van Dyke —-— Van Dyke
(e} L 1 i o) \ 1 L
o 5 10 15 20 0 5 10 15 20
S(degree) S (degree)
FIGURE 1la. Variation of shock wave Figure 11b. Variation of shock wave
angle with semi-vertex angle for ) angle with semi-vertex angle for
circular-cone, M=2. circular-cone, M=3.
50
0]
[
o
g a0
Q
30
20
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10 --~-~ EX06t Conical
—.— Van Dyke
0 L L L
o] S {e} 15 20
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FIGURE llc. Variation of shock wave angle with semi-vertex angle
for'circular-cone, M=S5.
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4.3. Application to Convex Bodies of Revolution

Consider the supersonic flow past a convex body of revolution with an attached

shock wave (see Fig. 1). This problem has already been investigated by Shen and
Lin [7] by use of perturbation scheme from full equations, aiming at determina-
tion of the initial gradients of the flow properties at the tip of the ogival body of
revolution. In clarifying the behaviour of the solution near the surface in their
work, however, was misconstrued to indicate a singularity which implied wrongly
that the initial pressure gradient at the tip of the ogive is infinite.
b On the other hand, the solution given by Van Dyke in his hypersonic small
disturbance theory [8] shows no such singularity. According to his argument it
seems unlikely that a singularity could have disappeared as a result of making
the small disturbance approximation, since this would imply that the approximate
model does not retain the essential feature of the full problems.

“In the present approach, the flow behind the shock wave is considered to consist
of a basic conical flow field upon which is superimposed a perturbation field due
to body curvature, as was done by Van Dyke. However, if the stream function
is expressed in the same form as Eq. (3.4.2), detailed examination reveals that the
similar solutions for the higher power of  become non-analytic near the surface
of the basic cone #=4§,, under which the solutions does not exist. This mathe-
matical difficulty together with the fact that the body surface lies under 4, for
conventional convex body of revolution suggests that the solution for Y/(z, r) can-
not be continued beyond the singularity to the body surface. In order to avoid
this difficulty, however, it is convenient, as Van Dyke pointed out, to introduce a
slightly strained radial coordinate # such that the body surface is given by #,=46,z.

Let the body surface be given by

70200w+—;—lﬁlw2 +—;——')n62x3+ tetty, (4.3.1)

and the corresponding shock wave by

rszx—flﬂlxz—imx“—- ceey, (4.3.2)
27 3
: then, the simplest choice for 7 is

?:r—(é—lﬁlxz—i—-;—mﬁzxa—{— .- ) (4.3.3)

Therefore, the conical parameter # in the strained coordinates system is ex-
pressed as

H:izaw(ilﬁlw+—l—mﬂzx2+ <. ) (4.3.4)
x 2 3
If the stream function and entropy function are expressed in the forms
—~ o~ -~ 14~ ~ 1 14~
Vi, =2 f @1 {o) — 10,5 @)} — ma* {kG) — 0.5 ()
@ (i) + 200 D)= Of B = (43.5)
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30 K. Karashima

o(¥)=wl—aoW2¥ —amyp—- -+ -), (4.3.6) 57 at

then, the differential equation for each of the similar solutions has, with respect

to ¢, the same functional form that can be obtained in the unstrained coordinates ;: s
system, where the stream function is defined by Eq. (3.4.2). Thus, the equation 4
for f(#) and its boundary conditions are given by Egs. (4.2.3), (4.2.4) and (4.2.5), | It
respectively, in which ¢ and 6, are replaced by # and 4, respectively. : be
Equation for g which results in substitution of Eq. (4.3.5) into Eq. (4.1.7) is a
linear ordinary differential equation and is written in the form
Dg'=A+Bg+Cq', “3.7) §
where |
Ir+1 / 9
A=—o0w f; { (f ")} »: w
o m— f a
2f—6f’
— = 2 1 e
T woa’1 - { f=G+14+) '} = \/Zf 1
oL N2F {2 =B =)= £ =)
1 143 ‘ j‘
+ L pr—ap)-r@s =),
’y+1 144 ‘
B=12ff"—3¢" wa, A (=) + 1
d S
fr+1 2 fl/
C=rwy= {T+ +1 } 8ff
T Wy 07_1 3 —(r+1) v a
e rod (=R @~ G DA+D I+ 25 @F 1) 1
_ 72 (T'I‘ 1) ’ T 2 r17 = £ = £ o “
(r+3)f +——.5—-f Qf—=0f)=1r"f"Qf—6f)+r8f' 1", 1 A
4 o
et |
D=roigm =4~ oo = “HG+DCs )35, 3y §
Conditions along the shock wave can be obtained from Egs. (3.4.4a) and (3.4.4b) £
by replacing (¥,), by (¥,/r), and (—¥,), by (—v,/7),, respectively. Thus, the ¢
boundary conditions for g are written as v
o(1)=—— B, | B
(43.9) ¥ 1

o (W)= M= (D)4, ]

where
ny= LD =10 f T OLF )+ +3) £ (D)= +2)]

= L O O+ e+ D -G+ on 10§

Since the function f associated with the basic conical flow vanishes at the
surface #=4,, the coefficient A in the differential equation for g becomes infinite
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at §=~0,. This indicates that the function g becomes non-analytic near the sur-
face. On the other hand, the fact that f is analytic near the surface leads to a
series expansion of f as
F@) =610 +OLE—0:)T @3.11)
It follows that near the surface the coefficients of the differential equation for g
pehave like
A~—AG—0,) %,

B~B,,
° (4.3.12)
C~CO’
D~D01
where
A= v T {10+ 1460}
0"’“/—2—0)00)1 06_1 TU\T 0/f »
. Ir+1 0 fll 1
‘ B.—=—3z2 J;.{I.‘D.(l_.g J..) ._.},
: 0 T Wy e b ﬂf{, +00
1r+1 2 f// f’” 1 17
Co=ra, L0 {__T+_ 1_°—} S A { 110(1—0°>
0= 7Wo el A (r+ )fé + 77w, e (r+1)(1+6,) of[,)
e 1
+(r2+3r+4)+200-—r(r+1)007°,~},
\ f‘lr+1 ’ Vé
D0=Two 0‘;_1 {1+7200(T+1+00)}- (4.3.13)
0
and where subscript o denotes the condition at #=6, and
§ 1 1470y +2+60) (4.3.14)

16, 1+0(r+1+6,)

Although the point §=4, is a singular point of Eq. (4.3.7), it is an ordinary point
of the homogeneous equation by deleting A. Therefore, the general solution of
the homogeneous equation is analytic, while the particular solution of the non-
homogeneous equation has */,-power branch point at #=60, This arises from the
fact that the pencil of fluid striking the tip of the ogive is spread thin over the
entire surface and the linear entropy gradient at the tip due to a curved shock
wave is intensified to a square-root gradient normal to the surface elsewhere.

The two unknown constants involved in the general solution of the homogeneous
equation can be determined as the values of g and its first derivative at =0,
Thus, the full solution of Eq. (4.3.7) can be obtained near the surface as

4 Ay g{ 2 G, 4(03 Bo>2 }

=% (¢4—8 14+= e —| —+-— 4.
909) 3 Do( o) 5 1)0s 35\D ' D, ©

1 B 1 B, C

+9(8 {1+__.__° ey 1 Do Go

9(60) 2 1)0s 6 D, D,

, 1 C 1<C?; B>2 }
(4L Cooy 1 (G0 Do 4.3.15
+g(60)e{+2 D08+6-D3+D0 e+ ( )

83+""}
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32 K. Karashima

where
5:’&'—‘00 .

The integration of Eq. (4.3.7) is carried out numerically step by step inward
starting from the known values at =1 and using the same intervals for 4. The
step by step solution is then joined at the two points in the very vicinity of
=0, with the series expansion about the singular point given by Eq. (4.3.15).
Thus, g(6,) and g'(6,) are determined and the solution for g is obtained.

Differential equations for - and ¢ are expressed, respectively, as

Dh"=E+Fh+Gh', (4.3.16)
Di"=I+Fi+Gi', (4.3.17)
where D is given in Eq. (4.3.13), and where

Pt a7 ) —tero (T (1500 4 1),

" f/r 1
}-12ff'—f vk

4

el (72
G 70)0 ar 1 { 5 (T+1)

[{2rf—(r+1)<1+5>f'}<f'—6f")+3f'(zf—-af')—<r+4>f'2
+~(1_—%—1Xf’(2f—5f’)—rzf”(Zf—ﬁf’Hrf?f’f”] ,

E=—200 0 {rf(f" ~L)4 1

—2etroo L@ =81 =85~ =057)

—17"@f =3+ TELper—ar))
—27%wow, f:”l {Tf(f" A ) f’z}

I=I,+1,,
L=o2a—o) L rf (= L)+ 57}

7

+etro2a—w) L {@f ~T N =3~ £ —55")
—rer-ir+ Tt rar—am)
+eto2a—a) L 0r- df’){2f (r+1+D)F,
12=3(2fg'2+2f'gg —4f99"—3f"g")

i)

+T(T+ 1)(‘)0 ar 1

(continued to the next page)
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fr+1 '?'

g 12y 2 4 i

— @0 = (2f)%{f +Qf =8/ 2f —(r+1+0)f]) ;

roud Ll (L) vl

+ 70w ~_+ "/2f{(7+1\f}; + g T‘;z}

ool L= =5 XS =B~ DI =57

—r—1) FQf =)+ T (T+ W rer—ar)+raGo—in i —as7)
7 f”+—(7:—%l)—2-f’} e — G —Bf ) —(r+ 1) F}
4 f12(3g_5g/)(2gr_a‘gn) _Tzf/g/g//(zf__a‘f./) __rffggrl(Bg_agl)]

oot Q=8NS =)~ £ (F =)

s 1 ‘sz
+ L rar—ap)—rr @f—55))
. f7 1 o o
+rwocu15,_1 m{(T+1)(2f ofV2f—@G+2+6)f 19
+f'(39g—89")[4f —(r+14286) 1}
ey X A o s = =0 = F @ —ir)

—-(r+1)f’(f’—ﬁf”)+»Qj#f.’@f—ﬁf’)}

+5Gg—30) {10 =7+ L]

g
+F2F — U+ F Y20~ 89 )~ @F =50 |- (43.18)
The boundary conditions for k& and ¢ are given, respectively, as
it
W()=——Bo, ‘
) _ ] (4.3.19)
h’(1)=?[f'(1)—f"(1)}—Ao,

i()=1] Bem At =1 (0+20 ()}

e | 1 } (4.3.20)
=1 Lr =L O+Lrm+em-em).

where B, A,, A, and B, are given by Eq. (3.4.4c), and
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"1y = v 1
f(1) 1=y f (DL (D) +HT+2)'(1)— G+ D] X ‘
L) — £ (720 (W} G+ Douf (DS /WD) - £ (1)

+ 2o S W (r+2) /WS (D) + G+ DG +2) S (1)) ]

+ D)+ () =1+ D) =P+ S5r+3) () (D]
(43.21) 1}

It is clear that the function & is analytic everywhere while the function % is L
non-analytic near the point #=6, The same mathematical procedure as was
made for g(#) can be, therefore, applied to clarify the behaveour of 4 near the
singular point, indicating that the particular solution of the nonhomogeneous
equation for ¢ has !/,-power branch point at 4=6,. However, it seems to be con-
venient to represent the full solution of 4 near the singular point in the form of  j}
not (#) itself but the combination #(¢)+9'(#)(g9./f5). Hence, the series employed
can be obtained as

i(5)+g'<c7)§,9,~ ”2“’1 Y201 f13g G g} {Py+2Pyet - - - -}
0

SRR e e i

+ z(ao){l-l—»z—xe +—2pe’+ - } ,

+K@— 00 {1+ L+ LA+t

+iae{l+imt- LGt

4 O Xs{l—}——;-pe—l- A+ p2)e+- }

fa
+ Goo gj‘i“f" {1+#e+ (A+po)et+ - } (4322 §
where |
B c
]:___0.., =20 , ) . |
D, “TD,
I~)0 D, 0 [ (4.3.23)
P=11 _o2(z—p)
I,
V(T s )\, 2
p___<_} -2 2—-2) 2+,
) 510/4 7 /1+5(+P) /
and where
l +1
_ 1 r4-0 S
Fy=4f7—4r*rw,2— 07 - { ) °(1 Gy f,>+———}
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Go—“—fwoj;‘g: {7;;2 (7+1)f° }+r T(Uofo {(r+1)(1+oo)(1——oﬂ;;0>

+300+(72+3r+5)—~r(r+1)§%—},

+3
7= — g L 90 (14 %, (r+146,),

6t 242
~ S g, {( 0 1) go} fi¥ g,
— 4% — +2 + 7% X
b= T VN 5, T g T e T

44 4
{r(r+ 1+4-6,)0, f °, +2(r+1 +00)0og1—(r2+2r+3+700+300)},

0

{1 + 22007+ 14+ 00)}+ 39,2596 —3 1 90)

Iz-"'— ""woa’1

_ Jor? 2 T(T+l) by JS? _ r+2
o2a—o) (Lt 1400+ o T g (2% fe 12 )

+eire ,j:"l[;rgo {[r2+1+(r—1)00100-%'——~[(r—l)ﬂo+(r+1)(r+2)3}
’ —a.n S 2f_t’)’_ (r+1)°
+9:(390 0090){r( — 6, f’> r f6+ ) }

+69ug5—2(r+ D)(1+00)F* | (4.3.24)

The unknown constant K in Eq. (4.3.22) can be obtained from the equation

G972 =K+ 90 (2g,+pgi) . (4.3.25)
£ fo -

The differential equations for k and i are also integrated numerically in the
same manner as outlined previously. Since h(#) is regular near the surface of
the body, it is readily integrated with ample accuracy. On the other hand, the
accuracy of the solution for ¢(¢#) suffers from the facts that it depends upon the
accuracy of the preceding solution for g(#), that one coefficient in the differential
equation is singular. Moreover, one coefficient in the differential equation for
i(#) itself indicates a strong singularity at the body surface. Consequently, al-
though results derived from f and g are reliable, those derived from ¢ are pro-
bably not so reliable.

Now that the stream function is determined, the body shape can be obtained
from the condition that ¥ must vanish along the body surface, =4,

Y(z, 6,)=0. (4.3.26)
By use of Egs. (4.3.5) and (4.3.26) the radius of the body is expressed as
9o ho % gogo 1 95 rn
7y =00+ Z2l2? —I—{ A 4IF ( + ==f4 >} ceee, (4.3.27)
TR fo NS fE 2 g

Where subscript o indicates the value at §=6,. The unknown constants l, m, in
the above equation are determined by the given body shape.
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4.4. Application to Paraboloid-Arc Bodies of Revolution

As an example, consider the supersonic flow past paraboloid-arc bodies of re-
volution, which is given by the equation

rb__z.ﬂx(l z), (4.4.1)
where 7, denotes the ratio of maximum diameter to body length. Therefore, 1/7,
is the fineness ratio of the body. By comparing Eq. (4.4.1) with Eq. (4.3.27) it
is found that

o= 2:" (4.4.2)
1= —g, 0 = 2% fo (4.4.3)
9o T G
__v 9o 1 1 4.4.4
me ittt L (2.5 40

The initial ratio of shock to body curvature and the initial slope of surface pres-
sure coefficient are given, respectively, in the accuracy of the present approxima-
tion as

K,__ Jo, (4.4.5)

K, 29,
_L_O.lga> = 1% 2< r-l,d_/’b_> 4.4.6
<Kb dac =0 ZTOT Os dx x=o’ ( T )

where
2 4 .

pa(O)zil—Jffé—ﬁQE—“— . (4.4.72)

0

(gee) =- 00[(1“" f 6‘:"’—12{f6— Lo L (39, 9000} )0u— (1481 .

(4.4.7b)

In Figs. 12a to 12c is presented the variation of initial ratio of shock wave to
body curvature with semi-vertex angle for Mach numbers of 2, 3 and 5, respecti-
vely. Results obtaided by Shen and Lin [7] and by Van Dyke [8] are also shown in
each figure for comparison. By use of perturbation scheme from initial Taylor-
Maccoll [//] conical solution Shen and Lin gave a figure indicating the initial
ratio of body to shock wave curvature, for which the numerical computations
were carried out for semi-vertex angles of 10°, 20° and 30°, respectively. There-
fore, Shen and Lin’s data plotted in the present figures by use of round signs were
obtained from their faired curves.

The figures show that the present results agree well with those obtained by Shen
and Lin. The hypersonic small disturbance theory seems to have less agreement
with present theory and Shen and Lin’s results. This trend is quite the same as
has been already found in the case of plane flow.

Figs. 13a to 13c show the variation of the initial slope of surface pressure coe-
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FIGURE 12c. Initial ratio of shock to body curvature for axially symmetric body, M=5.
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FIGURE 13c. Initial pressure gradient on axially symmetric body, M=S5.

flicient with semi-vertex angle for Mach numbers of 2, 3 and 5, respectively. The
result from hypersonic small disturbance theory is also presented in each figure
for comparison. Since there could not be found out any other datum to be com-
pared, numerical computations were carried out for a paraboloid-arc half-body
of revolution with 7,=0.1494 and for Mach numbers of 2 and 3 by use of the
method of characteaistics, and the results are plotted in Figs. 13a and 13b, re-
spectively, by the use of round sign.

As is seen in the figures, the present theory is found to have better agreement
with the method of characteristics than the hypersonic small disturbance theory.
Futhermore, at the tip of the body the present theory does not indicate such a
logarithmic singularity as was mentioned by Shen and Lind. Thus, the initial
gradient of surface pressure is proved to be always finite for the axially sym-
metric pointed bodies, as has been already mentioned by Van Dyke [8].

In Figs. 14 and 15 is presented the surface pressure distribution for paraboloid-
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FIGURE 14. Surface pressure distribution on M=3, 7,=0.1494.

paraboloid-arc half-body of revolution,
M=2, T0=O.I494.

arc half-body of revolution with r,=0.1494 and for Mach numbers of 2 and 3,
respectively. The results obtained from the method of characteristics, linearized
theory and tangent-cone approximation are also shown in each figure for com-
parison. The agreement between present theory and the method of characteristics
is quite good. The tangent-cone approximation seems to be fairly accurate in
downstream vicinity of the tip, but it fails as the surface gradient tends to vanish.
On the other hand, the linearized theory does not seem to predict the essential fea-
ture of the flow. This is clearly due to the inapplicability of the the linearized
theory to such a thick body.

5. EXPERIMENT

5.1.  Introductory Remark

An analytical approach has been developed in previous sections for the second-
order plane and axially symmetric flows at supersonic speeds, yielding that the
Present approach is in good agreement with the method of characteristics. From
the practical point of view, however, the shock-expansion method seems to be
more accurate and convenient than the present approach in estimating the surface
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pressure on the given bodies in plane supersonic flow.

Contrary to the plane problems, in evaluation of the surface pressure on axially
symmetric bodies, the linearized theory seems to be the most practical method
convenient to use, although it has already been found to be inaccurate for
comparatively thick bodies. On the other hand, although the method of
characteristics may be exact, the characteristics net-work seems to be very much
laborious. In this sense, the present approach for axially symmetric flow may be
of great value as a useful approximate method, which has been found to be in
good agreement with the method of characteristics,

Experimental confirmation of the present approach is of another interest. Exa-
mination of the existing studies reveals that there does not seem to exist much
previous works on comparatively thick bodies of revolution with longitudinally
curved surface at supersonic speeds, while there are much data for the plane flow.
In practice, however, the nose of supersonic projectiles such as missiles and rockets
seems to have fairly small fineness ratio, for which the linearized theory is in-
accurate. Therefore, it may be worth doing an experimental investigation to
present some data on the axially symmetric flows.

The purpose of the present experiment is to confirm the validity of the present
theory and to give some experimental data on a paraboloid-arc half-body of re-
volution with fairly small fineness ratio at supersonic speeds.

5.2. Wind Tunnel

The experiment was carried out by use of two wind tunnels. The one is an
intermittent blow-down type ordinary supersonic wind tunnel with 40 cm X 40 cim
square cross section at the test part. Air reservoir is a steel sphere of 524 m? in
which dry air is compressed at 15 kg/cm? at maximum. Stagnation pressure mea-

. sured in the settling chamber can be fixed at an arbitrarily given value during
the test by use of automatical control system. The error in fixing the stagnation
pressure was measured to be within one percent. During the test of about 120 sec.
the stagnation temperature was found to be almost constant at the atmospheric
value. After that time it decreases gradually due to adiabatic expansion of the
air in the reservoir tank. The air used for testing blows into atmosphere through
a subsonic diffusor and a silencer.

There are three nozzles designed for fixed Mach numbers of 2, 3 and 4, respec-
tively, so that change in Mach number of the wind tunnel must be made by ex-
changing the nozzle block. The test chamber can be observed through two glass
‘'windows mounted just oppositely on both side-walls of the nozzle block. A photo-
graph of this wind tunnel is shown in Fig. 16.

The another is an intermittent blow-down type hypersonic wind tunnel with an
ejector downstream of the test chamber. The air stored in a tank of 4 m? and at
120 kg/cm? is led through an automatically regulating valve to a constant pressure
chamber in which it is preheated up to 600°C. The Mach number of the nozzle
is 8, so that this temperature seems to be high enough to avoid air-condensation
in the test chamber. The ejector is capable of reducing the back pressure to about

This document is provided by JAXA.



Second-Order Supersonic Small Disturbance Theory 41

FIGURE 16. Wind tunnel.

0.1 atm. and the stagnation pressure is 50 kg/cm?, so that the pressure ratio is high
enought to start the wind tunnel. Duration of the wind tunnel is 120 sec..

5.3. Model and Apparatus for Measurement

The model used in the experiment consists of three parts; a nose-cone, a circular
cylinder and a sting. A parablod-arc half-body of revolution with fineness ratio
of 6.693 was used as a nose-cone. Sizes of the nose-cone are shown in Fig. 17 in

1339mm —————

I
Rox .£
()
_ 11
R(x)=a X (2L—X) a=1.15X10"%mm™!, 0=sx=t

FIGURE 17. Size of nose-cone.

detail. The indicated fineness ratio is only a nominal one corresponding to geo-
metric shape of the full-body of revolution. Therefore, the exact fineness ratio of
the half-body of revolution used in the present experiment is 3.347. The nose-
cone is made of stainless steel and has 9 pressure holes of 1¢mm diameter set in
the equal interval of 15 mm along a generating line.

A circular cylinder of 40 mm in diameter and 140 mm in length made of stain-

less steel was used as an after-body of the nose-cone. It was supported by a sting
which was mounted on a strut downstream of the test chamber.

Static pressure on the nose-cone surface was measured by use of mercury mano-
meters. The stagnation pressure was measured in the settling chamber by use of
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a Bourdon-gauge together with a strain-gauge type pressure transducer for com-
parison. The stagnation temperature was also measured in the settling chamber
by use of a thermocouple. Static pressure in the test chamber was not measured,
because detailed measurement and calibration for the static pressure had already
been made for each nozzle. Schlieren methnd was used for optical observation
of shock wave at the tip of the model.

5.4. Results and Discussion

The ordinary supersonic experiment was carried out at stagnation pressures of
2kg/cm?® for M=2 and 5 kg/cm*® for M=3, respectively. Therefore, the Reynolds
numbers referred to length of the nose-cone are 3.27 X 10¢ for M=2 and 8.16 X 10°
for M=3, respectively. The error in measurement of the surface pressure is
within one percent.

Figs. 18a to 18b show schlieren photographs of the attached shock waves for
Mach numbers of 2 and 3, respectively. Since the measurement of shock wave
curvature at the tip from the schlieren photographs is very inaccurate, a compa-
rison of the present theory with the experiment was made for the shock wave
shape, which is shown in Fig. 19. The agreement between the results of the pre-
sent theory and the experiment is found to be quite good.

In Figs. 20 and 21 are presented the measured surface pressure distributions for
Mach numbers of 2 and 3, respectively. Results from the present theory and the
method of characteristics are also shown for comparison. It must, however, be
noted that no boundary layer correction was made for the theoretical results
shown in Figs. 20 and 21, since boundary layer estimation revealed that the dis-

FIGURE 18a. Schliereh phtograph of shock FIGURE 18b. Schileren photograph of shock
wave, M=2, r,=0.1494. wave, M=3, r,=0.1494.
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FIGURE 19. Comparison of the present theory with experiment for
shock wave shape, 7,=0.14%94.
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FIGURE 20. Surface pressure distribution on FIGURE 21. Surface pressure distribution on
paraboloid-arc half-body of revolution, paraboloid-arc half-body of revolution,
M=2, t,=0.1494. M=3, 7,=0.1494.

placement thickness on the body surface is thin enough to be negligible. For
€xample, the relative error in pressure coeflicient at the tip is only one percent.
As is seen in the figures, the present theory agrees well with the experimental
data except for the very vicinity of £=0.5, where it deviates slightly from the
experiment. The method of characteristics, however, seems to agree well with
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the experimental data for the entire surface of the nose-cone.

For the axially symmetric bodies with pointed tail the present approach indi-
cates a singularity in expression for surface density, so that the pressure at the
pointed tail is infinite. The same trend is also given in the linearized theory.
From the experimental point of view, however, this infinite increase of the surface
pressure is reduced to a finite increase due to separation of the boundary layer
associated with interaction with the shock wave at the tail.

_From the theoretical point of view, the slight deviation of the present theory
from the experimental data and also from the method of characteristics near the
smooth shoulder (%=0.5) of the nose-cone is clearly due not to the essential
inaccuracy of the present approach but to the lack of higher terms in series
expansion of the stream function such as shown in Eq. (4.3.5) because of singular
behaviour of the surface density near the pointed tail of the fullbody. Therefore,
the deviation may be reduced by taking more terms with higher powers of x in
series expansion of the stream function.

The hypersonic experiment was carried out at stagnation pressure of 49.5kg/cm?
and stagnation temperature of 510°C. Reynolds number referred to length of
the nose-cone is 1.45X 10°. Relatively large stagnation temperature drop from
the state in constant pressure chamber (600°C) is clearly due to conductive heat-
loss through piping of the air passage. This stagnation temperature, however, is
found to be high enough to avoid air-condensation in the test chamber at Mach
number of 8.

Contrary to the ordinary supersonic case, the displacement thickness in this case
of Mach number is not so thin that the effective change in body shape must be
taken into consideration in order to compare the theoretical result with the ex-
periment. However, the estimation of displacement thickness could not be done
strictly, because surface temperature distribution of the model was not measured
in the present experiment. For this reason it was roughly estimated by use of a
result obtained for a 3/,-power body of revolution with heat-insulated surface and
for Prandtl rumber of unity, which is given in the form (12)

yd__ 06z 5 MC, (5.4.1)
’ <1+f-"—>§ | VRe, ., -
5\*

where 5* and C,, denote displacement thickness and Chapman-Rubesin constant in
free stream, respectively. Although the present model is not a }/--power body of
revolution, the displacement thickness may not so deviate from that calculated by
use of Eq. (5.4.1). Thus, the effective shape of the body is obtained as

T=F,+5*=0.32372—0.3178%*4-0.0870%° . (5.4.2)

Fig. 22 shows effective body shape and corresponding theoretical shock wave
shape at Mach number of 8. The original body shape and shock wave shape are
also shown for comparison. As is seen in the figure, growth of radius of the effec-
tive body is about 26 percents at Z=0.5. Fig. 23 shows a schlieren photograph of
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FIGURE 22. Effective body and shock
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; FIGURE 23. Schileren photograph of shock wave,
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FIGURE 25. Surface pressure distribution on
paraboloid-arc half-body of revolution,
M=8, 7,=0.1494.

shock wave at M=38, which is replotted in Fig. 24 together with the theoretical
result for the effective body for comparison. The agreement is found to be quite
good. In Fig. 25 is presented the measured pressure distribution on a paraboloid-
arc half-body of revolution at M=8. The theoretical pressure distributions are

This document is provided by JAXM




46 K. Karashima

also shown in the same figure for comparison. The full line indicates pressure on
original body, which deviates far from the experimental data on the entire surface,
On the other hand, the broken line indicates the present theory applied to the
effective body, which is found to be fairly in good agreement with the experiment
on the entire surface of the body.

6. CONCLUSION

A second-order supersonic small disturbance theory has been developed for
plane and axially symmetric flows involving shock waves, laying an emphasis on
the extension of Van Dyke’s first-order hypersonic small disturbance theory to
comparatively low Mach numbers and thick bodies.

A set of figures has been presented giving the initial ratio of shock wave to
body curvature, initial gradient of surface pressure for Mach numbers of 2, 3 and
5, and for a fairly wide range of semi-vertex angle of the body. Several examples
for surface pressure distribution on biconvex circular-arc airfoils and a para-
boloid-arc half-body of revolution have been also presented and compared with
the method of characteristics, shock-expansion method and other approximate
method when available,

It has been shown that the present theory agrees well with the method of
characteristics for both plane and axially symmetric convex bodies with semj-
vertex angle up to 15° and for Mach numbers up to S.

Experimental measurement for the surface pressure on a paraboloid-arc half-
body of revolution with nominal fineness ratio of 6.693 was made for Mach
numbers of 2, 3 and 8, and the results were compared with the present theory and
the method of characteristics. It has been found that the present theory agrees
well with the experiment. Comparison of calculated shapes of shock wave with
schlieren photographs has also confirmed this.
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APPENDIX 1.

Initial ratio of shock wave to body curvature given by Kraus [6] has a form

1— tan® (8—4)
K, r+1 tan® y,
K, 4cos(B—6)| tan*(f—60) , 1 { cos® ¢, 1 ] » (ALD
tan® y, 2 lcos? (B—60) M?*sin®B

where 8, 6 and ¢, denote initial shock wave angle, semi-vertex angle of the airfoil
and Mach wave angle just behind the shock wave, respectively. Numerator in
bracket of the above equation can be written by use of shock wave relation as

r+1 2oin2 A
l_tanz(ﬂ—-ﬁ) _ = (M?%sin®B—1)

tan2 Ho COSE (ﬁ_ﬂ)(er sinz ﬁ_%]__) s

which is further simplified as

tan®’(B—6) . 1 (r4+1\? 1 0
1= ~”< 2 ) cos?(f—6) r (A.1.2)

tan®y, 7

where has been used an approximate expression such as
Mzrz——(l-i—rz)#—z—;—lerﬁ, r=tan fj, d=tané@.

Moreover, since

This document is provided by JAXA




48 K. Karashima

cos’y, _ tan®(8—6) 2yM*sin® f—(r—1)
cos? (B—8) tan® p, (r—DM3sin? g+2 °

so that the denominator in bracket of Eq. (A.1.1) may be of order of unity and
cos (8—0) is also of order of unity for small value of 6. Therefore, initial ratio 4

of shock wave to body curvature may have an order

K (6>
= =0(—).
K, T

APPENDIX 2.

From Eq. (3.4.2), ¥, and ¥, are given, respectively, as
¥, = f(0)—lag (6)—2Hmh () +1</(O)}— - - - -
Vo= S(6)—065"(6)—lx{29(6)—09'(6)}

—x*[m{3h(6)—Oh'(6)}+*{31(0) — 63 (O)}] — - - - -

At the shock wave the conical parameter is written as

,=1—L 1z Loypge
. 3

Taylor expansion of ¥, and ¥, at the shock wave has the forms

(‘h),*—-A_O——lmg'(l)-xz[mh'(l)—}—l? {i’(l)—-—_;_g”(l)}]_. .

(V)= —Bo—lx{29(1)— g (D} =2 m{3h(1)— R (1)
R IO ORR PR L O
Comparison of Eq. (A.2.2) with Eq. (3.4.4a) also gives
/()=—4,
r()=—A4,
i(1)==2-"()—4,
and comparison of Eq. (A.2.2) with Eq. (3.4.4b) also gives
29(1)—9g'(1)=B,
3h(1)—h'(1)=5,
3i()— ()= —0/ (1) +g"()=B,

Hence,

1 -
)= —>B
a(1) 20

Il

{g’(l) +E1}

h(1)=

W= =

{h’(l) +B'1} - —«;—Eo

(A.1.3)
(A21) |
(A2.2) |
(A.2.3)
(A.2.4)

25 4§
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iD= {f W+ 1o~ 1o"(1)+ B
3 2 2
— — 1 —
(Bz—Az——2—A1>

NOTE

Order estimation may reveal that the term of z*o'¥I*'¥2 in Eq. (3.1.12) is of
order of 6%/ and, consequently, negligible from the basic assumption. However,
it was particularly retained in the present approach as the leading term of
%’ o713 in Eq. (3.1.3).  Such a retention may be acceptable in the sense that it
does not disturb the accuracy of the present theory.

The same is true for retaining the term of rg-:’_—}:l—w’#d“\lff, in Eq. (4.1.7) for ax-

ially symmetric flows.
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