o

Institute of Space and Aeronautical Science University of Tokyo
Report No. 397, March 1965

Propagation of Spacially Non-uniform Shock Waves
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Summary. Effect of shear stress through a slip stream created behind a shock wave
with non-uniform strength is discussed. An expression on the attenuation of the shock
wave propagating through a channel with varying cross section and with momentum
exchange between the neighbouring stream tubes was obtained. Using this relation and
the ray-shock theory, diffraction of shock waves around a sharp convex corner was

analysed. The result gives more reasonable shock pattern than those calculated by the
ordinary analysis without shear effect.

1. INTRODUCTION

G. B. Whitham [/}, [2] analysed diffraction of plane sheck waves in his two
papers. Introducing an orthogonal coordinate system constructed by a set of
the successive positions of the shock wave-shocks- and their orthogonal trajectories-
rays, and using a geometrical relation between the rays and the shocks and an
approximate decay rule of the shock waves propagating through a channel with
a varying cross section, he presented a theory, which can predict the shape of
the diffracted shock wave. However, some, discrepancies between the theoretical
prediction and the experimental data were reported in an author’s paper [3].

In that paper, the decay rule was discussed on the more mathematically rigorous
foundation, and a new theory was proposed, which takes an account of the
shear stress between the neighbouring ray tubes using a hypothesis of turbulent
mixing. However, as stated in that paper, there is no physically sound bases of
this rather arbitrary assumption of the mixing mechanism. Furthermore, although
the discrepancy between the theory and the experimental data was remarkably
improved, some problems are still open to question; for example, we do not have
any useful theory to obtain a shock pattern for the weak shock waves with
Mach numbers near unity yet.

In this report, we started with the non-viscus two dimensional gasdynamic
equations and derived an expression of the shear stress. Thus we can calculate
the shear effect between the neighbouring ray tubes without any empirical factor
(which is unavoidable in the previous calculation). From these equations, it is
shown, the shear stress between the neighbouring ray tubes can not be neglected
if the flow velocity is comparable to the velocity difference between the neighbour-
ing ray tubes. This is certainly the case of the weak shock waves, in which the
flow velocity of the initial undisturbed flow may decrease to zero (where the
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196 K. Oshima

shock Mach number is 1). The equation obtained is a system of second order
non-linear partial differential equations. Although further attempt to obtain a
full solution of these equations has not been tried, it is seen that this solution
may give a correct pattern of the diffracted shock wave even for the cases in
which a weak shock wave diffracts around a sharp convex corner with a large
turning angle. Then, based on the original solution without the shear stress
given by Whitham, a correction to that solution is presented, which can give a
flow pattern more agreeable with the experiments.

2. QUASI-ONE-DIMENSIONAL FLow ANALYSIS

The basic equations of gasdynamics of the two-dimensional non-viscus but
compressible flow are written in a Cartesian coordinate (x, y) and time ¢ as

Pt+P<u:c+uy>+uPz+va:O (1)

Uttty o, 4 p, =0 (2)
P

vt+uvz+'uvy+ipy:0 (3)
p

s, +us,+vs,=0 (4)

where p, u, v, and s denote the density, the x- and y- components of the fluid
velocity, the pressure and the specific entropy of the gas, respectively. The suffices
x and y represent the partial derivatives with respect to the respective independent
variables. The boundary conditions are given on the shock front as

P2=Po 2+(Y"‘1)M2 ( )
_ 2a, 1
uz"(y+1j<M M) (6)
v, =0 (7)
,=—P0 _ 2 MI—y+1 8
P (y+1) & i )
a,=_ % __ JeyM —y+ D2+ —1HM?} (9)
G+1D M

where the suffices 2 and O denote the conditions just behind the shock wave and
of the uniform undisturbed flow, respectively. y is the ratio of the specific heats of
the gas, a denotes the sound speed and M is the Mach number of the shock front.
Here we assume that the shock wave is non-uniform but parallel to the y-axis
in a moment considered. The position of the shock wave is not known a-priori,
which is the main difficulty of this problem.

In order to obtain an order estimation of the each term, we assume for a
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Propagation of Spacially Non-uniform Shock Waves 197

while an incompressible stationary flow, then from the equation (1), we have
v= f udy =u,dy . (10)
Then the equation (2) is modefied into
ut—{-(u-{—uydy)ux—}-%pm:(). (11)

Thus, if the velocity difference between the neighbouring ray tubes, u,dy, is
comparable with the velocity, u, then the term wvu, cannot be neglected. This is
the term omitted in the ordinary quasi-one-dimensional analysis, and expresses the
effect of the shear stress between the neighbouring ray tubes.
Furthermore, it is worthwhile to note here, if we introduce the vorticity
(. o(=u,—wv,), this term can be approximately expressed as vw, that is, this term

*+ 4 corresponds to the convective transport of the vorticity.
Thus, we find a quasi-one-dimensional flow equation, which includes this
vorticity transport effect, and with which we are going to start,
PU 4
Pz+qu+P“x+ ’A"‘ AI—O (12)
1
U+ U+vyu,+ = p,=0 (13)
P
pz+qu+a2P“x+ ‘%g:"AZZO (14)
where v=u,4 and A is the width of the channel. Note that v is a function of
x and ¢, and has no explicit relation with u.
& . 3. GENERALIZED DEcAaY RULE
(. Following the process adopted in the previous paper, the generalized decay
rule is obtained as follows; The characteristics of these equations are
dx 1 \/ 2 . .
——=U4 —vfa /1Y on Ccharacteristics 15
dt + 2 + * 4a? + ()
ax =u+ 1 q;_a\/l_}_ v* on C—characteristics (16)
dt 2 4q?
%.).C_—_-u on P characteristics  (17)
t
Comparing with the ordinary case treated in the previous paper, we find that
the vorticity transport effect has no influence on the P characteristics but
changes the gradients of the C+4 and C—characteristics. The characteristic form
for C+ characteristics is
<« ®
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Wit 2 g 2t o yvtay ]
+ alp ot (ut ;v+a\/1:;"?:) P+ M a=0. (13

The further procedure is also quite similar to the one used before. The equation
(18) is integrated along the C4-characteristics (15) from the initial uniform flow

region (denoted by the suffix 1) to the region just behind the shock wave
(denoted by the suffix 2),

f {\/1 "ty Dt [ 1g,

P
Inds au
M dnA)=0  (19)
1 Uk
4 U+ v—l—a\/ 14

and then partially differentiate with respect to x. Now if we neglect the terms
from the region except the neighbouring zone to the shock front, we obtain

— 1 1)2} ou, 1L ap,
{\/H_ a 0x + pd, OX
L Ay oAy o (g
1 5T
Uyt , D2t dy x/1+41;i -

Since the flow quantities with the suffix 2 are determined by the relations (5)

to (9) as the functions of M, this equation immediately gives the decay rule,
which is

D—=— A dM.: T 1_1‘;2 1 n
M dd [{x/1+;’§+§§j}(l+ v ) 2]
1 21
i 200 g e )]

where

3 M1 —uh,
ao(M2'_1)P
Ve __ M(l—l"z)vz

a,  a,(M—1),

For practical cases

, the higher order terms of v./a, can be neglected, then
we have
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MU—MLH— - vf{ +yp*4 - I—=w? }]
(Y+1) M v, .
D:Do[l-—A | 21— 7:_] 22)
w(M —1>(1+ ,+2 J[ +- 20— J °
LT .
where
1 _;42,
Dy=- 2(1—p?) \ (23)
l+—»- +2 >( +
( : (H-l)#)

and D, is the decay coefficient for the case without shear effect.
Since the cxperimental results inevitably require the lower decay coefficients
than D, as discussed in the previous paper, this form is very interesting.

4. GENERALIZED RAY SHOCK THEORY

The ray-shock theory discussed in the previous paper gives a relation which
is derived from a geomctrical consideration. It is written as

M.+ MD

y 6,=0 (24)

1
f. Mr:() 25
+ M, @5)

where ¢=constant represents the shock positions, and n=constant is the rays,
and we take ¢=ayr. The suffices ¢ and 7 represent the partial derivatives with
0 1 o

respect to ¢ and 5, respectively. Since . ~.=.-—_"_ on the shocks, we have
ay A 81,
from the equation (22)
D=D,[1—BM,] (26)
MU= e g e
M G+
B= 2(1_#2)
w14 +2j[1+——w~—-]
(y+Dg

This is a system of non-linear second order equations with respect to the highest
order terms. However, the above process readily suggests an approximate method,
that is, we can start with the solution of the equations for the ordinary case
(without shear effect) as the first order approximation, the equations of which are

M. 22206 =0 27
s @)

+A (28)
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where
K 1
D=""-(1—_."_ 29
) ( M? ) %)
1 PR 1
K‘1:~~<1-{-—_~ S .J’“..>(1+2 4 >
2 vyl p AT

and for practical purposes, we can assume K=constant (K=% at M;=1)
K=0.394 for M,=o0, y=14).

This system of the equations is a quasi-linar hyperbolic partial differential
equation, which is reducible. Under the boundary conditions adjacent to the
constant condition (initial uniform shock wave), the solution forms a simple
wave region, as shown in Fig. 4 of the previous paper, bounded by the first
L J-charactestic, &= - Aln, and the last L-characteristic ¢= A?L: 75

Ml\/Dul Mw\/DOw
where the suffices 1 and w denote the conditions in the initial uniform flow and
on the wall after diffraction, respectively. All the L+characteristics are straight

lines started at the origin, which is

£ — constant (: - fj ' ) . (30)
n M{D 0
The L —characteristics are straight on the left side of the first L. fcharacteristic,

£/n=¢ /., and on the right side of the last L4-characteristic, &/n=4&,/n,-
Between them they are hyperbolas,

‘gﬂ:él"ll(-‘:éwﬂw) . (31)

The values of ¢, M, etc. on the simple wave region are functions of ¢/ only,
which are

S 1,1
n_ JEKM=Dx>
& 2 R 1
: (M3—1)x

M K DR K
—cosh,/ . 0 —o.sinha/Z7. @ 33
M, \/ , 0t \/ 14 a \/ 50 33)

Using these relations (30) (32) (33.), we have

(32)

_ (M3 — 1y 1 y
[ A 1 1_ 91'_.]; ) -S - ( )
V2K 7Ki+v2 (M2—1)2"2 M 1

Substituting this relation (34) into the original equation, we have a system of
the approximate equations,
M3*D

M+ P (18, .£1>9,,:0 (39)
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.4 - -M =0 ’ (36)

1

where

! ) 9 1,
V2K (M1l -1 . (37)

(K42) (M2—1yx" s M &

B,=B.

0:

This is still a system of the quasi-linear hyperbolic partial differential equations,
but not reducible and does not form centered simple wave any more.
The characteristics of the equations (35) and (36) are

d77 M 1 ..
S=""_4/D (1—B. " on Lcharacteristics (38
dg A v °< ’ g,) " 9
'» dy M i .
) =— —B. .} on L—characteristics. (39
Y. j P \/D(,(l B, &) (39)

This relation shows that the characteristics slowly change their gradient for
the smaller region of ¢ but take the same form as the ordinary case for {=oo.
For the region with very small value of ¢(¢<B,), this approximation fails
to be useful.

The characteristic forms of the original equations are

f do-+- f . M . =const. along L4-characteristics (40)
M\/D0<l—-BD ! )
&1
fdg__f R ‘{M ... =const. along L—characteristics. (41)
1
M\/D(,(l—Bo él>
Using the original characteristics (30) (3!) as the approximate characteristics
4 4 of these equations, we can integrate the equations (40) (41). From the boundary
(’ condition, the integral constant (the Rieman invariant) of the equation (41)

is found to be zero, then we have

BdM (42)

. (¥ dM 1 [* B,dM

Further calculations are made for the cases of M;—~1 and M,—»o. For
M,—1, we have
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! 3
B=3M B= M-—-1) 1
4 SV2(M—1)3i ¢
B _3M-1 1
MYD, 5 M—1 g
6=20(M—T— M, =)+ > M~y M=1 1 43
5 Ml—l &
After a simple calculation we obtain
, , . 2-3724 17
— M, —142-329__ 2 (M. _ il o
M_l+[1M1 I+ (M l)ln( o _1) 1] (44)
Especially the Mach number along the wall is
. ~-372 1 2
M, =1 [/M 1 2—3/25_, M,—1 lu<1 8 ) J 45
: + | M, + ( ) +- M, _~1 A ( ) .
) ;
Thus, it is found that the shock wave diffracted around a corner is given less >
attenuation (higher M) on an account of this correction, which is experimentally
confirmed (note the sign of 6, is negative). :
For M,—»c, we have
e 2y . < /T2 >< /(_.1)> _ K
=T, K1= | S 14 Y D ="
# ‘/-1 +)\ (‘/—‘1) v 0 2
=1+ L ]
y+1Du . 1,
B— =-- - X (function of )= -~ B’(y)
Mol 42 )fH— _(1_”)] M T M
. Bk S
1 1
M, x , 1/ 1 4 V2K /MN\E 1
B —. "1 .B P B ( 1) - >
0 MIIH ) & ( M - (K—f-q} &
o] M 9] 1 1 ( ( .L])I 1 ’ .
=2 - (1 )B AM x{M‘ = G L 46
e L S o) ’
and
M /K (1+1>Bo()‘ll1 (e‘ ”(H) -1 1
—eVii e, | (47)
M, &1
K (11
Mw :e_\‘/z\v’ﬂzu e-\‘/i’ (H_;()BO'(V)Ml—l (e\”': 0(1‘1\-) - [> 1 . (48)
M, &
These relations (44) and (47) should be compared with the corresponding
relations given in the previous paper (the equations (6.14) and (6.15)).
Although a straightforward derivation between these relations is not available,
40
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the vorticity transfer concept introduced in this paper gives the same trend of
the correction term as the one given by the turbulent mixing concept which was
developed in the previous paper and was given an experimental support.

Department of Aerodynamics

Institute of Space and Aeronautical Science
University of Tokyo, Tokyo.
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