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Summary. This report contains a dynamic analysis of the angular behavior of a spin-
ning body flying either in vacuum or in atmosphere. The study is mainly concerned with
the angular motion of a rigid axisymmetrical body having a thrust malalignment and
another moment due to the deflection of control surfaces or control jets. In linear
feedback system which is used in the control of spin-stabilized space vehicle, preferable
combinations of the control parameters, such as feedback gain, spin rate, feedback phase
difference and damping of the system, are obtained to optimize the stability and control
of the vehicle.

In the case of asymmetrical feedback system the linear approximate solution has
been obtained. The analysis of the feedback system will be applied to the motion of
either launching or re-entry vehicle within atmosphere.

1. INTRODUCTION

Many reports have been treated about the dynamics of spinning axisymmetrical
body, specifically for stability of such body flying either in vacuum or in atmos-
phere, with generally linearized theory [/~17]. In most of them, usually the main
consideration is directed to the angular motion of the body flying with constant
velocity and spin rate and therefore the characteristic equation is given as a
quadratic equation with complex-constant coefficients. Hence, it is well known that
angular motion of such spinning body is usually characterized as an epicycle in a
complex-angular plane.

For the flight in atmosphere, the most important aerodynamic terms of the
complex coefficient in the characteristic equation or in the transfer function are
Magnus moment and pitching moment. It is generally known that the stability
of the spinning rocket is strongly affected by the sign and amount of these
coefficients. However, it is not easy to estimate the Magnus moment in wide
circumferential range because of the non-linearity of the Magnus effects [18~26].

It has, furthermore, been recognized that other aerodynamic moments have also
shown nonlinear characteristics due to the slender configuration, hence the spinning
body shows undesirable motion [27, 28, 49], such as catastrophic yaw, lunar
motion or others.

Recently, the spin stabilization technique has been applied to stabilize and

[217]
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218 A. Azuma

sometimes to control the space vehicle during the ejection from the final stage
of the launching, orbital flight and reentry phase [43~49]. Spin stabilization
will be able to use as either open-loop system [29~34] or closed-loop system
[35~42] to maintain a given vehicle attitude in space coordinates. Such a system
suffers from the fact that attitude errors occur because of torques applied to the
body by wind shear, tip off, thrust malalignment transients, solar radiation, gravity
gradient, magnetic, and so forth. In the written reports but a few referring to
the above described systems the stability criterion generally occupies the attention,
while the effects of the system parameters upon the time response and the control
parameters to optimize the response are almost out of consideration.

The analysis described herein for a spinning body provides estimation of per-
formance and preferable control characteristic for a closed-loop linear-attitude-
control system which will correct any attitude errors and damp out the coning
produced by external moments.

In attitude control of the spin-stabilized space vehicle nonlinear control means,
such as commutator which allocates the control moment corresponding with roll-
ing angle and pulse jet with constant magnitude, are usually used for simplicity
and reliability and for long life-time of the means [37~39, 42]. For estimation
of the performance of such nonlinear system it must be very effective to under-
stand the basic characteristics of linear system.

Since the dynamic characteristics of the attitude control for the spinning rocket
in atmosphere may be expressed by same form as the one of closed loop of the
attitude control system for the spinning space vehicle in vacuum, the detailed
discussion for the time response of the system will have been directed to such
closed system. Necessary optimum control parameters will be decided by mini-
mizing two scalar quantities defined by the radii and sweep angles of two spirals
composing an epicycle.

With good approximation the present analysis will be able to apply to the case
of asymmetrical feedback system in which two reaction jets are usually pointed to

opposite body-fixed directions for the control of transverse motion of the spinning
body.

Symbols

quantity given by eqgs. (2.40), (3.13) and (5.43)
quantity given by eqgs. (2.41), (3.14) and (5.44)
complex coefficient

drag coefficient

lift coefficient

rolling moment coefficient

pitching or yawing moment cozfficient

characteristic equation

exponential and quantity given in eqs. (2.38) and (5.41)
external force .

arbitrary function and quantity given in eqs. (2.38) and (5.41)
gravity acceleration
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Subscript
b
1
o
X, Y, Z
X, Y, Z,

p,a,ﬂ

“Greeks

altitude
moment of inertia
—1
moment- of -inertia ratio I /I, or II,
rate and proportional feedback gains
quantity given by eq. (5.33)
Laplace transform and inverse Laplace transform
referength length
moment
mass of rocket
rolling angular velocity or spin rate
pitching angular velocity for body axis
scalar quantities defined by eqs. (4.9) and (4.12) respectively
yawing angular velocity for body axis and transverse distance
reference area, transfer function and sweep area defined by eq.
4.7
trasfer function defined by eq. (3.32)
sweep area defined by eq. (4.14)
flight distance
thrust
time
velocity of the body
re-entry velocity
transverse velocity of the body
weight of rocket
coordinates

body axis

input

space fixed axis or initial value

components of (X, Y, Z) axes

components of (X,,Y,, Z,) axes

aC, c. —_9 _aC,

da “e B a( Ip >
2V

derivatives e.g. C, =

angle of attack

angle of side slip and exponential altitude parameter

distance from the center of gravity to thrust line and fin-deflection
angle

complex attitude angle, ¢ +16

complex thrust-malalignment angle, ¢ +-10,
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7> 10 Ms  Vectorial expressions of the response curve from the terminal point,
see Fig. (4.9)

0 pitching angle

0,0, quatities given in eqgs. (2.38) and (5.41)

0, thrust-malalignment angle in (X, Z,) plane

0% re-entry angle

215 2y Laplace transform parameters or characteristic roots
Coriolis force parameter given in the eq. (2.22)
|V
complex angle of attack, B—ia

air density
rolling angle
phase differences of rate and proportional feedback

L S N TR S
.
&

yawing angle .
. thrust-malalignment angle in (X,, Y,) plane i
conjugate complex attitude angle, p—16 "

2. ROTATIONAL MOTION OF SPINNING ROCKET

In this and next section, it is assumed that the rocket is flying at constant speed
and constant rate of spin even in powered flight. It will be appreciated that from
such audacious assumption many important principal results will be given for
understanding of the behaviour of spinning body.

The attitude of a rocket can at instant be expressed by Eulerian angle (¢,
0, ¢) of body axes, (X,,Y,,Z,), or (¢, 6, 0) of stability axes, (X,'Y, Z), with
respect to space fixed axes, (X,,Y,,Z,), as shown in Fig. 2.1.

'ﬁ"\:

FiGURE 2.1. Orientation of body and stability axes with respect to
space fixed axes.
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Linear Dynamic Analysis of the Spinning Axisymmetrical Rocket or Vehicle 221

1) )

The body axes, (X,,Y,,Z,), remain axes fixed in the spinning body and
therefore the X, axis rotates with the body, while the X axis of stability axes
does not rotate with the body but places along the axis of rotational symmetry.

Under the assumption that all Eulerian angles except rolling angle, ¢, are
small enough to neglect the higher order of Taylor expansion of cosine and sine
terms, the transformation matrices established among those coordinate systems
are given by

X, Y, Z,
1 -0
—¢ 1 0
° z 0 0 1 2.1)
X, 1 ¢ -8
voe Y, fsing — ¢ cos ¢ cos ¢ sing
Z, fcosd + ¢ sin¢ - sin¢ cos ¢
X Y Z
X, 1 0 0
(2.2)
Y, 0 €cos ¢ sin @
Z, 0 — sin ¢ cos ¢

It is further assumed in this section that the center of gravity of the rocket is
fixed at the stationary space and only angular motion of the body is allowable.
Then the equations of rotational motion of the body are given as [7, 8]:

4 » (i) for the body axes;
“ 4—(1—=K)ypr=M,,/I, } 2.3)
T+ (1—K)pg=M,/I,
(ii) for the stability axes;
é"l"KpS&:MY/IY 2.9
G—EKpl=M,I, .
Wherein p,q and r are the angular velocities of X,, Y, and Z, axes re-
spectively, and M,,, M, M, and M, are external moments along each axis
designated by corresponding subscripts. K is a ratio of the longitudinal moment
of inertia, I, to the lateral moment of inertia I, or I, and is less than 1 for
rod-shaped body, equal to 1 for a sphere, and 1 to 2 for a disc-like configu-
ration, i.e.
¢ B

This document is provided by JAXA.



222 A. Azuma

K=Il,=I,I,. 2.5)

There exist following relations among the moments and angular velocities in
each coordinate system

My,=M,cos ¢+ M,sin ¢ } (2.62)
Mz =—M,sin ¢+ M,cos ¢
My=My,cos $—M,, sin ¢ }
2.6b
M,=M,,sin g—M,, cos ¢ ( )
§=q cos ¢—7sin ¢ } @.7)
¢=q sin +7cos ¢
By introducing complex quantities such as
& =r41q (2.8) .
e=y-+10 (2.9)

in which ¢=y—T, the above equations may simply be expressed in complex
form as follows:

(i) for the body axes;
&—1(1—K)pé,=(M 5, +1M,) /I, (2.10)
(ii) for the stability axes;
E+1Kpeé=(M,+1My) /1, (2.11)

The angular motion of the spinning rocket is determined by the equations
(2.10) or (2.11) jointly with the initial conditions.

Flight in Vacuum

In order to see the most simplified feature of spinning rockets, first of all let
the rocket being flight in vacuum so that all aerodynamic quantities are diminished. ‘

The pitching and yawing moments given in the right hand side of the equation
(2.10) or (2.11) may consist of the thrust malalignment moment, control
moment and Coriolis damping moment. In the above moments, only the thrust
malalignment moment acts fixedly to the body-axes system in the planes of
(Xy» Z,) and (X,Y,), as shown in Fig. 2.2.* Then, the moment, M,, and
M,,, are given by

My, =T0
Mza =—Tdy

* The control moment may, sometimes, be given as body-fixed-quantity whenever the momnt
is not allocated sinusoidally to each control equipment.
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Xo
8zn =Bt ~J

T

Zb
(a)

Yb
T

Xb / Svp —1

'

(b)
FIGURE 2.2. Thrust malalignment.

and therefore
(Mzb'"l"iMYb)/IY:('—BYb"I_?:aZb)T/IY (2°12)

By introducing the above moment into the equation (2.10), the following equation
showing the thrust-malalignment effect is obtained as

& — (1 —K)pé,=(—0y,+10,)T /I, (2.13)

After applying Laplace transform to the above equation, such as
LUO)= [ e ftdt=f() (2.14)
)

with the condition in which all initial conditions are zeroes, the complex angular
velocity of the body is given in Laplace transformed expression as

&)= {—0rs(D)+i0,)) T (2.15)

A—1(1—-K)p Iy,

By applying inverse Laplace transform to the above equation, such as
LD == f esfdA=F(t) (2.16)
wherein f d2 designates Bromwich integral, a time response of the complex
Br
angular velocity, ¢,, for step inputs, 4,, and §,,, is given as

N/5n+5zz> L i tan—l——+n i(1-K) pt
G =" T T e Jl—e } (2.17)

It is easy to trace a locus of the above response in the complex plane of angular
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velocity, ¢,, given by the equation (2.17) as shown in Fig. 2.3. In the Fig.

2.3, it will be recognized that the locus of the é,(t) will make a circle whose

radius is given as ‘@XM T and its center, which is a mean value of 3,
(I—K)p IY

is located at a point defined by radius being equal to the radius of the circle and

angle of tan'1<§1”->+n.* Angular velocity of the locus on the circle is given

Zb
by (1—K)p. It may be seen that in order to reduce the mean angular velocity

let the spin rate, p, and/or the difference of moments of inertia, I, —1I,, pref-
erably increase since the denominator of the mean value is (1-K)ypl,=(,—
Iy)p.

In special case where the rocket has a shape of sphere ie. I,=I,=I,, the
equation (2.13) will be reduced as

= (—Ops+i0,) T/ Iy 2.18) L
Thus, the response for step input of d,, and g, is given by

éb(t) :1/5170‘!“52125 % etanTl0zy/~ove) (2.19)

Y

The complex angular velocity, &,, will infinitely increase with time, t.
In the stability-axes system the thrust-malalignment moment is obtained from
the equation (2.6) as

]Mrz"f‘i]‘lyz(qu::“"":]‘lxr'zb)e_i¢ }

2.20
=(—0y,+10,)Te ( )

q

<
En(t) tan™(Sve/Szp )

r

Jod+sz T

(1-K)P  Ir

FIGURE 2.3. Locus of the complex angular velocity for step
input of thrust malalignment.

* If the body is not symmetrical about X axis, i.e. Iy3-I, then the system has an undamped
oscillation similar to (2.17), for Iy<Iy, Iy or I x>1Iy, Iz, and has divergent motion for
Iy<Ix<lIz or I;<Iy<Iy [30].

PR
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A
Control moment is usually obtained by either fin deflection for fin-stabilized
rockets, or control jet or thrust inclination for finned and unfinned rockets. For
spinning rocket, such control moment must be allocated to each control means
rotating with the body to create the moment for desired direction defined by
stability axes, i.e.
M ,+iMy=06M ,+16M, } (2.21a)
=(0Mz+i0My,)e ™™
or
M, +iMy,=(6M,+10My) e¥ (2.21b)
where 6M,, 6M,, and 6M,,, 6M, are control moments of stability axes and
body axes respectively.
» Coriolis damping moment is given during only burning flight and is obtained
' as [2]
9 4
M,+iM,=—pTé (2.22)
wherein T is thrust of the rocket and g is a parameter determined by the rocket
configuration and the gas speed.
Total transverse moment is, thus, given by
M+iMy=(—0y,+10z)Te™™ } (2.23)
+ (OM ,+i6My) — p Té
Substituting the above moment into the equation (2.11) the equation of motion
for the stability-axes system is obtained as follows:
E+IEPE=(—0yy+102) (T [Iy)e "+ (OM+iMy) [ I — (¢T | Iy)é  (2.24)
By applying the Laplace transform with the following initial conditions
P at t:toi é:éo and e=¢g - (225)
‘ffﬁ. The solution of the transformed complex angle, (1), is given by
()= P [{—brsdtip) +i0n(+ip)} T/ I,
o (47 i)
I,
. T, . .
- (OM () +30My ()} [Ty +ep- 2+ 1(—/;-—+1Kp) eo+eo>] (2.26)
Y
The time response for the step input of the thrust malalignment is given by
= 00T il () )
)+ @wr !
I,
: |
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As described in the reference [2], since the Coriolis moment has very small
magnitude the term pT /I, is usually neglected comparing to the (1—K)p except
special case in which K =1, thus the equation (2.27) becomes

_ r
E(t) = #\M,ﬁﬁ et {wn—l (:%%) +,} . {1 +e‘ “;‘—I,“t-t(xpwx) n K e"ipt}
Ixp? 1—-K 1—-K
(2.28a)

The locus of the above complex angle, &(), is shown in Fig. 2.4. From
either equation (2.28a) or Fig. 2.4 it is appreciated that in the (¢, 6) plane the
complex angle is expressed by an epicycle consists of two circles one of which
is undamped motion having the angular velocity p and the other is lightly
damped motion, or spiral, having the angular velocity Kp since in conventional
rocket system p>0. For special case in which ;< O, the latter circle will
lightly diverge. Ratio of the radii of the two circles is K.

It is interesting to notify that after damped out the second term of the

]

ton"(_sg: +7T

\\/\

Jontdn T _K
K

Ixp? 1-

FiGURE 2.4. Locus of the complex angle for step input of thrust
malalignment (for #>0).
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equation (2.28) the mean value of ¢(t) is given by vd,3+0,; T [I.p*, hence
the angular deviation caused by thrust malalignment will be reduced with in-
versely proportional to the product of moment of inertia along the X axis by
square of spin rate, I,p?.

For a given mass of rocket, given spin rate and given thrust malalignment
there is an optimum inertia ratio to minimize the angular deviation of the rocket.

If the rocket damping, g, is almost zero, the above optimum condition 1is
obtained by the following equation:

a7 ()} =0 22

and if the rocket damping, p, is large positive value,

9 (L. =0 (2.30)
oK \I, 1—-K
For a general body of revolution I, may be written as a function of the
inertia ratio alone so that for a homogeneous circular cylinder the former equa-
tion, (2.29), gives the optimum inertia ratio [14], K=0.177 and the latter
equation (2.29b) gives the optimum value, K =0.279.
As K approaches 1 the radii of the circles increase and the equation (2.27)

will again be rewritten by replacing the equation (2.28a) with the following
equation:

e(t) = i@z%ﬂ:%iﬂ i {ann(222) 14} {1+ p_ei{_;%_ﬁ (2,
" L (2.28b%)

pei{%x—(Oorn)} ) e—tpt}
pT 1y

It will be recognized from the above equation that the mean value of the
complex angle is equal to the one of former case but the radii of the circles
are inversely proportional to the spin rate p insted of p? in the former case.

The time response for the step input of the control moments will be written as

zZ

I, N, <%~)2+ (Kp)?

—im‘"(ﬁ'&%’) (4L yikp) e
- j (%T-)E/(Km* et

For large Kp the above equation will be reduced as

E(t): ~/5M21’—|_'5M2Z' eimn—l(:zy). e—imn_l(rfl{/_z;;)

(2.31)

v 3 .
* In the terms of e‘{7+(0°”)} and eilz*~¢ o5} and susequent similar expression, o cor-
responds to g#>o0 and r corresponds to (<o respectively.

This document is provided by JAXA.



228 A. Azuma
.

(t)= VOMi+0M; ei{mn-l(%%)—%}.{t_ o’ <i~e‘(%+i"P)‘>} (2.31a)
Ixp Kp

and hence the locus of ¢(t) in the (¢, §) plane is as shown in Fig. 2.5.

From the above equation (2.31a) or Fig. 2.5 it will be seen that the angular
deviation caused by control moment is perpendicular to the direction defined by
control moment, i.e. it is corresponding to phase shift of —z/2, and is increas-
ing with time. A circle carried on a straight line which is shifted by 1/Kp
from the origin in Fig. 2.5. shows lightly damping motion in usuall case. The
mean complex angular velocity, é(f), is inversely proportional to the product
of the moment of inertia by rate of spin, Ip.

For small Kp, i.e. Kp<(uT/Iy)? the equation (2.31) will be simplfied as

e(ty= YOMy M5 fuans(B) 0o ) .{t_fr."ff’.f’i:’_(l_e—%mp)z)}
©T uT[ly

(2.31b)

Thus, the direction of the complex angle, in this case, will coincide with the
direction defined by the control moments for lightly damped motion.
The time response of the initial conditions is given by

e(t)=¢, éﬁm"*(p_ﬁ%) 1 _(_;‘_;LHKP)K .
(&) =eo+- «/(%)E(mv {1 e } 2.32)

The above equation is simply rewritten for small ,T/I,

€o

e-t
Kp

e(t)=e,+ ) [1—e—(7"~fr +iKv)=} (2.32a)

and for small Kp

1/KP

7 £(t)
T
2

FIGURE 2.5. Locus of the complex angle for the step input
of control movements (for ¢>0).
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Y

Bin ?

é e—i(Oorz) oT
H=ept 28 7 {1_e—(——+”fp)t} 2.32b
e(t)=¢o+ WT/1, Ty ( )
In both cases the locus of ¢(t) is shown in Fig. 2.6.
It will be appreciated that although the effect of the initial angular velocity
of the deviation of complex attitude angle will be reduced with increasing Kp
but still remains the initial angle ¢, unaffected as well known in gyroscopic art.

Further, it is natural result that in coasting flight without power if the spin
rate decreases to zero ¢(t) of the equation (2.32a) becomes

e(f) =¢p+¢€,t (2.32¢)

consequently complex attitude angle will increase with time, f, due to the initial

angular velocity given at the end of powered flight. Hence, it must be careful

' to make despin in vacuum if the rocket has no automatic attitude-control system.
In considering a rectangular-pulse-pitching moment as control input, it will be

“ 4 found that the motion of the rocket will be obtained by superposition of the
above results, (2.27) or (2.31) and (2.32), with appropriate time shift cor-

responding to the pulse duration. For example, by replacing the thrust-malalign-

ment moment, 16, or T4,,, with appropriate control moment produced by pulse

£o/KP

&o

/

2 (a) KP>pT/Iy

Eo /
Eo /(;LT/IY)

14

(b) KP<pT/Iv

FIGURE 2.6. Locus of the complex angle for initial
conditions (for ¢>0).
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jet the response for two-pulse control inputs will be obtained from the combi-

nations of the equations (2.27) and (2.32) in more practical form than the
results given by references [30], [37] and [39].

Flight in Atmosphere

During flight in atmosphere additional external moments caused by aerodynamic
forces have to be considered. Having neglected the nonlinear term the most
pronounced terms in these moments are given by the following linear expansions:

1 1
M,=_ 2 l{ — VYm m —_}
v 2pVS C.f—C pﬁzV ¢+C Sy
(2.33)
l
M,= __szsz{Cma¢+Cm,,,, P04 Cne 29;}
By using complex variables, the above equations become
M+iM, =L oyt {(ComiCury 12 D2 Yet Cog @3
2 ) 7 ™2V

Substituting the above additional moments with the moment expressed by the
equation (2.23) into the equation (2.11), the following equation for angular
deviation, &, can be derived:

o [(eT _ pViSL 1 ) K} pvzsz<__c iC lp)
5+ {( IY ZIY 2V Cmq +1’ p 5+ 2IY 1ru+ mPg 2V 1(2 36)

=(—0po+1202) (T /Iy)e 7+ (6M ,+16My) /1,

The solution of this complex angle in Laplace transformed form is

=g (=m0 i0) +id i) - +OML0) + M VT,

T _pV2SL 1 . (2.3

+E°'”(%'_ pzly 2V C"“’“Kp)s“%"}
where D(2) is the left hand side of the characteristic equation, such as
T VSl 1 .
D@)=x {(ff__aﬁ.m_-w-_cﬁ K }x
(B =2+ I, o1, 3y Om +iKp o
VSl <__ ; ﬂ:.) ~0 '
+ 2] Cma+ szPﬁ 2V

The stability criterion of the above system characterized by the second-order
characteristic equation with complex coefficients is, for example, given in the
reference [7] and, as the most convenient form to be simply applicable to
stability estimation, in the reference [29]. According to the latter crnterlon it
Is necessary to calculate the following quantities for stability decision:
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_ VSt [ o (B
f 2IY '\/Cmu_l'cmpﬁ ”ﬁ“)

(2.38)

1 T Vsl 1 2
e=-——_A/(FL LY P ' (¢ > Kp)?
2 ‘/<IY 21, 2y Cm) TED)

f,=tan"?! Kp .
uT _oViSL 1 .
1, 21, 22v ™

If a point defined by #, and 4, of the above quantities in a plane of (4,, 6,)
is located inside region limited by a given e as shown in Fig. 2.7. the system
will be within the stability region.

Two roots of this characteristic equation are written as

a_ 1 (ﬁg‘__pWSl z ) . 1,8
==l 1, " 21, a1, o™ “Kp}i 5 A 1

. (2.39)
—_ (el _ pV?SL 1 A (E) _ Y gpxAsi (E_)
= 2{11, 2L, 2y CmEACS(3 } 2{Kp+Asm 2 }J
where
A:[[<£_Tl_ pV’Sl l Cmq> +4 pV Sl Cma (Kp)’}
I, 21, 2V B, 240
+4[(__1:__ pV2Sl —l—Cmq>K pViSlL 1 mpﬁ}zpzjl__:_
I, 21, 2v 21, 2V
T  oViSL 1 Visl 1
2/(p#L _ P L > K_2P 1 ¢ \
S { 1, 20, 2v. ™ 21, 2V ""”’]p 2.1
—=tan- .
uT_ o781 >2 2 VS o e
(1, 21, zv o) T m— (KD)

Y

It can be seen immediately from the equation (2.39) that the term of

-%—A cos (g) makes to reduce the damping of one of two oscillations of the

system and to increase the damping of the other one, as well as term

%«A sin(%) makes to reduce or increase the angular velocity of the system.

To be stable, the system must satisfy the following condition:

T V28T 1
I, 2I, 2V

Cra> |4 cos (g.) E (2.42)

In order to keep the system to be optimum damping condition, i.e. to keep
two roots, or the two oscillations, of the system to be equal damping it has to
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FIGURE 2.7. Stability region for the second order system with
complex coefficients.

be satisfied that the term of Acos(%) is zero i.e. either A=0O or B=x. The

condition in which A =0 will be obtained from the equation (2.40) as

(‘u_fl: _ Vsl 1 C,,..,)Z L4 0V
I, 2, 2v 21

Y

C,.— (Kp)*=0 1

and (2.43)

(ﬁf_ pV28L 1 cmq> k228 1L o o
I, a1, v 20, 3V

The condition in which B=z will be obtained if the following equations are
satisfied :

i

L ]
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(47— 7L L o) +4 L7250 €, — (KD <O 1

1, 21, 2V 21,
and (2.44)
pT _ pV2SL 1 C )K:Z pViSl 1 C. ..
( I, 21, 2v ™ 21, 2v ™%
The latter one in equation (2.44) is equivalent to the condition:
sin §,=e?sin 24, (2.45)

which has been given in the reference [29]. Anyhow it is usually difficult to

keep the above condition because this condition does not include the term of

rate of spin, p, but depends only on the rocket configuration and the speed.
Time response for step input of the thrust malalignment is given by

L) g

e(ty=Y0rst 05 T grans(325)

Y

N o rru—r] -0 {7 L Gt Car) =T

B (emaronsi) 4T} [emo

["VQSZ Cmat+(1— K)pﬂ}

. ei tan—1

— _;’_(eht_*_ elzl) (2.46)

_ 1 J(eT _ VS 1 o )2 2—K)*p?
24 (I 2, 2V ™ @Ky
et{‘an'l (2 K)p

B
L (e — e
2IY

~iR
*<:|

The first term in bracket, e i#*, shows a circle having angular velocity —p.
Two terms, (e"‘+e¢*), presented in second and third terms in the bracket show
an epicycle composed on two circles. It is important to say that the effect of
the third term on the angular deviation of the system depends on the magnitude

of \/(pT pV Sl 1 mq>2+(2_K)zp2 /2A
Y

2V
Time response for the step inputs of the control moments is similarly given by

lp
/ 2 2 ~itan—1 E."ﬂ_z_";)
E(t): 5MY+5MZeimn‘1(:fi;). ; € ‘ ( —Cma
1, oV o (C iz,__)z
2l e sl 74
1 oI Vsl | ? @-47)

21t gt B - C Kp)?
(1= g tem— o (55— £ Cor) +E)

tan—1 Xp
. ei E_T__PV”Sl__L_ . (eht_ elzz) .

¥~ 3fy 3v omd

~

Since the terms in bracket of the equation (2.47) are similar expression to
those of the equation (2.46) except the coefficient of the third term, it is not
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necessary to add further words

The effect of the initial conditions is given by

2
E(t):eo[ (ehl__’__elit) 2A ([JT pV St 1

K 2
I, 21, 2v ) +(Kp)
-.et {r.a.n-l el o

eT _pVISL L
iy av ¢md

5},

B

B \

+£A_z_. {(/‘T PZISZ 2; Cmq-{—iKp) eo+é0} (e“‘——e‘”)
Y

(2.48)
The above those equations (2.46~48) were derived with understanding that

Ax0. While A=0, 2, exactly coincids with 2, and therefore total response
for the above step inputs is shown as

S 2 s 2 m 2i Lan‘l 7
ct)y="0r 10 T joun(222) A
I, {( eT _ pViSL 1

__.cmf 2 K¥)p?
1, 21, 2V «) +( )P

1 /[T VSl 1 2
. ipt __ pirt L L____p______ﬁ ) 2 —K)ip?
[(e ¢ H'z\/(l,, 21, 2y Om) TEE'P
—(2— N TEREEI V&R
el B ) o] MEEIMY geen i
-1 Kp
N TN
__ellt
{(pT pV3SlL 1 ) (Kp)}[
I, 21, 2v

! \/( 7T V’Sl _z

(2.49)
5 Cne) + (ED)*
- ge{u

+EO[ _%\/(ﬁ_PV’Sl l

.)
? 2
2V mq> + (Kp)
Y
- s
. giten 17?772@%7—“——} et
vy~ 2iy v Ome

+{(pT pViSL 1

Cm K ) t.ent,
I, 21, W «HIRD 50+50} €

In the results given by equations (2.46~48) the most typical terms are

(elll_}_ elﬂl) C (ellt

e") = -—%{(1+—§—>e“‘+(1 _C

_“) elat}
A
where C is a representation of the complex coefficients shown through those

)
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equations. As will be described in subsequent section, since this expression will
correspond to the second and third terms of the equation (3.19) the detailed
discussion of these quantities will further be notified in later.

3. SIMPLE FEEDBACK SYSTEM

Spin stabilization has been used as an open-loop system to maintain a constant
rocket attitude in space coordinate. The system described herein for a spinning
body probides a closed-loop attitude-control system or feedback system which
will correct any attitude errors and damp out the rotational motion. In order
to perform the above stabilizing action the system must be provided with not
only sensing devices, such as two rate gyros which detect two orthogonal trans-
verse angular velocities of the rocket and absolute attitude sensors, but also
control systems, such as body mounted reaction-control jets which actuate with
properly phased input signals derived from the above sensing devices.

The rates of transverse rotational angles are fedback to the reaction jets after
modifying them with gain change, K, and phase shift, &5, as shown in Fig. 3.1.

Mz, +iMy,

I+ _ &b

Sb(A)

Kbe"“’h

FIGURE 3.1. Augular rate feedback system.

For simplicity the following analyses performed in this section are restricted
only for rotational motion of the spinning rocket flying in vacuum.

A transfer function of the rotational motion of spinning rocket flying in vacuum,
S,(2), is given from the equation (2.10) as
&,(2) 1

= 3.1)

RT3 Pl s 7

In closed loop, such as Fig. 3.1, complex angular velocity about the body axes
is given by
1 M 7,(2) +1My, (2)

()= : . 3.2
&0 A—i(l—K)p+K,e* 1,, ©-2)

From the equations (2.7~9), on the other hand, the following relations are
established:

é=é,emint, (3.3)

By applying the Laplace transform, the above equation becomes
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()= %-é,,(i—l—ip), (3.4)

and combining with the equation (3.2) this will again be written as

e() = 1 . M, (A+1p)+iMy,(24-1p) . (3.5)
A(A+1Kp+ K, e*?) I,

~ If the Coriolis damping is neglected then the moment given in the above
equation for the step input of the thrust malalignment is

M 5, (A+ip) +iM 2, (24-1p) _ T(=0pt+0g) 1

. 3.6
Iy, ‘ Iy, A+-1p (-6)
Thus, the time response for the thrust malalignment is given by
e<t)= 4'/51/2'1"523 T .eitan'l(-fdzybb) . 6‘{_‘“4 Kblglbncf)l;::(p% 3 }
Iy, PV(K,c0s ¢,)* + (K, sin ¢, + Kp)®
: [ - D S T
{(K,c0s 4,)*+{K,sin g, — (- K)p)’ S

bs1n¢b+Kp)}

. {,/(K,,COS ¢b)z+(Kb sin ¢b+Kp)2 ei[ pt+tan l(Kl(b«':,c:sm;

_ ipe-(Kbcos!’b)l—‘i(Kb s1n¢b+KP)‘} ] .

The locus of fhe above response in (¢, f) plane is shown in Fig. 3.2. Al-
though the final term in the bracket of the equation (3.7) will be damped out
as long as ¢, /2, the condition required for the most stable operation of the

AN

]

tan™(Szp/8w)

FiIGurE 3.2. Locus of the complex angle for the thrust malalign-
ment about the feedback system.
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artificial system damping is ¢,=0
By using the relations of (2.6) and ¢,=O0, the equation (3.5) will be re-
written as

(1) = 1 M) +iMy(2)
A(A+K,+iKp) Iy 1
. (3.8)
— 5. M }HMYW [
wherein
. 1
SO =K, vikn) G

On the other hand, it will be sure that the attitude rate on the stability axes,
¢, is also detected from a roll-stabilized platform as will be described hereinafter.

It will be able to find the attitude of the spinning body with respect to stationary
space by using either a pair of two degree-of-freedom gyros mounted on a roll-
stable platform [42] or electro-optical sensors [38]. The error outputs from the
sensors provide signals which, when processed through the suitable electronic
amplifiers, produce the corrective control moment after allocating the command
signals through a roll-axis commutator or other resolving devices to each reaction
jet. Usually, not only the reaction jet provides constant-level thrust pulses but
also the roll commutator is only devided into finite segments, e.g. four segments,
so that the system will not be able to describe as a linear feedback system.
However, it will be assumed here that the control moment on the stability axes
is given by equivalent linear expression in order to get easily the mathematical
prospect for the system motion.

Then, a closed loop of the system will be shown as Fig. 3.3 and the complex
angle for the closed loop will be given by

K,e's
424K, +1Kp)+ K, e

() = &(A) - (3.10)

Wherein K, and ¢, show gain change and phase shift of the feedback system
respectively.

g6+

Ks ew" S( PN )

FIGURE 3.3. Attitude-angle feedback system.
The characteristic equation of the system and its roots are given by
D) =2*+(K,+iKp)+K,e* =0 (3.11)

and
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A

o= —__.(K +1Kp)+ Ae”m (3.12)
2
respectively, where
A={(K}— K*p*—4K,cos ¢,)*+4(K,Kp — 2K, sin )}/ (3.13)
B=tan"!

2(K,Kp—2K,sing,) }

s e (3.14)
K:— K*p*—4K cos g,

Comparing the above equations (3.12~14) with the equations (2.39~41) the
following corresponding relations are obtained.

T _ pViSL |

— —s K
I, 2, 2v ™ ’
V2SI
£ Coe — K,cosg, (3.15)
Y
ViSl 1 .
Y

It is easy to understand that damping, K,, parallel feedback gain, K, cos¢,, and
orthogonal feedback gain, K, sing,, are equivalent to the aerodynamic damping
moment, aerodynamic restoring moment and Magnus moment respectively. The
most strong damping for both roots is obtained in such cases

A=0: 1i.e.
K, cos ¢,= (K} — K*p?) /4 } (3.16)
K,sing,=K,Kp/2 ’
or B=r: 1i.e.
K,cos > (K1 K'pi) /4 | (3.17)
K,sing,=K,Kp/2

In the former case, in which the equation (3.16) is established, time response
of the step control input, ¢;, is specifically given by

e(t)=e, [1 _ {1 + % (Kb—i-z'Kp)} e-%afwww] (3.18)
Generally, time response of the step input of ¢ is given by

(y=ef 1— 1 {14 LRI py exlo i )] o

1 | o (3.19)
R b S 2 2 i(nan—l——l-’—T) zzc:l
5 {1 1 VK34 (Kp)le Kb }e

As previously mentioned this equation is equivaient to the equation (2.47) under
the relation of (3.15).
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It is very interesting to say that in order to get quick response of the closed-
loop system the feedback-phase difference, ¢,, should preferably satisfy the rela-
tions (3.16) or (3.17), in other words, for a given K, and Kp either K, cos ¢, and
K,sing, will be decided from the relation (3.16) or only K, sing, will be decided
from the re'ation (3.17). In actua! system, however, K, will be given as a fixed
value or some fixed values because of, e.g., capacity of the reaction jet so that
K,cos¢, and therefore ¢, will also be decided from the relation (3.17). In the
latter case, as spin rate, p, increases from zero to infinity the phase difference,
¢s, may increase from zero to z/2. In the case of ¢,==/2, for an example,
it will be apparent that yawing angular deviation causes the actuation for the
reaction jet to create pitching moment. Other system parameters except K,sing,
(and K, cos¢, for (3.16)), such as Kp and K, cosg,. will be decided for a some
optimum control as described in subsepuent section.

In a system employing only a single rate gyro and two oppositely directed
control jets for stabilizing the lateral motion of a rocket, it will be impossible to
treat the motion as a symmetrical system such as has been done previously.

Let the system be expressed the following equation of motion:

q—(1-K)pr=0 }

: (3.20)
7+ K,r+(1—-K)pg=M,, /I,

That is to say, the system comprises a yaw-rate gyro and two yaw-control jets.
After taking the Laplace transform to each equation of motion and then combin-
ing the above obtained equations with %, the complex angular velocity in the body
axis is given as

. A+i(1-K)p M,,(2)
)= . 3.21
4@ 2+Ka+(1-Kyppr I, G-29
By using the equation (3.4)
e() = A+i(2—K)p . M, (2+1p)
Ha* (K, +2ip) + (K*—2K)p*+iK,p) I, l o)
=5,(2) M,,(2+1ip) ‘
Iy
Two roots of the quadratic equation of the denominator of (3.22) are
b (i K,,—l—'ip) + L RIA Ry (3.23)
2 2 2

Comparing the above equation (3.22) and the roots of the equation (3.23)
with the equation (3.5), it will be appreciated that if K} < 4(1-- K)?p?, the damp-
ing of the equation (3.22) is the half of that given by the equation (3.5) when
¢,=0, because of the singie rate gyro, and if K*>4(1 — K)?p?, then the damp-
ing will increase for one root and decrease for the other.
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In attitude control system of the spin-stabilized vehicle, it is mostly common
to use either a single or two body-mounted reaction jet in order to control the
attitude error which is detected by body-mounted attitude-error sensor or sensors.
In such system, the attitude errors and their rates are fedback to the reaction jet
after modifying to the control input for the body-axes system. Then the equations
of motion for such system are, for example, given by

—(1—-K)pr=0
7+ K,r+ (1 — K)pg+K,cos (¢,+pt)¢ — K, sin (¢, + pt)o (3.29)
=K, cos (¢,+pt)¢; — K,sin (¢, + pt)0;

Combining the above equations with i=y —1 and using the re’ation of (2.7),
the above equations become

s+< +1Kp> e - s e“"e— I;‘ efsg, -+ Eif-e_i(‘”“"‘) “E;

(3.25)

Kb e—izmé_ K: e~ Hbs+2pt) =
2 2

Applying the Laplace transform to the equation (3.25) with initial conditions
being zeroes,

K K

{x=+(1§z+i[{p>z+ : ew*s}s(z) 2o eveeid

X (3.26)

+—2—e"'¢3§i(2+i2p) { b (2+z2p)+ K, e~ 15(1+12p)

It will be sure that since the second and third terms of the right-hand side
of the above equations consist of conjugate-complex input and feedback terms
shifted to higher frequency respectively, these terms will be regarded to be zero
as the first approximation within a normal flight condition or except small spin
rate. For such case, the soluticn of ¢(4) is approximated by

K

8 ei¢3

e(A)= -&:(2) (3.27)

Ks ei¢x

K, .
2 2 143K kel X
w42 5e +iKp) +5
It must be again notified that both the damping, K,, and the feedback gain,
K,, are reduced as half values of those of the symmetric system given by the
equation (3.10).

By introducing the above solution into the right-hand side of the equation
(3.26), the second approximation for a solution of the equation (3.26) is given as

=
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K

28 pifs
2

e(A)=

e(4)
K, p-its 2 (2 — K\yplz 2
e (A+2p){2+1(2 - K)p)e,(A+12p)

{2 (5 +ikp)+ Eeonl {Giapy+ (Ko —ikp) x

(3.28)

+

X G+i2p)+ Se e ]

Thus, for the step input of the input, ¢,, the time response of the attitude
angle, ¢(t), is given by

e(t) =e,.[1 R S O e]

=2 A=A
( £§:_e—ws{11+i(2_x)p}
+E - _ — . ellt
! ‘(21_12)(21"‘114"2273) (21"’22‘1‘7’217)
B e-wpiyie-KBp)
- — e —— er (3.29)
(A, —22) (23— 2, +1KD) (4, — A, +12p)
Ko s (4, —1Kp)
+ — 2 _ i _ - e(z’—tzp)c
(A, — 2, —12D) (A, — 2, — 12p) (A, — 2,)
L;—’s_ e~ (1, — iKp)

_— - _ ! - e(ia—izp)t)+,_.
(12——]1——Zzp)(lz—lz——'ﬂm)(ll—lz)

Where 4,(i=1,2) are two roots of the characteristic equation of the equation
(3.27), 7, are conjugate-comp’ex values of 2,.

In actual system it will be able to use the equation (3.27) instead of. the
equation (3.29) with satisfactory approximation. By the way of illustration,
if the system parameters are such that K,=2, K,cos¢$,=0.5, K,sing,=1.22
and Kp=1.225, which will correspond to the one of optimum condition given
in Table 4.1 in Section 4, the magnitude of the correction terms in the equa-
tion (3.29) are the order of 10-2.

In order to apply the above analysis to the actual control system of the spin-
ning vehicle it will be necessary to introduce suitable compensation network and
the nonlinear systems, such as discontinuous commutator or resolver, proper
thresholds and on-off reaction jet, instead of linear means assumed in the above
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=9

analysis.

It is most convenient to estimate the dynamics of such nonlinear systems from
simulator studies, but it may be quite sure that a fundamental understandings
about general nature of the motion will be given from the above consideration
on the linear systems.

4. TIME RESPONSE AND OPTIMUM CONTROL

For step input a typical time response of the spinning space vehicle having
automatic control system, as well as of the spinning rocket flying in atmosphere
without feedback system, is characterized by

e(t) =1+ A et _ A e (for A, % 2,), (4.1a)

& Ay — 4, Ay — 2, )

=1- { : —%JKH(KT)* eH}e (for 2,=2,) (4.1b) ¢

The equation (4.1a) is rewritten by using the equation (3.19) as

et _ 1 | 1 K2+ (Kp)? e tan-lKl{-—p——B- at
e, ! 2 {1 A VEG+( ) e ( ’ )]e ]
(4.2)

S e e Dl |
1= LR e fe J

It is apparent that the system parameters characterizing the dynamics of the
spinning body are damping, K,, product of inertia-moments ratio by spin rate,
Kp, feedback gain, K,, and its phase difference, ¢,. The particular quantities
defining the time response of the system, such as A, B, 2,, and 4, in th: equa-
tion (4.2) are the functions of the above dzscribed quantities.

Now, in order to see the change of time response for the change of various »
values of system parameters let K, keep constant and Kp increase for pre- )
selected values of K, and ¢,. Fig. 4.1a, b, and ¢ present the cases in which
K,=1, K,cos¢,=2, and K,sing,=0, 2, -2, for various Kp. The A and B
are shown in Fig. 4a where each A increases from some value to infinity and
each B aproches to z. The loci of characteristic roots for increasing Kp are shown
in Fig. 4.1b. In any case 1, tends to approch to the origin and 2, increases
negative frequency. When K,sing,=0, two roots are conjugate complex num-
bers each other at Kp=0, then 2, becomes more light damping and low fre-
quency and 4, becomes more heavy damping and high frequency as Kp
increases. While K,sing,=2, one root 2, is in negative real domain but the
other root 2, is in positive real domain at Kp=0, i.e. thz system in unstable
at Kp=0. As Kp increases 2, enters into the negative real domain and hence
the system becomes stable after 1, crosses the imaginary axis. In the case of

1
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FIGURE 4.1. (b) Root locus. FIGURE 4.1. (c¢) Stability criterion.
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K, sing,= —2, one root A, is always in positive real domain and never becomes
stable for any Kp.

Fig. 4.1.c shows the change of ¢, and ¢, with increasing Kp. Thick lines
show that the system is in stable. As Kp increases §, takes zero to z/2, so
that in the case of K sing,= —2, the system does not enter into the stable
region for Kp>O.

For spinning rocket flying in atmosphere, Magnus moment will change from
zero to some positive or negative value as spin rate increases, hence K,sin ¢,=0
at Kp=0 and K,sing, takes positive or negative value for positive or negative
Magnus moment respectively. These loci are shown in Fig. 4.1c by two lines
with arrows leaving from the origin.

Fig. 4,2a, b, c and d show time response of step input, ¢;=1, for the cases
in which K,=1, K,cos¢,=2, and K,sing,=0. When Kp=0 the system shows
the time response of usual nonspinning axisymmetrical rocket having positive
restoring moment as Fig. 4.2a. It must be careful that in the figures of time
response described hereinafter, the second and third terms of the equation (4.2)
are drawn in the same figures as () but their origins are located at 1.

The effect of spin rate is shown in Fig. 4.2b, ¢ and d corresponding to
Kp=1,4 and 10 respectively. The third term of the equation (4.2), which is

designated by A e” in those figures, tecomes smaller as Kp increases,
17 A2
and therefore the first term, 1, and the second term, which is designated by

_ta e®' are predominant for large Kp. The reason for this will be apparent

A1 — 2,

d
6
101 101
05¢ 051
A1 Azt
o ©
t=0 t=0 :
\ 604750\ N0
t=01‘4 O{B — 0 05 Q}’ZO v
0 05 t=30 v t=0
Az oMt
t=0 v 0
-05+ 10 20
-05+
Kb':—l szl
K;cos ;=2 K, cos ¢ps=2
b .
@) K, sin =0 (®) K, sin ¢, =0
Kp=0 Kp=1
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-0571

~1071

K,=1
K cos ¢ps=2
K, sin ¢;=0
Kp=4

FIGURE 4.2. Time response for step input, g;=1,

()

for K,=1,

Azt

Kb=1
K;cos ¢p,=2
K;sin¢,=0
Kp=10

(d)

K;cos ¢;=2, K;sin¢g;=0

from the equation (4.1a) and the Fig. 4.1b since absolute value of 2, increases
with increasing Kp so that for large Kp the equation (4.1a) will be expressed

as the following approximation:

) _1_gum (for 2,2,)

=)

4.3)

As the spin rate increases the system also reduces the damping or increases time

. 9 required for approaching to a terminal point. This will again be described later.

Fig. 4.3a, b and c show the cases in which K,=1, K,cos¢,=2, K sing,=2,
and Kp=0, 1 and 10 respectively. According to Kp=0, 1 and 10, the system

is unstable, neutral and stable respectively.

It is interesting to say that in the case of Kp=0, the second term of e*’ is
smaller than the third term of e**, but the sscond term is predominant at

higher Kp.

Fig. 4.4a and b show the cases in which K,=1, K,cos¢,=2, K,sing,= —2

and Kp=0 and 10 respectively.

In either case the system is unstable.

Fig. 4.5a, b and c present the cases in which K,=1, K,cos¢,=—2 and
K, sing,=0, 2, —2 for various Kp. From Fig. 4.5a, it will be apparent that
as Kp increases A, for each case, increases to innnity after some of then once

decreases.

Herein, each B also approches to z.
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The root loci of the characteristic equation are shown in Fig. 4.5b, from which
it will be observed that in only one case, K, sing,=2, the system has stable
region for Kp>3 and in the remaining cases the system is always unstable.
At Kp =4, which satisfies the conditions (3.17) for the stable case of K,sing,=2,
negative real components of both roots 2, and 2, are equal, and hence the
system will be in one of optimum condition.

The Fig. 4.5c shows the change of 6, and ¢, with increasing Kp. For
spinning rocket flying in atmosphere 6, and ¢, will change along a line of two
curves with arrow leaving from two points defined by 6,=0 and 6,==n,
corresponding to positive and negative Magnus moment respectively.

Fig. 4.6a, b and c¢ show the time response for step input, ¢,=1, correspond-
ing to the cases in which K,=1, K,cos¢,=—2, K, sing,=2 and Kp=0, 3
and 10 respectively. Fig. 4.6a, b and ¢ show unstable motion for nonspinning
case, and almost neutral motion and stable mntion for Kp=3 and 10 re-
spectively.

Fig. 4.7a, b and ¢ show A and B, root loci of 2, and 2, and the change
of #, and 6, respectively for each case in which K,=1, K,cos¢,=0 K,sing,=2
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and —2. As saying before, the system can not be stabilized by positive spin-
ning motion for negative value of K,sing,. For K,sing,=2, Kp=4 is also
the spin rate at which optimum damping is obtained.

Fig. 4.8a, b and ¢ show time response for each case in which K,=1,
K, cos¢,=0 and K sing,=2 and Kp=0, 2, and 10 respectively. At Kp=0,
the system is unstable, while at Kp=2 and 10 the system is neutral and stable
respectively. Herein 2, also becomes predominant as Kp increases.

It will be interesting to compare, for instance, the Fig. 4.8c with the other
cases having same values of K,=1, K,sing,=2 and Kp=10, such as Fig. 4.3c
and Fig. 4.6c. From this comparion it will be sure that the K, cos ¢, tries to
bend the path of time response approaching to final or terminal point, in other
word, the K cosg, seems to obstract to go straight. It must also be notified
that the total time to reach the final point is almost unaffected by K, cos é,, for
large Kp.

Now, for the purpose to point the space vehicle to a predetermined direction
in the space there may be some “optimum” way to determine the feedback
parameters, such as feedback gain, necessary phase difference, damping and
preferable spin rate, by which the vehicle can quickly respond to the control

6
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FIGURE 4.8. Time response for step input, ¢=1,
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moment which is created by reaction jets corresponding to the error signal detected
by sensors on board and modified by suitable compensation network.

Here, some of them -will be discussed.

At first, it will be considered that a sweep area of a vector 5, which is a

radius vector starting from the terminal or destination point and ending on the
time response curve as shown in Fig. 4.9, will be minimized for particular combi-

e
/(< /

FIGURE 4.9. Vectorial expression of the time response_from
the terminal point.

This document is provided by JAXA.



Linear Dynamic Analysis of the Spinning Axisymmetrical Rocket or Vehicle 253

nation of the system parameters. That is to say, let find the condition that the
sweep area S defined by*

S:‘"S%ofw{("]"'ﬁ)(’?*'ﬁ)—(7')+7'7)(77~ﬁ)}dt‘ (4.4

is minimum. Wherein 7 designates the time derivative of the vector 5, and
7 shows conjugate complex vector of 5. By substituting », which is given by

N=7+7, ‘
:———2—2-——81” . xl__elzt, l (45)
'21"22 21_'22
into (4.4), and then completing the integration
S= _ 1 S [ _2272(11_"‘21) + 2271(21:‘12)
4i(2,—25) (A, —2,) AL+ 4 A+ 2, (4.6)

+

2122 (12“71) _ 2171 (22"‘22) }‘
22+71 22“*’22 |

Although it is not necessary to use the condition of (3.17) to find the minimum
sweep area, but if this condition is preselected the above equation will be
expressed more simply as
1 | K,sing,(K,cos ¢, —K3}) @4.7)

4 | Kisint¢,+ K2K,cos ¢,

Thus, when
K cos ¢, =K}, (4.8)

the sweep area becomes zero, i.e. the vector y loiters around a line passing through
the origin and the final point of the motion and its total sweep area is zero.
Second, a scalar quantity, R, defined by square of the vector », such as

R= Of pﬁdtl

(4.9)

""2272 2172 '2221 ""1121 }
e 2+ = + — + -
(2= 25) (21— 2,) { A4y Ayt 2 At Aatd J

will be minimized. Under the both condition (3.17) and (4.8) this becomes

1
R— 4.10
K, *19

* Although there is another scalar quatity relating to the sweep area, such as

b 1 . .. ot . R o
S"—“—L I 45 =) (pt7) — (+7) (n—7)|2dt,
the scalar quantities given by (4.4) or (4.14) will be treated here for simplicity.

This document is provided by JAXA.



254 A. Azuma

This relation only imposes that the R can be reduced as K, increases. In this
case, therefore, there is some arbitrary choice for the system parameters. All
decided relations from the above minimum conditions are as follows:

K,sing,=(Kp/2)K, 1
K,cos¢,=K3> Ki—(Kp)* (4.11)

o

Instead of the R, if a new scalar quantity, R’, such as

R = f O+ maT) dt<> f w’ﬁdt) 1

0
L (B ik ) (*+12)
(21""‘22) (Zl —72) 21 +71 22+zz
is introduced, then, under the condition of (3.17), this will be
R = 2K, cos ¢, + (Kp)* — __ 2(KiK,cos ¢, +2K]sin?g,) (4.13)

 K,{(Kp)'+4K,cos¢—K3}  K,(4K?sin’ , + 4K2K, cos g, — Ki}

Further more, it will be possible to introduce a sum of sweep area, S’, of
each vector, , or ,, corresponding to each spiral instead of the resultant vector,
7, t.e.

SI: 1 _ { _2222 21'—21 ‘.... 2121 22—‘22 } (4’14)
2('21 "‘22) (71 "‘Zz) 21 + Zl 2 'zz + 72 2
Under the condition of (3.17), this will be
1
S'=——_ [(K}(Kp—A +|Kp+A))
84K, =" | (4.15)
+(Kp+A)|Kp—Al+ (Kp—A)*|Kp+Al)
When the following condition (a) or (b) is satisfied:
(@) K,cos¢,=(Ki—K?p?)/2 for 4K, cos¢,>K3>2(Kp)* (4.16a)
(®) K,corg,=K3/4 or Kp=A for otherwise (4.16b)

the S’ takes a minimum value. By substituting this relation, (@ or (b) into
the equation (4.13), the R’ will be given as

K3
R'= b for 4K,cosg,> K?>2(Kp)? 4.17a
Ki—Kisin' g, or $:> K3 >2(Kp) ( )
r=KiH8Esing) g therwise (4.17b)
8(K,sing,)*K,

The R’ of (4.17a) will be small for either large K, or small K,sing,. This
fact will correspond to the characteristics of non-spinning body. While the

—
»

g 4
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R’ of (4.17b) will be minimum at

K,sing,= (3 /2y2)K: (4.18)

for a given K,.
By combining the minimum conditions (3.17), (4.16a, b) and (4.18) the
following relations are obtained:

K,sing,=K,Kp/2 ]

for 4K Ki>2Kp? (4.1
K,cosg,=(K3—K*p% /2 or 4K,cos¢,>K;>2K'p*  (4.19a)

Ksing,=(3 /22K ) K=(T/9K; 1 for
K.,cos¢,=Kj3 /4 L or ¢, =tan"1y6 = 67°48' . other- (4.19b)
Kp=y3]2 K, J Kp=4y3]2K, J wise

Either relation (4.11) or (4.19a, b) may not be always absolute optimum
condition because of the condition (3.17), however it seems to be some measure
for “optimum” control. It is still interesting to say that for non-spinning body,
Kp=0, the condition (4.19a) gives K,cos¢,=K?/2 and K,sin¢$,=0, thereuron
the system will be optimum when the damping coefficient, K,/2/K,cosg,, is
equal to 1/y2.

Fig. 4.10a, b, ¢, and d, show time response of th esystem having such optimum
system parameters which are given in Table 4.1.

In the case of the condition (4.11), as shown in Fig. 4.10a, b, and c the total
sweep area seems to be certainly zero. It is, however, interesting to notify that
each locus showing the time response has some cusp or node and the number of
cusp increases as Kp increases. As previously mentioned, the term of e** also

&
] 1.0+
1.01
0.5%
0.5t
t=0 1):2 29)"1 N ot t=0 elt) )\1“)\19)‘2‘
" RN ~_
£(1) 0 05 v
Y o -
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" 20
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FIGURE 4.10. Time response for step input, g;=1 for optimum

condition (4.11) or (4.19).

TABLE 4.1 Optimum system parameter
w
K K; cos K, sin K K
condition . i s €OS s s I &g 4 s Bs
1 1 0.5 1 1.12 26°34
(4.11) 1 1 1 2 1.41 45°
1 1 2 4 2.24 63°26’
(4.19b) 1 0.25 0.6124 1.225 0.661 67°48'

becomes small with increasing Kp.

For the condition (4.19b), the time response is shown in Fig. 4.10d. In this
case the term of e™* presents a straight line so that the locus is a little more
smooth than the case of (4.11). The sweep area is bigger than the one of (4.11).

The time required to reach around the final point is almost same since K,
is kept constant for all cases.

In the preceding discussion it is assumed that the condition (3.17) is always
held, but if the condition (3.16) is established instead of (3.17), the system has
also equal damping for both roots. Then the R will be given by

1
2K2

R=___(5K3+(Kp)?).

(4.20)

This relation points to be better for non-spinning body.

It has been shown that for large spin rate the equation (4.3) is effective as
an approximation of the equation (4.2). Generally, as Kp increases the follow-
ing approximations may be established:
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. 2K, cos ¢ 1 (K, \*
st 1+ gt ()
ST STRMERY 7
K, 2K,sin¢,))
K Kp)?
B‘:‘tan*{ 4 1( 2 }
- (4.21)
2= — K,sin ¢, 4 4K cos ¢, + K3
Kp 4Kp
) K,sin ¢ . K cos¢ K;
2,________<K_ ] s)_z(K+ s :+ b)
: " Kp PY""Kp " akp
E(EL: 1 — gl~Kssings/Kp+i(4Kscosds+KpD/4K plt (4.22)
&
@ ' Many important matters will be obtained from the above approximation for
‘ large Kp.
‘ . First, it is apparent that K, sin¢, has to be positive but to be K,sing, < Kp X

K, for the stability of the system. Damping of the system will be reduced as
Kp increases.
Second, either by increasing Kp or by making

K.,cos¢g,=—Ki|4 (4.23)

the locus of the time response curve will approach to a straight line. Therefore,
this relation also seems to be one of optimum condition. In the plane of complex
attitude angle the response curve is almost straight line. Unfortunately, in this
case, however, the time required to reach the final point is not so small, i.e.
the system has slow response characteristic as shown, for an example, in Fig. 4.8c,
comparing with other optimum cases.

Having decided the feedback terms, K, and K,e"s, the practical control
moments for body-axes system shown in the equation (2.10) or (2.21b) will be
given by

¢ 0 Oy, |1y = =Ko K fe—e)e@ | (4.24)

or . )
=—K,é,— K (e —¢;)e'#*9,

5. MOTION OF THE SPINNING ROCKET INCLUDING
TRANSLATIONAL MOTION

It is an object of this section to investigate some generalized motions of the
spinning rocket during powered or unpowered flight sustaining rotational motion
as well as translational motion which was out of consideration in the previous
sections. It is, however, assumed for simplicity of the analysis that the gravi-
tational force affecting the translational motion of the rocket is still neglected
and the center of gravity is fixed in the body even in powered flight.
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The relation between velocity vector of the rocket and the stability axes,

(X,Y,Z), is shown in Fig. 5.1.

FIGURE 5.1. Orientation of velocitygvector, with respect

to stability axes.

The equations of translational motion of a rocket are given by

V:Fx/m 1
V(B+g)=Fy|m
Va—6)=F,/m J

Wherein m is a mass of the rocket, i.e. m=W|/g. Neglecting the gravitational
force, the external forces given in the above equations are written as

Fyfm=T|m— _(sV*S/m)C,

Fy|m=(T |m)(¢,cos ¢ +0,sing)

5 OV SIm) (Cop+Cop B at 0 L

oy 2V

F,/m=(T |m)(p.sing—6,cos $)
l

- 1 3 Ip )
Tz-(PV S/m) (CLaa+CLpﬁ7V—ﬂ+CL 2V

3
g

(5.1)

(5.2)

Wherein ¢, and 6, are the thrust-malalignment angles as shown in Fig. 2.2.
The aerodynamic terms considered here are restricted only the first Taylor

expansions of the main aerodynamic forces.

Substituting the equation (5.2) into the equation (5.1) and then combining
these equations with ¢ as previously having done, the following two equations

are derived.
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V:T/m~%(pV’S/m) C, 5.3)
and
. w1 pV2iS§ ol I,
Ero=Toer— L (Coib+iCun £ 2 E+CL;—§T,—$) (5.4)
where
E=f—1ia ' (3.5)
and
e, =¢,+10, (5.6)
Rotational motion of the rocket along the three axes is expressed by the
&" {' following three equations of motion:
I ib:MX/IX
0+¢oKp=My/|I, [ (5.7)
¢—0Kp=DM,/I,

The external moments given in the above equations are similarly obtained from
the control jet, thrust malalignment, the Coriolis damping and the aerodynamic
forces, and they are consequently appeared as

1
Mol e=0Mlle+ o (VYLD (Cup+ Cingt )

My Iy =(T|1y) (35,€08 $ + by, Sin §) + My [T, — (uT/1;)8
+ 5 (V?SUL) (Coa+ Coy 2t Ca ! §+c ._sz) (5.8)

™tV 2V 2V i) 7%
Mz/IY:(T/IY)(5205m¢"‘5YoCOS¢)+5Mz/I ‘(#T/IY)‘/’
1 2 _ Ip __l_ 7
L8 +—5 <pV Sl/IY) < Cmaﬁ+Cmpﬁ 2Va+CmQ2v¢ Cmfxzvﬁ)

Substituting the equation (5.8) into the equation (5.7) and then combining
these equations with ¢

p=3M I+ %_ (oV*SULy) (Cl,,a+ C“’"il‘v‘ p) (5.9)

and
§+iKpé= (T/IY) ("'5Yb +i52b)6_i¢+ (51!2 + iaﬂy) /IY - (F‘T/IY)é

. . 5.10
+%—(pV’Sl/IY)<——CmaE+’LC _eyC,, L8 (>-10)

g €+ gy 6= Oy

By combining the above equations (5.3), (5.4), (5.9) and (5.10) unknown
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variables, such as velocity V, spin rate p, complex attitude angle ¢, and com-

plex angle of attack &, will be obtained as functions of either time ¢ or flight
distance s with appropriate initial conditions.

Flight in Vacuum

It is important to consider the dynamics of the spinning rocket flying in vacuum
as a fundamental treatment of the present analysis. By neglecting the aero-
dynamic term and using initial conditions such as at t=t,, V=V, and s=s,,
the equation (5.3) will be integrated as

V(t):V0+f‘(T/m)dt (5.11)
s(t):so-{-Vo(t—~to)+ftft(T/m)dt2 (5.12)

In special case of 7'/m =constant,

V=V,+(T/m)t—t,) (5.11)
s=8o+ Vo(t—1t,) + %(T/m) (E—t,) (5.12/)

Similarly, with initial conditions such as t=t%,, p=p, and ¢=¢, the equation
(5.9) becomes

P(t) =D, + f OMy/Ip)dt (5.13)
s =g tp(t—t0) + [ ["GM1Iat: (5.14)
If 6M,/I,=constant, the above equations will again be
D) =D,+ (OM /1) (t—1,) (3.13)
P = o+ Po(t—to) + = OMlLy) (t—1,)" (5.14)

From the equation (5.10) the complex angular velocity, é, will similarly be
given by

| o+ [ +ik @+ oMy oan) | )
Y to
:(~IT—>('*5”+i52b)e—“¢°+mct—to)+zj;czj;‘(anlx/t.r)dtﬁ). (3.15)
Y

+ (OM,+ioMy) /1,

&
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and the time response of the equation is given by
. . “ T . )
d)=|éot [ |- (—on +iva)e
to 4

UM et [ G 610
Y
and

e(?) —-50+f [[so-i—f {__( Sy, +i0g,)e "+ oM, -{I-:(SM }

of [GF e dt] e f G rom) o] at (5.17)

When both spin rate and rolling angle are constants the equation (5.15) coincides
with the equation (2.24).

Therefore the equation (5.17) seems to be an extending solution of the equa-
tions (2.27) and (2.31) for variable spin rate. Let pT/I, and p approach to
zero then the equation (5.17) will become

s(t)——e.,+f[€o+f {———( Spotidz)e %+ 5@-}’—5&}“]& (5.18)

Y

This result shows the angular behaviour of the spinning rocket when the spin
is almost stopped, and while no external moments exist this will be same result
of the equation (2.32c).

Under the same assumption that T/m=constant, the equation (5.4) becomes

T/ m)é 2

E— ¢ —€ 5.18
ST (T m) (=t 19

Sabstituting the equation (5.6) into the above equation and integrating with ¢,
the complex angle of attack is given by

(T|m)e.e”**
£(t)= €o+f Vo+ (T/m)(t—t,) a

_f {[€°+f "“‘( Oy, +10z,)e "+ 51‘&?}!—‘ (3-19)
Y

t
e{) (’;7 +iKp) at .dt]e-,!; (7"17,:+il(p) dt}dt
Transverse velocity and distance of the center of gravity, v and r, are

v(t):vo+f'V(g+é)dt 1
” \ (5.20)
— v+ f (Tm)e,e~*dt J
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and

(&) =70+ vy (E—1t,) + f t f (Tim) e, dt? (5.21

to to

Where v, and r, are initial transverse velocity and shift at ¢=¢, respectively.
If T/m=constant and sM »=0, then

V(&) =0+ (T [m)e, 1 e~ {ros § 4ace-10) (5.20)

0

P(8) =7 + vt —to) — (T /m) st—%;e“”‘“‘*p"(‘“’“” (5.21)

0

In vacuum, as be considered herein, it is impossible to control the initial trans-
verse velocity, v,, of the rocket, but possible to reduce the effect of thrust
malalignment of spinning motion.

Flight in Atmosphere

As usually done let an independent variable change from time, £, to flight
distance, s, by using the following relation:

e
s
(5.22)
d? 1 dv? d d?
E= 4V
dt? 2 ds ds + ds?
The velocity given by the equation (5.3) is given as
Eds' (V) =2T [m— (VS /m)C, (5.23)

In the above equation, even if the thrust-mass ration, T'/m, is a constant, air
density, p, and drag coefficient, C,, are given as a function of flight altitude
k, mainly a function of the flight path. It is not a present object to calculate
precise flight path or altitude of the rocket but to know the effect of the spin-
ning motion of the rocket, so that the both quantities p and C, are also as-
sumed as constant values hereinafters except in the case of re-entry problem.
Thus, for initial condition such as V=V, at s=s,, the equation (5.23) can be
integrated as

T m ( 2T m ) _esca
V 22 = Vz-————-——. e m (§—20) 5.24
Or=2- sc, T\, 0SC, 29

Similarly, the spin rate given by the equation (5.9) will be integrated with
similar assumption and initial condition p=p, at s=s, as follows:
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sfoM, 1 1 oS 18C 01pG-10
- [ ) 5

(5.25)

1 pSi2
. eTﬂfx" Cip(s—s0)

Generally, during powered flight the thrust-mass ratio is predominant rather
than aerodynamic drag, therefore the equation (5.24) will be able to reduce as

Vi=Vi4 _.__?nT (s—8,) (5-26b)

On the other hand, for coasting or umpowered flight the equation (5.24) will be

Vi=Vie-Snte-0 (5.26b)

wherein the initial values V, and s, are not same to those of the equation
(5.26a).

Substituting the above results into the equation (5.25) and assuming that
OM,/I, and pSC,,6/I, are constant, then the spin rate, p, is given by,

(a) for powerd flight:

_i—s-— Cip(s—so0)
p(s)= [po 5M f\/ L ds

Vi +—-—(8 Sy)

1 (5.27a)
pSl CuJv ,\/VZ-}-———-(S 80)

1 pSI2 1 pSL
. e~ T Tx O “')ds] oo

(b) for unpowered flight:

p6) et B | O ¢ g ey
0 124
2m 4 I,
sca 1 sz (5-27b)
e (s—50) “’ Cip(s—s0)
_ 1 pSi CudV, &2 —e7
2 I, pSC, + 1 1 pSlz
2m 4 1, 7
Similarly rolling angle, ¢, is given from the equation (5.25) as
s s oM, 1
=g [ o [ e
B(s) =, ) po‘*'so I, Vv
_1__ pSl Cz sV e_TP_s‘_ Czp(s—-so)ds (528)
2 I,
. e THE Cre g
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and as approximation this will be
(@) for powered flight:

p

L. o812 oy p(s—so
P(S) =g, + T e ng‘,’lz (€% Tx CPCTO )
CZP

4 I,

1 pS12

- c -
e~ 1ix ip(s—s0)

oM LoSE2 oy ns—
X ds-eT g CiPG so)dS

Iy S0 to JV§+%,(S_SO) > (5.29)

Sl o 2T
+ 2 ¢ ,6f veg =L o
ZIX i f '\/ 0+ m (8 SO)

Sa  So

+

1 pSi2 _ 1 pSi2 _
.e-Tix Cip(s So)ds .etTix Cip(s—so) ds

(b) for unpowered flight:

B =gyt Do (e¥r O _1)
174

4 1,
oM 1 et G0 1 |
Iy v, (pSCd 1 pSk Cw) oSCy/2m

+

2m 4 I,

| (5.290)
e%’f—g— Cip(s—s0) —1 }

pSEC,, [41,

pSC,/2m oSIEC,, /41

For ballistic re-entry bodies, on the other hand, the rate of change of altitude
with time can be approximated by [43]

dh

7 Vsind, (5.30)

where 6, is an angle between horizontal and re-entry velocity, positive downward.
The variation of atmospheric density with altitude can be approximately by

p=p,e- (5.31)

where p, is a nominal low-altitude density and B is an exponential altitude
parameter. Additionally, the velocity is given by

V=V, 7" (5.32)

where V, is a velocity at start of re-entry and k, is given by
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= £o C,S
pgsing, m

(5.33)

and C,S shows flat area of the re-entry body. If 6M,/I,=0, the equation
(5.9) can then be integrated to give [48]

l 1 Cipmi2, o s _ko,pn
ph)=V " _C,e e-carix T —e"3° 5.34
o o o ) (5-34)
2 C, Iy
Therefore, rolling angle ¢ is given by
h
g=d+ [ p(dh
l 1
=g+ V-T2 C,o
bo ‘1., " [_1Cp mb (5.35)
2 C, I
(et an— "o~ ¥ anl
Furthermore, the equilibrium roll rate can be obtained as
2 ( C” ) _E’e'ﬁh
=—[=) =)oV e _ 5.36
P (z) Co ! %07 ¢-59)

The equations (5.4) and (5.10) will similarly be transformed under the as-
sumption that the Coriolis damping and the lift damping, C,,, are negligiblly
small, such as

{"gg+—§%(ch+i0m%)}5+%§:_§st f% ,
2ot L+ 0 iC et {2,
(- fgl C"“’“K”)gs"}E=%<-5y,,+iaz,,)ff;;’— 37
b M+ oMy

Y

where v is a spin-velocity ratio and is given by
v=p/V (5.38)

If the spin-velocity ratio, v, and air density, p, are constant, the equations
(5.37) are linerized constant coefficient differential equations and therefore their
characteristic equation is given by

This document is provided by JAXA.



266 A. Azuma

D@ =4[ #+2{( 5 Cram L5E (o Cu)

pSl

+7:( CLPa+K) V! + [—-—( pS C. Ll Cnat pSt CrpKv?
2m " 4l, 4m

pSlC ‘) .(_ oSl oSl S o K
To1, Ome) T\ T gy Covegp, Cmet 5 Ce

o

(5.39)

The assumption y=constant is sustainzd undzr such condition that the aero-
dynamic damping of the rolling motion is not so predominant. In other words,
for flight in vacuum » is given as

(@) for powered flight:

oM /1

y—= 777;&;1; (5403)

(b) for unpowered flight:
v zpa/Vo (5'4Ob)

For flight in atmosphere if the spinninz motion is created by the deflected fins
and p=0 then
(c) for launching vehicle:

() %)

(d) for re-entry vehicle after equilibrium-roll rate attained:

—(3)(%)s =

For constant air density, the stability of the system will again be decided
from the Fig. 2.7 with the necessary co:fficients such as

S o, 050 ¢ 4 8Lc, oy S0, )
f= {( 2m Ot ap, Omit g Con?+ 57 Co,
_ oSt PSP o L S o g pSU )’ a| #
+( am O 4I, mt oy Crk 41, ™™ ”]
N& 5
("‘ Zii CLPa ‘04[ Cm1+ gi CLaK+ P‘S_q ml’a)”
ﬁfztan' Y !
0S pS » , pSU 2, pSL ) L (5.41
(Zm Cr ar, Omt gy CorV' 5= Con, J 4D
1 & ? ol
o=ty | Oon gy (o 00 [ 57 Cont K]
- |
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(G Gt K]

Si?
Y

f,=tan"!

The characteristic roots are given by

p=1l-(c ——3‘5}1(0,,“,+Cm&))—i(”8l CuntK )}
4m

A2 2m 4l

IS 0+ e

5 PS pS1? C Y1408 _ 2(pSl _ )’]
oo Crar mat Cn) + 20, Cna ="\ g O K
oS

0 0i [0S oSl oSI2 yoSU~ _ pSC,,
+ 'LV{ 2m CLa 4m CLA'+ 4IY (C‘”LQ+C‘ma) 4m CLPa 2m K (5.42)

_pSk VK — oSl ]1}
R T
= ) { (2m CLu 4IY ( mq+Cmu) ? am CLPa+K V}
B
=4

%Ae"f

_ oS )” pS1? )3 Yo OS oS .
A=[{[4Cu) + [G7) Cut Ca 42 £ CL B Coartr)

+atlc, (B¢, k)

21,
4,2 OS oSl pSl? - —‘O—SLC
HAL O G Cunt £ Caat Cr) - G C,

(5.43)

\ _ pS K___ pSlz . K___ pSlz 3]1/4
zm CLa 4IY (Cmq+Cma) 2IY Cmpa}

v

"'[ 2m CLa» 4m CLpa+ 4IY ( mq+ ma) 4m CLpa

B=tan"! 2
oS pS1l?\? Yoo oS pSi '
{ (—zm‘ CL«) + ( 4I ) (C'mq + Cma) + 2m 4IY (Cmq + Cma)

Y

_pS _ pSP? Vi oSP }
2’”’& CLaK 4IY (Cmq+Cma)K ZIY Cmpa

2
rg oo K]
Y

(5.44)

Now, the particular solution for the forcing functions of the equation (5.37)

are given by
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=k o [T i,

-i¢

. l T .
"%(CL,,"}"?'CLM”;) le3—;’} - {7;("51/;)4‘1525;) evz (5'45)
1 : IR TR
+?(5MZ+25MY)-V—ZHe i ds-e“} ]
de _s oS (C C ) i
= =21 S (CetiCun ) 424
T e [ oSl _l___p,_Sﬁ( : z_,,)_ s 46
![We‘ v {21,, COniy = gy \Crat a3 1“"} (>-46)
T -2fs ijs
{ (— 5yb+%5zb) -+——(5Mz+1M ) 7 He ds-e }

Y

For step input of the forcing functions, it is necessary to calculate

f 87717 e %ds and s-eI: e-*:ds (t=1,2)

8o 30

for either powered or unpowered flight.
When air density, p, is not constant, i.e. p is expressed by the equation
(5.31), the altitude will be approximated by the following equation:

h=h,—sinf,(s—s,) (5.47)

wherein @, is considered as a constant value and is positive for re-entry case
and negative for launching case respectively. Thus, from (5.31)

p=pe Pr=p,e" {Ro—sin 6E(s—3s0)} :p(')e(ﬂsin 9E)S (5.48)
where

p‘;:poe-ﬁ(ho-bsosin 0E) (5.49)

By similar way as reference [45], assuming a solution of the equation (5.37)
as
E“A@f“ds-{—Aef“d‘ ‘(

de Bef“‘“+Bef‘2'“ 5
ds

(5.50)

the following relations are obtained from the equation (5.37)

‘o

¢ O
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S (Bsindg)s lV
bt pien € 301y, 2 || A+ B=0
Sl sin s Sl 4 sin . l))
(52 e e YmWim@%-wm@ﬂAi -
+l}"+ (_ﬂip;e(ﬁsinﬂE)scmq+iyK)}Bi:() 1,:1,2

Y

Since A, and B, are constants, a nontrivial solution exists only if the determi-
nant of the coefficients of the equation (5.51) equals zero.

Sl

Y

B | O O+ ) 0 ig0m0084C,

+1

‘ SR

Sl
+ dm

+4—__

( Sl
4m

e(ﬁsinag)sC +K) ]

sin s Sl sin 3
Pe(“mcuq ppesnoEsC

sin s Sl ’ sin s
poe P EnC Kyt 4 57 pyeFsineE) Cm,,)

Y

Sl

p(’]e(ﬂ sin ﬂE)sC Slz

Lpg * p(')e(ﬁslnoE)s Cmq

(5.52)

41,

S Slz p(r)e(ﬁsinﬂE)s Cmp,)”} ____O

&~ ’e(pslnog)sc K
+ om Do LA+ 4]

Y

When air density, p, is constant, the above equation coincides with the
qudratic form of the characteristic equation (5.39). Thus roots 2, are also
given by the equation (5.42) wherein air density o is a function of distance,
s. While p is small, the effective spin rate Kv may be regarded as large value
so that 2, will be approximated by the equation (4.21). It will be apparent
that the homogeneous solutions are given by substituting the above A; into the
equation (5.50).

Then a particular solution for the forcing functions of the eqution (5.37) is
given, instead of the equations (5.45~46), as

S é{ )j+1f T e { Sl p e(ﬁsinHE)sC .
7=1 2 I ma
% pye Esinems (CLa+ZCLpa%) — 23
(5.53)
T e
T i £
%
—<6M2+z'MY>W}]e— f s s f Pase ]

Y
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de _2\[e7"7 S .
de S [T (1)1 (o gl (O iC,
TT e* (Sl ,
A f l:w L___{ GsinsE)s(C
* )80 m v U4, Pa @
——% Pée‘“‘“”"(CL,JriCm%i)-za-j} (5.54)
T . e i*
_{.j;_(—a,,ﬁwz,,) -
+71——(5MZ+’I:5MY) T/lv;}]e—fzjdsds'e;’;sljds]_

Y

6. CONCLUSION

General equations of motion of the spinning rocket or space vehicle flying
either in vacuum or atmosphere and their simplified solutions have been obtained
under suitable assumptions.

The effect of system parameters on the characteristics of the time response
curve has been precisely analyzed for both open-loop and closed-loop systems.

For feedback system such as space vehicle having specifically automatic attitude
control means, some optimum combinations of parameters, which will minimize
the time required to reach about a destination point or the sweep area swinging
around the point, have been obtained like the equation (4.11), (4.19a, b) or
(4.23). From these equations the following statements have been recognized.

The system damping is directly related to the positive Kb so that K, will be
well to be large. Orthogonal or indirect feedback gain, K,sing,, should satisfy
the relation, K,sing,=K,Kp/2, for quick response, but parallel or direct feed-
back gain, K,cos¢,, may somewhat be selected within positive value arbitrarily.
However, it is not preferable to increase K,cos¢, too much because the spiral
motion will be stressed. For large spin rate, more precisely for large Kp, the
time response characterized by an epicycle in the attitude-angle will be approxi-
mated by a spiral. The damping of this spiral is decided by K,sing,/ Kp in-
stead of K, and the locus of response curve will be approximated as a straight
line if K,cosg, is equal to —K32/4. In this case, therefore, the system has
light damping but a straight or smooth time-response curve.

For a single feedback system having two reaction jets pointed oppositely as
transverse control moment, a corresponding symmetrical system has been obtained,
whose damping, K,, and feedback gain, K,, should be twice, otherwise same as
those of symmetrical case. The approximation is fairly good for normal operat-
ing range.

For re-entry flight of spinning axisymmetrical body analytical solutions of
the motion have been obtained as well as either powered or coasting flight in
atmosphere.

¢ O
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