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Diffraction of a Plane Shock Wave Around a Corner
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Summary. Diffraction of a plane shock wave around a sharp convex 90° corner was

; observed in a shock tube flow with the various shock Mach numbers from 2.8 to 1.5. The
shock wave shape observed showed quantitative difference from the theoretical predictions,

which are derived from the one-dimensional flow theory and the ray-shock theory. Con-

sidering the possible cause of this discrepancy, it is suggested, the shear stress due to turbulent-

/ ’ like mixing between the ray tubes immediately behind the shock front may play an important

: role in this phehomenon. On the basis of the concept of the turbulent mixing length, a gener-
alized theory, which includes this shear effect, is proposed and a linearized solution of this
equation is obtained. The predicted results show good agreement with the experimental data.

1. INTRODUCTION

As shown in Fig. I, let us consider a plane shock wave with a finite strength,
which propagates along a plane wall and diffracts around a sharp convex corner
at a certain angle, say x/2 radian. Of course, the flow pattern in such case can be
calculated by a step-by-step numerical method solving the unsteady two-dimen-
sional gasdynamic equations with an indeterminate boundary, i.e. a shock wave
[/], if a good computor could be available, but the true physical meanings of the
phenomenon are often lost under a heavy pile of the numerical data. Here we
will discuss about analytical approximations of this kind of problems based on
experimental data observed in a shock tube flow. The physical importance of
| such studies has been well emphasized, for example, in a recent paper by D. C.
Pack [2]. Unfortunately some definite discrepancies between the analytical pre-
dictions basing on the existing theories and the experimental data, not only on
the diffracted shock wave shape but also on the observed flow patterns behind the
shock wave, were found. Thus, it is one of the purposes of this paper to discuss
all the possible causes of this failure of these theories. All the evidences found
strongly suggest that the momentum transfer through the transverse direction to
the flow due to shear stress may play an important role in this phenomenon.

Following Whitham’s papers [3] and [4], we introduce a set of curves formed
by the successive positions of curved shock as it moves forward through a uniform
medium, which will be called ‘shock fronts’ or simply ‘shocks’, and another set
of curves of the orthogonal trajectories of these shock fronts, which will be called
‘rays’. In Fig. 1 the positions of shocks are shown by full lines and the rays are
shown by broken lines on a physical plane with the Cartesian coordinates (X, ).
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Ficure 1. Diffraction of a plane shock wave around a corner.

The shape of the wall is also shown in the figure. Coordinates (&, 7) are intro-
duced such that the shock positions are the curves £=constant, and the rays are
n=constant. As § abscissa takes £ =a,f where q, is the sound speed in the uniform
gas ahead of the shock. Then, the distance along a ray between the shock positions
given by & and £+d¢ is Mdé where M is the Mach number of the shock at a point
(&, 7). If we let Ady be the corresponding distance between the rays 7 and 7+dy,
then it can be seen that, for purely geometrical reasons, M and A must satisfy the
differential equations

9 _ 1 34
0 M o
7 : (1.1)
0 _ 1M
o0& A oy

where @ is the angle made by the ray with the initial direction of the shock pro-
pagation. This relation was derived by Whitham [3]. Now if M depends only
upon A, and vice versa, and if we could find an explicit relation between them,
the shock positions can be determined for all times, since the equations (1.1) are
a system of homogeneous quasi-linear partial differential equations with the two
dependent variables § and A(M) and the two independent variables (&, 7) provided
with dA/dM<0. This kind of analysis, which was originally presented by
Whitham, will be called the ray-shock theory and its detailed discussions will
appear in the chapter 4, and an improved form of it in the chapter 6.

This A— M relation requires a strict solution of the equations of motion for
the flow behind the shock, subject to the Rankine-Hugoniot relations across the
shock and the boundary conditions at solid walls, etc. Naturally, this implies the
failure of our first assumption, that is, M depends not only upon A but also upon
the flow field behind the shock front. However, the above approach suggests a
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simple approximate procedure, in which we assume that the propagation of the
shock between any two neighbouring rays can be treated as if the rays have solid
walls. This would be exactly true, if the rays were particle paths, but what we
can say at most is that immediately behind the shock the particles move normal
to the shock, i.e. in the ray direction. However, we assume that the later diver-
gence of the rays and the particle paths is not important, which will be justified
by later discussions, and accept this similarity to propagation in a channel. Thus,

from the analysis of the one-dimensional channel flow, we may find a functional
relation

A=AM). (1.2)

This is given as a solution of the gasdynamic equations of unsteady one-dimen-
sional flow with varying cross section provided with the known ray tube geometry.
Of course, these are given as the solution of the original problem.

In the chapter 2, in order to obtain this A— M relation, we consider a shock
moving down a channel which initially has a constant cross section and then
downstream part with varying cross section, as shown in Fig. 2. If the modifi-
cations to the shock arise only from changes in channel areas, we can derive the
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FIGURE 2. Schematic z—t diagram in the characteristic rule.

functional dependence between A and M. This relation was given by Chester [5],
used by Chisnell [6] and later re-derived on the broader bases by Whitham [7],
but little is known about the accuracy of this relation. For some problems this
relation gives the reasonable results comparing with the numerical calculations
as well as the experimental results. Yet, the true reason why this approximation
gives so good results has been, as Whitham said, open to question. This rule is
usually called the characteristic rule. Several years later, Rosciszewski discussed
the characteristic equations and gave the wider applications of this idea [8]. In
this paper, in order to check the accuracy of this rule, we derive this relation on
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a more exact mathematical argument and determine the forms of the missing
terms, mainly following the Rosciszewski’s analysis. This rule is obtained in such
a way that a characteristic form of the basic equations is integrated along the
corresponding characteristic line from the initial uniform flow portion until the
shock front and differentiated with respect to the tube distance. In the resulting
equation, the terms which are not derived from the conditions at the shock front
can be omitted, if the influence of the other families of characteristics does
not exist. In this point of view, this treatment shows a close relationship with
the simple wave theory of the homogeneous hyperbolic equations. In this report,
these neglected terms are evaluated using the linearized solution [6] and [9],
which gives the second order terms of the characteristic rule. The result assures
the usefulness of this rule, moreover the linearized theory can prescribe the flow
field behind the shock front, especially, it predicts the existence of the secondary
shock wave at a position where a strong variation of the flow field is experimental- .‘ .
ly observed.

As seen from this analysis, this characteristic rule cannot give a proper predic-
tion in such cases where the area change is very large or some time after the
secondary shock is formed. Furthermore, these corrections are found to be quite
insufficient to explain the observed discrepancies between theory and experiments.

On the other hand, we have various blast wave theories, which might be useful
for the cases with a large expansion ratio of the cross section or the flow field far
from the complicated center region [ /0]. For weak blast waves, which correspond
to our experiments, the weak blast wave theory is most suitable [//], in which
the motion of the shock front is determined by two characteristics; one is on-
coming C, characteristics whose characters are determined by the local upstream
flow features and the other is out-going C. characteristics whose characters depend
on the shock front condition started, as shown in Fig. 3. This weak blast wave
theory will be discussed in the chapter 3, together with the geometrical acoustic
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FIGURE 3. Schematic x—¢ diagram in the weak blast wave theory.
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theory, which corresponds to the lower order approximation of the weak blast
wave theory. In general, the blast wave is an outward propagating shock wave
caused by an instantaneously released energy on a point (for a spherical blast
wave) or on a line (for a cylindrical blast wave) or on a plane (for a planer blast
wave). Its feature is, it is confirmed both experimentally and theoretically [107,
well prescribed by Taylor’s self-similar theory and Sakarai’s second order theory
for the strong blast waves and the quasi-similarity theory for the moderately
strong blast waves. In these blast wave analyses, it is considered that the explosion
takes place at £=0 and at a point (or on a line or on a plane) =0, therefore all
the characteristics start at =0, x=0, and they are reflected by the blast wave front
and interact with the on-coming characteristics. After the elapse of some time,
these backward-going characteristics concentrate around the center and create
some complicated patterns, i.e. the secondary shock waves or the center core, but
the characteristics starting from this center part can hardly reach the front part
of the blast wave, where flow features, then, are determined almost solely by the
on-coming characteristics starting at the initial moment and the first reflected
characteristics by the blast wave front. This means that the blast wave flow is
determined by the C, characteristics and the first C_ characteristics and reveals
the definite constrast to the channel flow treated before, in which the C. charac-
teristics start continuously at £<<0 under the constant condition and the effect of
the C_ characteristics is neglected. This is the reason why the decay coefficient
for the blast wave could be applied to the shock wave diffracted around a sharp
corner at a large angle, especially if the flow behind the diffracted shock wave has
a complicated feature. The solution is obtained by expanding the flow quantities
in the power series of the approximated characteristic line. The zeroth order term
is the well-known geometrical acoustics and the first order terms correspond to
the weak shock theory. Assuming a proper ray-tube geometry, we have an A— M
relation, which is used to solve the equation (1.1). However, the A— M relation
obtained gves even larger discrepancies between the theory and the experiments
than those by the characteristic rule.

The results obtained by these two methods give the weaker diffracted shock
wave than those experimentally observed. Various correction terms and various
ray tube geometries are insufficient to explain this discrepancy. All the possible
corrections or modifications on the A— M relations based on the one-dimensional
flow analysis are proved to be unable to give such low rate of attenuation of the
shock wave propagating through an expanding tube that the experimental data
request. Therefore this low rate of attenuation of the diffracted wave should be
caused by another reason, which may come from some interactions between the
neighbouring tubes following the shock fronts with different strengths. The de-
tailed mechanism of this mixing process between the neighbouring ray tubes has
not been clear, but we assume the somewhat similar process as the turbulent mixing
which is usually observed in the incompressible fully developed turbulent jet or
channel flow, though any turbulent like character, in the usual sence, is not observed
within the flow field in consideration. Here it is worthwhile to note that the ray-
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tube theory fails to give a meaningful solution for cases with large diffraction
angle of a relatively weak shock wave and that the reason for this failure is ex-
plained due to the flow separation around the corner. However the diffracted
shock wave is experimentally observable for all the cases where the ray-shock
theory cannot give a solution, and the observed flow pattern shows a strong vortex-
like density variation in the neighbourhood of the corner. Therefore it might be
acceptable to assume that the large scale mixing actually takes place and to adopt
the mixing length hypothesis [ /5] in order to obtain a rough estimation of this
phenomenon. In the chapter 5, starting with the unsteady one-dimensional gas-
dynamic equations including a term of mixing with the neighbouring flow, we
derive a generalized characteristic rule.

In the chapter 6, using this rule, the ray-shock theory is generalized, which
necessarily contains higher order derivatives due to this effect. A linearization of
this generalized equation for the small correction effect takes place and a self-
similar solution of the linearized perturbation equation is found, which gives an
analytical expression of the correction terms. The result shows a good agreement
with the experiments.

In the chapter 7, the experimental procedures are briefly presented, though they
are quite routine. Comparisons of the experimental and theoretical results and
some discussions will be also included here.

Finally we would like to mention a close relationship of this analysis with the
lift contribution to the sonic boom phenomenon. Usually the strength of the sonic
boom caused by lifting force of supersonically flying aircraft is calculated by the
ray-shock theory based on the geometrical acoustics or the weak blast wave theory
(see for example [/2]), in which no interaction between each ray tube is assumed.
This implies there is no boom energy diversion from the stronger ray tubes (down-
ward direction) to the weaker ray tubes (horizontal direction). However, our
analysis clearly suggests that this diversion of the boom energy due to the mixing
effect may be considerable. This effect should be interesting, because the boom
caused by the lifting force is only unmanageable component of the sonic boom
energy (those caused by a symmetrical configuration could be cancelled by suitable
body configuration, at least in principle). Recent experimental data obtained by
Bird etc. [13] strongly suggest the existence of this effect in a wind tunnel experi-
ment of asymmetrical cone models.

2. THE CHARACTERISTIC RULE

We consider the problem represented in the figure 2 wherein a shock wave
initially moves in the straight part of the tube x<0, and then passes to the non-
uniform part >0, where the area A(x) varies from the original value 4,. The
flow ahead of the shock is assumed to be uniform and stationary. Conditions
ahead of the shock will be denoted by a subscript 0; subscript 1 denotes the con-
stant values behind the shock, when it is uniform in £<0. When the shock meets
the area change at =0, disturbances are reflected along the negative characteristics

¢ 0
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C. and entropy changes propagate along the particle paths P°. Disturbances on
negative characteristics move backwards or forwards relative to the tube depend-
ing on whether the flow behind the shock is supersonic or subsonic, respectively.

Generally, one-dimensional, unsteady flow problems are described by the
equations of motion

pt+upx+puz+%Ax:0

pu,+puu,.+p,=0 (2.1)
s+wus,=0,
where p is the pressure, p is the density, « is the particle velocity, s is the specific
entropy, the subscripts ¢ and « denote the partial differentials with respect to ¢
and z, respectively. The effects of viscosity and heat conduction are neglected.
From these equations, we find three characteristic lines C,, C. and P, which are

_&_:zﬂ-a on C, characteristics

de ..

—Et—--u——a on C_ characteristics (2.2)
%-_—u , on P characteristics

where a is the speed of sound.
In the characteristic forms, we have

{4+t ayu,} +——(p, 4+ (u+ayp,} = — %% 4, (2.3)
pa A

{u,+(u—ayu,}— (o, (u—a)p,} = — %% 4, (2.4)
pa A

8,+wus,=0. (2.5)

The boundary value problem for this system of differential equations can be
set as follows: In the initial undisturbed region, <0, <0, the uniform shock
Mach number M, and all the other flow conditions are given. On the right of an
unknown shock wave, the state of the gas is prescribed by #,=0, a=a, and s=s,.
Along this line compatibility conditions must be fulfilled. These conditions con-
nect the parameters ahead of the shock wave (suffix 0) with those on the back of
the shock wave (suffix 2), and can be written in the forms

r+1 26)
py=p,_(THM? '
"2+ —1)M*
Y N 77 i o3 V| R (V) /3§
(S )] M
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In terms of the changes in the shock Mach number, we have

2a 1
du =~_9_(1 )an
S + e
4 2.7)
dp,=—"P" MdM .
r+1
Integrating the equation (2.3) along C, characteristics from £<0 to the shock
front, we obtain
g 2 In Ag
[Taut [ éﬁz_f _au d4 (2.8)
% 1 pa In4, atu A

We now partially differentiate this relation (2.8) with respect to

du, , 1 _dp, ”‘L(L)d — _ % d(nd,) ’“A’i(_““ _>d1 A
dx +p2a2 dx +f ox \ pa p a,+u, dx fnfl ox\a+u (In 4).

A

(2.9)
For the case where the variations of the flow behind the shock wave are small,
we can omitt the two terms in which the integral operations appear as small
quantities of the second order.

{ 2a, <1+ 1 >+ 1 4rp, M} dM _  au, 1dA (2.10)

r+1 M) pay, 1) ) de T aytu, A dx
Here we define the decay coefficient D as
—_A aM
M dA”’
which is given in this case as .
D:_fi(l_ 1 ) (2.11)
2 M:?
where
1 2 1—p 1
e 25 o)
> 1 7 r+1+ e
i (r= DM+

2rMi—(r—1)
This rule was given by Rosciszewski in a slightly different way [8], and also
Whitham obtained this rule using the equation (2.3) in which he replaced deriva-

tives in the characteristic direction by derivatives in the shock wave direction

i+(u+a)~a— o~ ——a~—+aM—§— [7]. He remarks that the slope of the C, charac-
o0x ot ox

ot
teristics is close to that of the shock wave line (in the linearized approximation,

they are the same). The same result can be obtained (Chisnell [6]) by solving
first the linearized case for small shock wave velocity variations, and then, for
the case of arbitrary variable shock wave velocity, changing the parameter in the
linearized solution. The quasi-linearized solution thus obtained, in fact, is the
result of applying a series of local linearized solutions to the case where finite

0o 9
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changes in shock wave velocity take place.
Now let us evaluate the omitted terms in (2.10). Putting

— p'__a_<L>d
© f ox \ pa p

(2.12)
In Ag
G—ﬁf 0 < au >d(1 4),
In A4,y a+u
and from (2.10) and (2.11), we have
1 dM 1 dA <a2+u2>
el G o e 0 . 2.1
DM dx A dx Aoy (€+o) (2.13)
Therefore, if
)
o A_—<<1 2.14
<a2 Uy (e+9) dA ( )

then the neglection of these terms is justified.
In order to evaluate the flow quantities behind the shock front, we linearize the
equations (2.3) (2.4) and (2.5),

2 —
(P—p)+ pray(u—u)=— L% A=A @ o 4a)

u; +a, A,
=) —pra(u—uy) = — L% A=A 4 oare (u,—a))
U, —a, A,
1
(p—pl)~—wa—2-(p—pl)=H(w~ult) ; (2.15)

where F' gives the disturbance on C,, G the disturbance on C., and H the dis-
turbance on P, respectively. Since the shock was assumed to come undisturbed
from x= — oo, the value of F' vanishes. The perturbation solutions are, therefore,

p—py =Gz — (U —a,)t} — 101u1a1 A_A1
u _"al Al
u—t=— L Glo—(u,—a))+ % A4 (2.16)
014 ui—ag A,
P“P1='&7(p—p1)+H(x"u1t)-
1
At the shock front, we have the linearized Rankine-Hugoniot relations
4
p—pIZ-;i—plow«Ml(M~M,)
2a, ( >
U—U, = 1 M—M 2.17
= + TR ( ) (2.17)

:_4(T+1)po M—M
O gy M

Substituting the conditions at the shock (2.17) into (2.16) at t==z/U,, where U is
the speed of the shock wave, we have
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2 (M=M,)_ _ A—4,
(1 —»JT> kM 4,

G< z >: po.uiad k, A—A4,
ai—ul A,

H(i);;g.:‘l_—fb_
k) A,

=)
L SRS
K, 2 a,
= (r—1)M;+2
2 M= —1)

(2.18)

(2.19)

where

")
M

a—ul
! LK,
U104

k1:1+

Equation (2.18) gives the change in the shock Mach number, which, naturally,
corresponds to the linearized form of (2.10). From (2.16), (2.18) and (2.19), the
full solution of the flow field behind the shock is

pP—p,=— o uiad {k Afky[z—(u,—a)t]}— A, _ A(x)—A4, }
' ai—uz A, A,
. — u,a; {i"'l_k Alk,[x—(u,—a)t]}—4,  A(x)—A4, }

() ul ‘a_?—-u? al 1 Al Al
- - 2.20

0—p = Lz(p_pl) +k, Afky(x—ut)}— A, ( )

ai A,
a—a,= ~T_(7:MKI (1 _ 1 > Afky(z—ut)} — A, )
da, M2 A,

This is Chester’s solution [5]. Asseen in the equation (2.20), the solution breaks
down near sonic condition when %,=a,. This point was improved by Friedman
finding a higher order linearized solution [9], but there is no room left open for
further discussions on this point. However, it is interesting to note that this
solution gives a convergence of C_ characteristics —a secondary shock wave— as
schematically shown in Fig. 2, which is actually observed in the experiment.

Using this solution, the omitted terms are expressed as

[k e
p.a} 0x  pla, 0T

0 0
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may 5 " or
o= f %_g(in 4).
4y (a1+u )

Here, for simplicity of the calculation, we assume that the area A4 is proportional
to x, that is, the channel is a part of cylindrically expanding flow starting at x=x,,
then we have

-+ histelaP L (2.22)
and

1
—1ulK (1—- ----- )lc
90 _ rr—1) E |
0x 4a, x,

ou _ w,ay {ulkk 1} 1 5
l — .23
ox ay— a, x, ( )

% [ e ey = 1)+ L

ax al—'l 1 .’El

r(r— I)u?K1<l - 1‘142 )ka

8:{ 1 A+ 1 I:uf(klkz“l)_ksk{l}})z“pl_
4p,a3 0104 ai—u; r,

1 u
Dk, (1——L V& 4{_1_1510 ~1}
T(T )u 1( M12> 3 U,a, a, e jllnAz/Al

G:[_ da,(a,+u,)? (a;+u.)*(ai—u3) Z,

(2.24)

Thus, the criterion (2.14) is transformed into

<_L+L>(s+a)x1<<1 . (2.25)
Now, let us find out the numerical value corresponding to M=o since this is

one of the most critical cases. For M=, we have

— 2a, M, p= 2rp, M2, p= p0_2’_+1

r+1 r+1 r—1
a=8V2rG=1) pr.
r+1
—J17L k= 2rdr—1 2.26
F 2r W2 GO FV2G-1) (2260
k=14 =20+ g p rt+1 N i
Ty U =1 G- r—1
— eo(r+1) K,,
r(r—1)

and the criterion is
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1,1 > 1, A,
—d (e T~ In 222 2.27
<a1 + " ( Jf‘o') 1 ]V[l A1 ( )
Thus this characteristic rule is well justified provided with the small change of

area.

3. THE WEAK BrLasT WAVE THEORY

As discussed in the previous chapter and the introduction, the characteristic
rule is no longer applicable, if the area change is large or if the constant upstream
part disappears forming secondary shocks or discontinuities—a center core. For
such case, the weak blast wave theory is useful since it takes into consideration
the local flow pattern in the neighbourhood of the shock front. Here we derive
an A— M relation using this theory.

The equations for conservations of mass, momentum and energy along a ray
tube are given in the equation (2.1), for convenience’ sake, they are rewritten
here as follows:

pt+um+pu.¢+—”f— A,=0

0

2
p,+up,+atou,+ ”Za A,=0.

The solution of these equations will be assumed to take the forms of a pertur-
bation on the undisturbed conditions

uz_u<1><t_i>+u<2><t_i>2+...
g 2

2
(e (e on
0 0
p=po+p“’<t—~3’—>+p‘2’<t—i>2+--- :
2 )

Derivatives of these functions take the following forms;

ut:u‘1)+2u<2><t__x_>+ ...

Qo
ux:——Lu“’+<u;1)—iu‘2’>(t—ﬂ’-->+--
Qg Ay Ay
pt=p“’+2p‘2’<t—i>+ e (3.3)

0y

P,= —_.1_.p‘1’+(p;1)___2_p(2’><t—-i>+ .

@y Ay a,
= (R (2)(t——~x-—) e e
p.=p"+2p a +

1 (¢} <(1) 2 (2>>< _z
=g (o 2 @) (=)
P . o o o, a. )

'} @
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Substituting these expressions into (3.1), one obtains for the zeroth order equations

pu):ﬁo_um
Qg
(3.4)
P = TPo_y0
)
The first order terms of (t—x/a,) yield
20— 2!70 U? 4 pud+ o, A.r <1>_iu<1)p<1;:0
a, A a,
20U — 2 (2)+p(1)+p(x)um_____.o_o_umz:o (3.5)
ao a’O
2P — 2rpo u® + rpuUP+1p, um _ = 1) pPUP =0 .
a, A a,

Eliminating the terms of p* and »® from the second and third equations of (3.5)
and using (3.4), one obtains
(1‘

2u“)+u“’ —(r+ 1) (3.6)
D
Here, if we neglect the non-linear term (y4 1)u%/a?, the result is
1
uPoc——_ | 3.7
VA (3.7)

This is a well-known result of the geometrical acoustics. However, the equation
(3.6) is easily integrated to

= — 2a3 1
r+l g [Tar
T

This relates the perturbation strength to the distance along the tube. As the shock
moves from the source the cumulative effect of the expansion wave behind the
shock wave is felt. This is what causes the attenuation represented by the integral
in the equation (3.8). Far downstream this term may predominate and the geo-
metrical acoustics may fail to be useful.

Next, we assume the shock location to being expressed

(3.8)

t—-2 4+1=0. (3.9)
Qg

The quantity [(x) is the correction of the present theory over the acoustic theory.
Then, differentiating (3.9) with respect to x, the Mach number of the shock front
M is given

1
—=1—ayl,. 3.10
L=1-al, (3.10)
On the other hand, from the Rankine-Hugoniot relations, we have
= 2% <M-——1—> (3.11)
r+1 M
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and, from the definition

uZ:u‘“(t—-—ﬂ—>+---i——u‘“l. (3.12)
Qg
Using (3.6), (3.10), (3.11) and (3.12), the following decay rule is derived

<M2—|—1 dA M 1

1
1 =0 3.13
M2—1>de 2 Ade | M+1 ~/Af ,,,,,,,, o)

The decay coefficient D is given in this case as

pe_ A dM:_L<AIZ—1>(
M dA 2\ M¥1

M+l f dx dA) (3.14)

JA dx

This will be called the decay coefficient in the weak blast wave theory.
In the process of this deduction, a weak shock approximation usually takes
place, that is, (3.11) is approximated by

then from (3.10) and (3.12)

2 =1, (3.16)
2JA [ 22
Y fJA -
This is integrated to
dx
el 3.17
loc f - (3.17)
The decay rule in this approximation is
1 dM 1 1 dA 1
i _—_._——_.:O 3.18
(M—-1)M dx+2A dx+ J (3.18)
JA ’
or
__AdM _1 (1 _JA > 3.19
P aa 2T e aa 19
JA dx

This will be called the decay coefficient in the simplified weak blast wave theory.
On the other hand, since under the geometrical acoustics, l=constant, we have

__AdM _ 1,
D=—-" S (M=1). (3.20)

This will be called the decay coefficient in the geometrical acoustics.

Before proceeding further, let us assume the form A=ux’, then =1 corresponds
to a cylindrical wave, j=2 to a spherical wave and j=0 to a plane wave, respec-
tively. Then

e

This document is provided by JAXA.




Diffraction of a Plane Shock Wave Arou d a Corner 65
VA 2—j
= 3.21
dx dA 3 G20
VA dzx

and the decay coefficients for 7=1 are calculated as follows :

D:1<M%4)O+ M\

2\ M1 M+1/
in the weak blast wave theory
3
D==—(M—-1
2 )

in the simplified weak blast wave theory

1
D=—(M-1
M=)
in the geometrical acoustics.

The ray tube geometry in our ray-shock analysis may be most suitably appro-
ximated by 7=1 and occasionally it may take the smaller value of j, which means
larger value of D, but it hardly gets the larger value than 1, since the flow pat-
tern is two-dimensional. Then it is noted that the decay coeflicient given for
J=1 may represent the lowsst value, corresponding to the lowest attenuation of
the shock front. Those decay cosfficients and one calculated by (2.11) are pre-
sented in Fig. 5, in which possible corrections are also shown. Note that there is
a lower limit of the possible decay coefficients calculated under the one-dimen-

sional channel flow analyses.
4. THE RAY-SHOCK THEORY

We now discuss the ray-shock theory. The basic equations are reproduced here
for convenience’ sake

1
I 4.1)
06: _’_"Mri >
and
A dM
D=——"r—. 4,2
M A (4,2)
Substituting (4.2) into (4.1), we have
M:D
Me‘{‘Tﬁv:O
1 (4.3)
06+ZM’]:0 N

where the suffices £ and 7 mean the partial derivatives with respect to £ and 7,
respectively. The flow pattern is schematically shown in Fig. 1 in the physical plane
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1st L+ characteristic

N

AN

L+ characteristic

last L+ characteristic

L _ characteristic
L characteristic

23

8=0 wall 9f'% M= M,
M=M:

FIGURE 4. Schematic diagram in the ray-shock plane.
and in Fig. 4 in the ray-shock plane. The boundary conditions are easily seen in
the figures. The equations (4.3) are a system of quasi-linear homogeneous equa-
tions with two variables, so there are two characteristics provided with D>0.
They are called L, and L_ characteristics, respectively, and

,dlz.f‘ﬂb_“ L, characteristics
d¢ A
— (4.4)
dy =— MVD L _ characteristics.
d¢ A
In the physical plane, they are transformed into
%y—:tan (6+m) L, characteristics
x
d - (4.5)
—j‘y—: —tan (6+m) L _ characteristics,
x
where -
tanm=+D.
The characteristic forms of the original equations (4.3) are
MVD 1 < MJD >_
0, +———=( M.+ 22 M, )=0 4.6
Oct—1 W+M‘/D et a1 M (4.6)
MD, 1 <M_MJ5M>:0 4.7
05_-T00 Mx/l_)- 3 “—*14— 7 . ( . )

All the L_ characteristics start at the initial undisturbed region, so the disturbed
flow field is described by simple waves. Furthermore, all the disturbed L, charac-
teristics start at a point (x=y=0) or (§=%=0), so they form centered simple
waves. Integrating the equation (4.7) along L_ characteristics from the un-
disturbed region (#=0, M= M,) toward the wall, we obtain

o= [ 4M_ (4.8)

My
on all the L_ characteristics, so in everywhere in the simple wave region. This
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relation immediately gives the relation between ¢ and M, especially the diffracted
shock wave Mach number M, along the wall as follows :

g — Mw M
w— J x/DM

1

(4.9)

where the suffix w means the values along the wall after the diffraction. Similarly,
along the L, characteristics

H—I—f;/éiﬁﬂ—lﬁ:constant. (4.10)
Combined with (4.8), we have
0 =constant (4.11)
[ﬂ:constant (4.12)
/DM

along every L, characteristic, then all the variables A, M, D and 6 are constants
along every L, characteristic, so the functions of the single quantity »/¢. The L,
characteristics are given as

_ MJD
4.13
== (4.13)
In the physical plane, they are
Y=Xtan (6+m). , (4.14)

The flow features of this case will be as shown in the figures 1 and 4 where the
radial lines started at the corner points correspond to the L, characteristics and
on each of them M and @ are constants. This centered simple wave region covers
the fan formed in the ray-shock plane by

MAJD, 7 > MWJ_ (4.15)
Al w
and in the physical plane by
tan m1>§~> tan (0, +m,,) . (4.16)

The first disturbance spreads out in the ray-shock plane at a rate given by M,y D,/A,.
Here we choose 7 as the value of distance Y from the wall in the initial undisturbed
motion so that A,=1.

Thus we obtain the expressions of all the flow quantities. For convenience’
sake, they are summarized here

17 MJD

e 4

p=_4 dM (4.17)
M dA

f— -_d%,
DM

in the region of
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M,/ D, M D,
*‘——Al -] g > Aw

The coordinates of the shock front (X, Y), on which £ =constant, are given as

X:—fAsian:y

(4.18)
Y:fAcosBd:y.

If we use the characteristic rule (2.11) and assume the value of K, in a practi-
cal point of view, to be constant, we have

D=_I£<1-— L )

2 M
=(3=i)

2 K+§
\/K (J(‘JIW—:)K

(4.19)

1
J‘ZE =cos §-cosh J%:B—\/{;{:sinﬁ-sinh\/%ﬁ
—{—\/1-—7‘-14—{ {cos 0-sinh\/§0—\/z§sin0-cosh\/?§0}
1
YE :sinﬂ-cosh\/Kﬁ—\/Kcos’0-sinh \/~K;0
1
+\/1————{cos0 smh\/m(? \/-—»smﬁ cosh\/z{;—ﬁ},

where K takes the values between !/, (at M;=1) and 0.394 (for y=1.4, M, = o0).
It should be noted that X/M,£ and Y/M,£ are functions of the single quantity /¢,
so that the shock pattern expands uniformly with time, and the contribution of
the initial Mach number M, is not large except for weak shocks.

For the case of M,= oo, these are simplified as follows:

p=X

2

(2)*
A= 1

M

2

7 _ K(J‘_’{)kM
?_‘/2 M,

_ (4.20)
M _ 5
M,

¢
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X (con 0/ ind)
<sm f+ \/—« cos 0)

and for M,=1, we have

D:-L M—-1
2 M

)
M—1

21 (et (4.21)

£ V2 (M—1)
0=28*(yMI—1—JM,—1}.

If we use the result of the simplified weak blast wave theory as a decay rule,
we have

D=3(M-1)
4 (4.22)

0:%(tan"‘~/m“ tan~'y M, —1).

Those values of M/M, are shown in Fig. 6, in which typical experimental data are
also included. As easily seen in the equation (4.9), the higher value of D (the
stronger attenuation of the shock strength) implies the lower diffracted shock
wave strength (the lower M,/M;). The experimental data show the higher dif-
fracted shock Mach number, that is, lesser attenuation through expansion, in all
the case, especially for the weaker shock waves. Therefore, by this theory of
ray-tube, it is impossible to obtain the correct diffraction pattern regardless what
kind of decay rule could be adopted, since, as shown in Fig. 5, all the possible
decay coefficients are lower than those used here. In other words, the actual dif-
fracted wave shows such low attenuation that any reasonable theory fails to predict.
This strongly suggests that the energy or momentum transfer between the ray

weak blast wave theory

geomefrical acoustics
03r possible correction based on one-dimensional
theory
0.2
D
01
i
OO 1 ©

M
FIGURE 5. Decay coefficients.
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1.0f
0.9
o experimental
0.8 o
M
M o
O.7r < o corrected (My=1)
/ Eq.(6-15)
~—o_ -
0.6} ~_0 o corrected (M1 ~—oo)
T2/ Eql6-14)
ost /T T —
the rcy-shock tneory T ————
£q.(4-19)
0.4}
| 1
0.31 5 3
M

FIGURE 6. Mach numbers of the diffracted shock wave.

tubes should play an important role in this phenomenon. In the next section, let
us consider this point.

5. THE GENERALIZED CHARACTERISTIC RULE

From the previous discussions, we find that the discrepancy between the experi-
mental data and the analytical calculations cannot be reasonably explained by
any corrections derived from the one-dimensional flow considerations without
interaction with the neighbouring ray tubes or the surrounding walls. It must
come from the interactions between the neighbouring tubes, that is, the mass,
energy or momentum transfer through the ray tube walls due to the viscosity,
turbulent mixing, heat conduction, diffusion or caused by the curvature of the
ray tubes. The divergence between the ray tubes and the actual particle paths

must be considered also. From these considerations, the basic equation (2.1) shall
be modified into

A
p.+up,+pou,=—0ou A” +m
| 1 1.
u,+ul, +— p,=—7v,+—9 (5.1)
o PP
q
s,+us,=——,
[2 pT
where m is the mass addition per unit volume, per unit time and shows the effects

of the divergence of the ray tubes and the particle paths and the diffussion con-
vection of the mass, ¢ is the shear stress, which will be discussed later, g is the
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body force per unit volume per unit time such as the gravity force or the electro-
magnetic force, ¢ is the heat addition per unit time per unit volume caused by
the viscus dissipation and the heat conduction and the work done by the external
force.

Now, the previous studies clearly show that the effects of the upstream flow, i.e.
this divergence and curvature of the ray tubes and any interactions taking place
in the upstream portion, may not be important. Therefore the most predominant
effect must be found in the neighbourhood of the shock front. Since the particle
paths intersect perpendicularly to the wave front, then, only the predominant effect
must be the shear stress between the neighbouring tubes immediately behind the
shock front. Based on these considerations, we retain only the shear stress term
into the unsteady one-dimensional flow equations (5.1), then we obtain

o upaF ot pus =0
1 1
U U, +—p,=—, (5-2)
P
s, +us,=0.

The shear stress ¢ consists of viscus shear stress and Reynolds stress, if the flow is
turbulent. Numerical estimation shows the viscus force is too small to give any
measureable effect on the flow pattern. Then we have to recall the Reynolds
stress in order to explain the strong interaction between the ray tubes observed
experimentally, although we have no direct evidence that the turbulent mixing
does take place immediately behind the shock front. However, the strong density
variation around the corner observed in the interferograms may positively support
this prediction. Now, in the theory of the turbulent mixing we have three
hypothetical theories, which are Prandtle’s momentum transfer theory, Taylor’s
vorticity transfer theory and Karman’s dynamical similarity theory. In our condi-
tion, the predominant feature of the flow is the mixing of the vorticity produced
by the curved shock wave which is essentially two-dimensional. Furthermore, it is
quite natural to suppose that the flow mixing immediately behind the shock front
is similar regardless of the position of the shock front. Therefore we will adopt the
vorticity transfer theory and the dynamical similarity theory, by which the shear
stress is expressed as

(&)%)
_ du\® dy/ | dy
=l E&> = (dzu)"‘ -3)
dy?
(é%)?i&l
du|d’n _ dy/ 'dy
t,=2pl, d—’lﬁ—szzh—*—(ﬁu—%’ (5.4)
dy

where 1, is the mixing length and « is a constant determined by experiments. It
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is worthwhile to note here that these mixing theories are well-established for the
incompressible turbulent flow, although we have had no conclusive result for the
compressible turbulent flow yet. The value of « obtained experimentally in the
incompressible turbulent flow is about 0.4.

These equations (5.2) are a system of quasi-linear non-homogeneous hyperbolic
partial differential equations with respect to ¢ and . Then we will follow the
similar process as in the chapter 2. Firstly, they have the same characteristic
equations as (2.2), and we have the characteristic forms

U+ (Ut @)+ {p,+(uta)p,)= — 2% A, 4 T (5.5)
pe A p
1 _au T
pa A P

s, +us,=0. (5.7)

The equation (5.5) is integrated along C, characteristics from the initial undis-
turbed condition (denoted by suffix 1) up to the position right behind the shock
front (denoted by suffix 2)

l”'dp Ind:s gy = 1
InA Lt gy .
fdu+ f 2 d(in )+! e (5.8)

D1 In 4y

Differentiating the equation (5.8) with respect to x, we have
dx 00y dx 2 0x \pa
au, d(ln A) _f"““ 0 <

a,+u, dx

J o )d(ln a) (5.9)

1 (z) { 3 }
+ Y _,}_f Y d
yt+Us 0y 4 (a+wu)p
Since the mixing is effective only in the immediate neighbourhood of the shock

front, all the terms with integrations will be neglected for the same reason dis-
cussed in the chapter 2. Thus we obtain a decay rule

I dM__ 1 dA | (z).

DM dx A dx PoQsls

(5.10)

where D is the same decay coefficient as in (2.11) and the last term expresses the
correction term due to the shear stress,

() _ 26 6.
P20 U azuz(uw)z

Substituting the values given in (2.6), we obtain

1
42(1+-—)M3
(5): _ " LA .
et = D=1 ) {14 5) Mo 0]
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A
6. THE GENERALIZED RAY-SHOCK THEORY
Here we follow the process shown in the chapter 4, which is called the general-
ized ray-shock theory. Noting that
0_ 9 i:L<i_Li&i>
oy Aoy oy A*\ orf A oy oay
(6.1)
9 __9
ox  Mos
and from (5.10)
RN VS S (N 6.2)
DM? AM 002U
we obtain a system of equations, which corresponds to (4.3)
‘ 0,+ A M= Az,
DM? 020Uy
4 { (6.3)
05+—ZM,7 :O N
where the shear correction term is given as
1 3
. 4 2<1 +_-> M
Ae). )
Pt M T G~ DI (1) X
1
x| (1+-L Vb, — L a,m) — 2 e 6.4
+ﬂ‘§ 77 . ";1'" 4ty "m 7 | ( . )
There is no way to find out a simple solution of this system of the equations,
we assume that the shear stress effect is small and represent all the parameters as
the sum of parameters corresponding to the simple wave solution stated in the
‘ chapter 4 and disturbances caused by the shear stress effect ; we write
® 0=6"+6
M=M'+M'
3= (i) * (o)
= 6.5
DM?* DM? + DM?* (65)
etc.,
where
a'<Lo°
M‘I<<M0
3) = (oar) 4= () D=2y 2
( DM*® DM? D*M? DM
A 0
(e
DM?
‘.‘
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Then we have the equations for the basic simple wave solution

b

o+ (-2 V=0
- e T
1o (6.6)
ok () M=o,
These are the same equations as those solved in the chapter 4.
The perturbation terms give
A\ A(r,), \° AY
bt (o) M= (00 ) () M
+ DM? f 0sQoUy DM? ¢
’ 1 OM/ 1 l4 0 (67)
i+ ()= o
A A
where
’ 1y?
(A ) _ (14 55)
paasits ) = g0, J(ar M7 4 D2+ (r— )M X
1
1 1 c 1—-2D\ 1
O L o e (- b B
< M? + M2/ ¢, + M* M
as
=7 (MDY
3 A y
.9
Mr=_1 Mo, = — Cun_ (69)
§cyy &%y

Let us find out a simple wave solution of the perturbed quantities. Assuming all
the variables are functions of a single quantity 7/ (=c¢), then we have the trans-
formed forms of (6.7) as

- he)oims (o

DM2 2
_cg’_i.(”!_)oM’:_(_L),Mo (610
[ A c A c
where
/ 3
4”2<1+71![2>
S=
s 1
e QP AN A G D155 ) %
1
1 )c,,“, < 1——2D> 1 ] (6.11)
14— 222 (] — .
X[( ) e, T
These relations immediately give
A Y 1y
<DM2> cz——(—z-) =—Seyc. (6.12)
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Using the relation (4.19), we can easily obtain the correction term M’ as
M — V2K (M*— 1) (M?4-1)?
(12 ) MeJ@r = 4 D2+ G— DI
1

. 6.13
<[(Z-1) ML Ky L (6.13)
K M(M*—1) M* M
Fro the case of M;~ oo, this relation is simplified to, for y=1.4,
T2
M= VK e'M —0.0338 kM. (6.14)

=) )

For the case of M,~1, we have, for y=1.4,

. 1685 (M—1)"
15V2(r+1)

The value of « is a constant to be determined by experiments, for example, we
have a figure of 0.36 for the turbulent channel flow of incompressible fluid. Al-
though we have no reason to consider the value of r to be constant in our case,
the experimental data most aptly explain it by taking x=1.7 as shown in Fig. 6.

=0.314 52 (M—1)":. (6.15)

These relations can be used as the corrections to the ray-shock theory wherever
the similar solution of the perturbed equations (6.7) exists. If the self-similar
solution does not exist, that is, if the expression of S (6.11) contains any explicit
function of ¢ (or 1), then an ordinary method such as integration along the each
characteristic is necessary in order to solve the equation (6.7). It is not much
difficult to obtain the solution for such case but with the present approximate
theory the added complexity of such calculations does not seem justified.

7. EXPERIMENTS

A straight shock tube with constant cross section of 5X20cm, which has a low
pressure chamber 6 m in length and a high pressure chamber 1.5 m in length, was
used. A pair of glass windows 8 cm in diameter was attached to the center of the
wider side walls 5m apart from the diaphragm. A pair of contact type shock
wave sensers were set 15 cm and 65 cm upstream from the windows. The out-put
signals from these sensors were used for the wave speed measurement and for
triggering the delay circuit for the spark light source. They are, as shown in Fig.
7, very simple but worked perfectly. Before the run, the low pressure chamber
was evacuated and re-filled with dried air to the adjusted pressure. The dia-
phragm used was of 0.05 mm thick aluminum foil and was broken by a mechani-
cal plunger.

The schlieren photographs and interferograms of the flow field were taken using
a spark light souce which is triggered by the delayed signal. The interferometer
is a polarization interferometer with the same arrangement as the one reported in
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FIGURE 7. The contact type shock wave senser.

the reference [14], which is very easy to construct and can obtain high quality
interferograms at a considerably low cost. As shown in the plate, the phase shift
obtained by this kind of interferometer corresponds to the density difference be-
tween the two points in the flow field apart a distance from each other. There-
fore, the interferogram taken by this method shows a double image of the flow
field, and the fringe shift at a point in the double image is proportional to the
density difference between the two points which happen to make the same image
point. Naturally, these interferograms are complicated and not intuitively under-
standable, but if one of the image points belongs to the undisturbed flow field,
then the interferograms show the same character as the ordinary Mach-Zehnder
interferometer. All the interferograms were taken at zero fringe condition, then
the fringe lines correspond to the isopicnic lines, provided that one of the corre-
sponding image points is in the undisturbed region.

In table 1 the experimental conditions are summarized, including the Reynolds
numbers per one centimeter based on the shock wave speed and the gas condition
behind the shock in the undisturbed region. The reproducibility of the flow is
satisfactory.

TasLE 1 Experimental Conditions

mrlsong M, Re/lcm
2 2.78 5.4x10?
4 2.53 1.2x10°
10 2.20 2.9x103
20 1.93 5.8x10?
40 1.80 1.2x10*
100 1.51 2.9x10¢
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Fig. 8 shows, as the example, the set of typical shlieren photographs and inter-
ferograms. The sensitivity of the optical measurements, it should be kept in mind,
is proportional to the undisturbed flow density. The very complicated flow
patterns in low Mach number cases may be easily recognized, that is, they show
the vortex shedding, the secondary shock, which sometimes is not fully developed
yet, and even the flow separation upstream of the corner. The high Mach
number cases, on the contrary, show relatively simple patterns.

Fig. 9 shows the ratios of the distances from the corner to the undisturbed shock
front (X)) and those to the diffracted shock wave along the wall (Y,), being plotted
for the former distances. According to the ray-shock theory, they should be con-
stants and correspond directly to the ratio of the Mach numbers of the undisturbed
shock wave and those diffracted along the wall. The fact that those points show
higher values at the initial stage of the diffraction and take the almost constant

value in later period strongly suggests that the mixing process takes place more
seriously in the neighbourhood of the corner, where the generalized ray-shock

theory, too, naturally cannot be applicable. These constant values at X,—> oo are )
summarized in Fig. 6, in which the results of the above theories are also presented.
There we can easily see the merit of the theories presented in this paper. On the
other hand, Fig. 10 shows the distributions of the ratios of X(¥Y=0)/X,. They
indicate no special features in the neighbourhood of the initial part of the diffrac-
tion, showing little mixing effect in such region.

The author cannot, admittedly, claim the physically solid bases of this rather
arbitrary choice of the mixing mechanism, but it might still be surprising that
such simple calculation using the turbulent mixing theory can introduce all the
quantitative explanations of the rather complicated shock patterns.

Department of Aerodynamics

Institute of Space and Aeronautical Science
University of Tokyo, Tokyo.
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