Institute of Space and Aeronautical Science, University of Tokyo
Report No. 402, June 1966

Influences of Temperature Change and Large
Amplitude on Free Flexural Vibration of
Rectangular Elastic Plates

By

Megumi SUNAKAWA

Summary. The fundamental equations of nonlinear flexural vibration for a rectangular
elastic plate are solved approximately by employing a method of successive approximation,
and the influences of the temperature change and large amplitude on the period of free
vibration are established. Some numerical examples are given for a plate with hinged
and immovable edges, and it is shown that the effects mentioned above are considerably
large and cannot be ignored even when the temperature change is small.

Nomenclature.

2a, 2b,d length, width and thickness of the rectangular plate, respectively.

Cy speed of the longitudinal wave in the plate; c,=E/(1—1%p.

L1 Eq. (3.3), Eqgs. (2.27) and (2.28), Egs. (2.31) and (2.32).

k Eq. (3.23).

t time.

U, v, w displacement components in the middle plane in the z-, Y- and z-
directions, respectively.

20, t) diplacement at the center of the plate.

Ry 2 Eq. (2.16).

2, 2, absolute values of the maximum and minimum non-dimensionaj
amplitudes, respectively.

C, I integral constants; Egs. (2.22) and (2.23), Egs. (2.20) and (2.21).

D flexural modulus of rigidity; D=FEh3/12(1 —»?).

E, G moduli of elasticity and rigidity, respectively.

E total energy of the vibrating system.

K(k) complete elliptical integral of the first kind.

M,, M,, M,, bending and twisting moments after the deformation; Eq. (2.4).
N,, N,, N,, cross-sectional and shearing forces after the deformation; Eq.

(2.4).

T, T* linear and nonlinear periods, respectively.

a, o coefficient of linear thermal expansion and density of the plate
material.

[45]
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46 M. Sunakawa
B, 7 Eqgs. (3.4) and (3.6), and Eq. (3.7).
7, &, ¢ non-dimensional time; Egs. (2.25), (3.1) and (3.4).
0 temperature change from the initial state.
6,6 mean temperature and temperature moment; Eqs. (2.6) and (2.7).
A aspect ratio of the rectangular plate.
v ' Poisson’s ratio.
X Airy’s stress function.
0, 0* linear and nonlinear circular frequencies, respectively.
v r operators,
,_ O 0* (_ 0 o o*
A I v R T v AN

Subscripts ‘‘z’’ and ‘‘y’’ denote the partial differentiation with respect to z and
Y, respectively.

Subscripts ¢*S’’ and <“C’’ specify the quantity for the cases of the simply sup-
ported and clamped edge conditions, respectively.

1. INTRODUCTION

The vibration characteristics of thin plates and shells, subjected to the change
in temperature, is one of the very important problems to be analyzed in checking
the aeroelastic performance of high-speed flying vehicles [/], [2], and must be
examined carefully in the design of structural components.

The period of the lateral vibration of rods and plates is influenced by many
factors such as the internal friction of material, aerodynamic force, rotary inertia
and amplitude [3]~[7]]. The influences of these factors, except that of amplitude,
can be analyzed in the problem of the small oscillation, that is in the scope of the
linear theory. Many vibrations which we experience usually and deal with as
infinitesimal ones are frequently accompanied by the finite amplitude, and it
seems to be important to study the effect of the large amplitude on the vibration
characteristics as precisely as possible.

The problems of thermal stress and vibration of structural components and
structures are growing up to be of urgent importance in connection with the
development of missiles and artificial satellites. The thermal deformation and
stress of structural components under the transient heating and cooling conditions
have been analyzed by the present author and others [/2]~[8]. For the vibration
phenomena due to the thermal shock, there exist solutions by Mura [/9], Boley
and others [20]~[23], but they are limited to the linear problems. In the problems
of the nonlinear vibrations, it is difficult to separate the spatial variables from the
time variable and the meaning of the normal mode which is powerful means in
solving the linear vibration problems becomes ambiguous, and it seems, generally
speaking, impossible to solve exactly the problems. Many methods of approximate
solution such as a method of successive approximation, a perturbation method,
the Galerkin method and an energy method have then been established.
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In the present paper, the fundamental equations of nonlinear flexural vibration
for a rectangular elastic plate are solved approximately by employing a method
of successive approximation, and the influences of the temperature change and
large amplitude on the period of free vibration are established. Some numerical
examples are given for a plate with hinged and immovable edges, and it is shown
that the effects mentioned above are considerably large and cannot be ignored
even when the temperature change is small. The present work will form a link in
the chain of the research of the above-mentioned problems and, on the other hand,
aims at to make some preparations for analyses on the nonlinear transient phenom-
ena of vibration of structural components subjected to the thermal shock.

2. FUNDAMENTAL EQUATIONS

The fundamental equations of motion of a rectangular plate, subjected to the
change in temperature, are given as follows, where the effects of the internal friction,
aerodynamic force and rotary inertia are neglected:

y V4
2b ~J1 !Z:
~ 22—
I~ 2=0
E Z
| j
0 20 x o Zo%0
(a) (b)
F16. 1. Rectangular elastic plate.
Ny 4 Ny g O 2.1)
0x 0y ot?
oN,, oN, d 0*v 2.9
e oy e (2-2)
0°M o*M 0*M, 0 ( aw) 8( aw)
1 2 12 ) — [N,/ |+ (N, ZZ
o oxdy + oy* o Vs ay \ oy
,f?_.(N _aﬁ) ,a_(N 3_w>= a9 2.3
+ ax \" ' 9y +ay Bz ) TP ae 2-3)
where
(e b )l )] B
Ty L\t W\t ) |y O
N [ .
N2—" (1___”2) vy‘l’ 2 wy +U uz+ 2 x (l——-u) ?
N,=Gdu,+v,+w,w,)= Ed—(u +v.+w,w,),
12 v z zy 2(1—!—1)) Y z z%y f (24)
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M,=—Dw,,+w,,) — Ed'a g,
(1—-v)
M,=—D(w,,+vw,,) — Ed'a 6,
(1—)
M,=—D(1—-vw,,,
p=__FEd 2.5)
12(1—v7)
— 1 d/2
0=~<S 0z, y, 2)dz, 2.6)
dJ-ar
-~ 1 d/2
0= ——«S 20(x, ¥, 2)dz. 2.7
dz Y-an

Boundary conditions are given for the cases of simply supported and clamped
edges, respectively, as
for the case of simply supported edge condition,

at x:O, 2a
’LU:O,
D(w,.+vw,,)+ Ede 5_, (2.8.1)
(1—v)
at y=0, 2b
w:o,
D(w,,+vw,;)+ Ed'a 5_o (2.8.2)
(1—v)
for the case of clamped edge condition,
at x:o, 2a
w=.=0, 2.9.1)
at y=0, 2b
w=w,=0. 2.9.2)

Neglecting the inertia in the plate-plane in accordance with the assumption that
the nonlinearity is not so large, Eqgs. (2.1) and (2.2) are reduced to

N, , N _g, (2.12)
ox oy
0Ny, | 9N, g (2.2a)
ox oy
and Airy’s stress function can be introduced as
Moty e, ey, (2.10)

Using Egs. (2.4) and (2.10), the equation of motion in the z-direction is
reduced to
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Eda _,; o
DF 0=ty ee— o+ Rasll) — “) 76— od "(Z; R EY
—V

In this process, the so-called buoyancy terms in Eq. (2.3) vanish and it is due to
the above assumption that the nonlinearity is not so large.
The equation of compatibility is given as

Pt=Ew,, —w,,w,,) —Eap*d. (2.12)

Then, the problem is reduced to how to solve the simultaneous partial differential
equations (2.11) and (2.12), and the normal displacement at the center of plate
and the period or circular frequency of vibration of the plate under the change in
temperature can be obtained.

The temperature distribution over the plate is assumed to be symmetrical with
respect to the center of plate and is given as

02225” cos ¥ cos 7Y (t, 7=0, 2, 4,- - -even), (2.13)
T 7 2a 2b

§=1310,,sin 2% sin 9% (p, g=1,3,5,---0dd).  (2.14)
» g 2a 2b

Eq. (2.14) will become more general expression if the term of 6, (temperature
moment at the edges) is added in the right-hand side, and the following process
of solution can be applied for that case in the same way as in the present paper.
However, the addition of 6, does not introduce the new phenomena in the present
problem, but only results in complicating the calculation, and so the term of 6, is
neglected here, assuming that there exists no temperature gradient through the
thickness at the edges.

In the present paper, the undamped free vibration of the rectangular plate sub-
jected to the change in temperature is analyzed. The nonlinear terms in the funda-
mental equations express the effects of the finite displacement due to the temperature
change and of the finite vibration. Since it seems to be natural to expect that there
exists no remarkable difference between the wave form of the present nonlinear
vibration and that of the small vibration [3], the lowest mode of vibration is assumed
to be the same as the deflection form due to the temperature change only, and the
normal displacement of the plate at any time is assumed as Eq. (2.15) in the sum
of the displacement due to the temperature change and the amplitude of vibration.

w(zx, ¥;0, t)=2(6, Hhw,(x, v), (2.15)
where
0D —2,(0) + (B0 smem .16
wg(x, y)=sin —;t—ax— sin izr% , (2.17)
we(, y):l(l—cosﬂ)(l-cosﬂ). (2.18)
4 a b
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Equations (2.17) and (2.18) satisfy the boundary conditions, Egs. (2.8) and
(2.9), respectively. If 01 which has been neglected in Eq. (2.14) is taken into
consideration, Eq. (2.17) does not satisfy completely Eq. (2.8) and it is necessary
to add the another terms which come from the complementary solution of F*ws=0
accompanied by the integral constants determined so as to satisfy the boundary
conditions, Eq. (2.8) [13]. For the case of clamped edges, the solution is not
related to 5@ [14].

Substituting Eqs. (2.13) and (2.15) into Eq. (2.12) and integrating the resulting
equation, the stress function is given as

x=%01x2+% Coyr+1, (2.19)

where

32 a a b 16 a
2(3)
+ (2) "cos 27Y ]— b cos T¥ cos Y
a b [1 ( a )2]’ a b
%

5
+ ba, =5 0S 221: cos rtby}
+(3)]
[+ (5
+Fa {i} Ouy cos EZ + “Z o, cos 1Y
i=2 (lzi)z 2a j=2 (_:7_75_\)2 2b
a 2
+ ii b, cos 2 cos iy } (2.21)
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Integral constants, C, and C,, are determined using the conditions on diplacements
in the plate plane. Where v=0 at x=0, 2¢ and v=0 at y=0, 2b, C, and C, are
determined as

_ Eaéoo n*lz? v 1
Cis=— e
(1—v) 32(1-» PEIY
(2.22)
__ Eadd,, Ezr (1 | v
Cos=— + — -—)
(1—y)  32(1—»®) \a*  b?
— E'a@oo 3r?Ez? ( v )
BT (1—y) 128 1—1)\ @
(2.23)
c. —_ Baby , 3z'Ez (_1_ v )
T (1—v)  128(1—1?) b?

C: and C; can be easily obtained approximately even if displacements in the plate
plane at edges are permitted [24].

The equation of vibration is then derived. By expressing each of the variables
in Eq. (2.11) by the sum of two components, that is, the one corresponding to the
deflection state due to the temperature change only and the other corresponding
to the vibration state, and applying the Galerkin method to Eq. (2.11) after
eliminating the former part the following equation is finally obtained.

Zz + (fi+ 3f2h) 2+ 3f12,2° + f7* =0, (2.24)
where
- Jclbz aby ! (21))2 «/ t, (2.25)
ci:]ﬁ%}; ’ (2.26)
f;.s=7r4(l+-}12_) —12(1 4 ) 2? (2;> [(1+—Zl—2—>9—00 \
-5+ L @)
s 952 )]

, 167:*( 2 3 )
=27 (3
fro=—3(3+ 5+

S (B o1

—(1—) {[_21_ (88, —By) + (48,0 —b,y) ]
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!«.
e o e Be )] L @28
(1427 (14427 @4+
¢ a2 [ (35—17v?) 1 v
Fro=de [ S L) 2
2
+~2—(1—~—”~){ﬂ4-—~+ L4 ! ]}
9 (1427 (14422 (4+2%)?
a
A= 2.2
5 (2.29)
2,(0) 1s the so-called “‘static’’ solution and can be obtained from Eq. (2.30).
fizo+fizi=9, (2.30)
where
2 . \
g =120+ (14— ) (22 Vi, (2.31) v @
' )
| 4096 2b \? (p*+2°¢) 5
g,=3096 (__) g . 2.32
¢ 3 (1+) d g:ma 1pq(p*—4)(q*— 4) AUpq ( )
The solutions of Eq. (2.30) have already been given by the present au-
thor [13], [14], and Eq. (2.24) is solved in the following chapter.
3. ANALYTICAL SOLUTIONS
By the use of the following transformation,
§=If+3f (3-1)
Eq. (2.24) is reduced to
dz | -, = S5 _
B TEHLE =0, (3.2)
where &qﬂ ‘
fzz*‘ 3f;zo -,
fit 35 5.3
fome i
fi+3f:z

The solution of Eq. (3.2) can be obtained using the elliptical function, but it is
too complicated to be used in examining physically the problem even though it
is complete in the mathematical sense, so a method of successive approxima-
tion [25] is used to solve Eq. (3.2) in the present analysis.

Introducing the new independent variable ¢ as

Eq. (3.2) is reduced to

s W
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(1+p)z+z2=—f,2*—f,2°, (3.5)

[ A4

where means the differentiation with respect to {. [Eq. (3.5) is the equation
of motion with respect to the vertical displacement, Z, which has the maximum
amplitude, 2, and the minimum amplitude, —z,. Then, 5 and Z are expanded in
the power series of z,, that is,

B:_ﬁxzx‘*'ﬂng_,Bszg‘*‘ﬂﬁ;*' Ty (3.6)
2= —n 0z, + 9 (02— (D)2 + 7. (D2 — - - - - (3.7)

Substituting Egs. (3.6) and (3.7) into Eq. (3.5), and putting the terms of
the same order with respect to z, in the both sides to be equal with each other,
the following equations are obtained.

n+7=0, (3.8.1)
notn=—F—Farl (3.8.2)
D3+ 0= —Baipy — Paipa— 2f s — Fai (3.8.3)
Da 1= — Byl — Bana— Pu7s — F2(2mms +93) — 3fsmins (3.8.4)
.’75 + 95 = —Bui)s — Bs72 — B2z — B

~2f,(qims+12ms) — 3F s (ins + muma) 5 (3.8.5)

.......................

Since the free vibration is considered here, the initial conditions to be applied
to z’s are set as

n©@)=1, 70)=20)=70=----=0, } (3.9)
71(0)=7,(0)=7s(0)=- - - =0.
Considering Eqgs. (3.9), Eq. (3.8.1) is solved as
7y, =cos (. (3.10)
Using Eq. (3.10), Eq. (3.8.2) is reduced to
572+ 72 = B,COS C—_;_f2(1+ cos 20) . (3.11)

To eliminate the secular term from the solution of Eq. (3.11), 8, must be
B,=0. (3.12)
Substituting Eq. (3.12) into Eq. (3.11) and satisfying the conditions, Egs. (3.9),

the following solution for 7, is obtained.

,72:__;“ f2+%f2cos §+—é—fzcos 2. (3.13)

Solving successively Eqgs. (3.8) in the same way, the following equations
are obtained.
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n=cos,
1

== fz‘*‘ifz cos g+l f, cos 2¢,

773:—’1‘.& (

ff) (2o A=

8 432

- mfzfa)cos 20+ (h— fi+

fzfa)cos 4z,

25 29 f) ( 7103 fi_ 1607
: 20736 ' 2304
23

mf)cosH(mfz

fzfa) cos 2L+ (

384 ifs = —8f§)C°S3C+(

648

fit+ fifs +

cos S¢,
+ ( 20736 2304 >

1024 Toaq T )

.......................

2+ ffs,

235

185 3
g it fifs =455 1

Using Egs. (3.14), Eq. (3.7) is reduced to
- 1 1 25 21
z:[—3f222+~3—f§z§— (ng_§f2f3)z;
25 2
=S AL S

1, (29 o1 ) (119
+[ e e b T L s

f )cos C—i——éfﬁcos 2L

~3§f2f3)cos ¢

fzfa)cos 3¢

f2fd

fit s fifs)cos 4

o (3.14)

(3.15)

X7

%fgfs) 2
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? |
7103 ., 1607 ) ]
. 4 2z ...« lcos
(20736 vk 1024 fi) s+ :
' 1
| ha—ghat (2 p-Lis)e
( 8 - fzfs) Z3+ - -]cos 2L
27
= (g At )t (o it o fofa)2s
48 32
(e fit gy Bifom g ) 4 Joos 3¢
576 384 128
1 1
| (g5 i+ 5 Fofs) o= (g fi+ s ) - Joos 4
b [ ( 2 2)25 ----]cosS
® * 50736 1+ 2304”3 1024f a :
¢ T , (3.16)
Equation (3.16) is the solution of Eq. (3.5), where the amplitude of vibration
is expressed as the function of z, and {. In the right-hand side of Eq. (3.16),
the constant term is composed of the power series which starts by 2} and the
coefficient of cos n{ is the power series which starts by 2;. Then, for the case of
infinitesimal value of 2z,, the constant term and the higher harmonic terms in
Eq. (3.16) can be neglected except only the fundamental harmonic term which
is the solution of the linear theory.
Eq. (3.16) is the periodic function with respect to { with the period, 2z.
Then, using Egs. (3.4), (3.6) and (3.15); the period of the motion with respect
to § is expressed as
5 3 5 1
T*(S):Zﬂ[l"r‘( B 2—§f3) 23— (”i‘s— fg"‘"z f2f3>22
: 385 ., 275 , 2) ]
’— Za— - | 3.17
] f +(576f 193 1+/sF 256f ’ G-17)

Or, using Eqgs. (3.1) and (2.25), the following equation is obtained.
T*(t) = 2520 JPd [1+(

Nfi+3f2
—(Zr-ghp)a+ (3 1= pr,

57
o g) z;--.--]. | (3.18)

12 fi= _fa)z2

Equations (3.16) and (3.18) present the nonlinear vibration of rectangular
plates subjected to the change in temperature. The period is the function of
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amplitude, which is the characteristics of the nonlinear vibration, and changes
with the thermal stress and deflection due to the temperature change.

Next, the relation between the maximum and minimum values of amplitude,
z, and -z,, is given.

Applying the so-called energy integral to Eq. (3.2), the following equation
is obtained.

dz )2 - 2 .- 1 .-
——| +2" +=f,2°+ —f,z2*=2E =const, 3.19
() vz +2rmt . (3.19)
where, E is the total energy of the vibrating system (conservative system). Using
the condition, dz/d&é=0 at Z2=2,, —2,, Eq. (3.19) is reduced to

s 2 . . 2 1 N
71 t=fa+ 1) =4 1= fizu+ o fo2) =28 (3.20)

#, and 2, can be determined independently whenever E is given in accordance
with the special initial conditions. For the case of arbitrary free vibration such
as one presented in the present paper, if one of 2, or z, is given, the other can
be determined through Egs. (3.20).

For the case where there exists no vertical displacement due to the temperature
change, Eq. (3.2) is reduced to Eq. (3.21) because of f,=0 according to z,=0
in Eq. (2.24).

dz

i HfE+fE=0. (3.21)

Through the energy integral, Eq. (3.21) is reduced to
S Z dz
T=\| == =
o 2E—fiz°—(f,29)]2

=|’ dp
o Nfi+ Fizi(1—cos'/2)

1 S
- o 3.22
Jfri-fazg SOJl—kzcosﬁo ( )

where

O i N £\
‘ C2f+fE) 2 (1+ f;zg) : (3.23)

Then, the period of vibration is given as
-__wi__j‘” dp
Fi+fa b T=Fcos' o

4
~ir e e (3.24

T*(z)

or

¢t o

Ve

@
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’
4(2b)* od
T*(t)=—=L_ [P K(k), (3.25
Tt N )
where, K (k) is the complete elliptical integral of the first kind. It is natural that
the asymptotic expansion of Eq. (3.25) coincides with Eq. (3.18) where z, is
put to be equal to zero.
4. NUMERICAL EXAMPLES
Influences of the temperature change and large amplitude on the free vibration
of rectangular elastic plates have been given analytically in the preceding chapter,
and they are explained concretely by some numerical examples in this chapter.
It is assumed that the rectangular plate is simply supported at four edges and
. subjected to the following change in temperature.
0=6=0sin "% sin Y |
< 2a 2b (4.1)

~

6=0, ie, g=0.

The plate buckles at the critical temperature, 6,,, and so its vibration behavior
is studied separately for each of the cases of before and after the thermal buckling.
The plate will start to deflect from the beginning of heating when 60, and its
behavior can be dealt with in the same way as for the case of 4.1 or 4.2 after the
temperature settles down.

Using Eq. (2.30) with Egs. (4.1), the critical temperature, ©,, and the
deflection at the center of the plate after buckling are obtained and shown in Fig. 2.
The change of the critical temperature, 6., with aspect ratio, 1 is shown in Fig. 3,
where Poisson’s ratio is assumed to be v=1/3.

®
o2
N 3r
S 0=@sin’§"g-sin12’-g-
S 2f
S
o
I -
1 1 1 | 1 ! O 1 I 1 1 1
02 o04 06 08 10 I2 ! 2 3 4 5 . 6
Zo
Fic. 2. Relation between temperature rise and FIG. 3. Variation of thermal bug:klin'g co-
deflection at the center of plate, simply efficient with aspect ratio, simply
supported edges. supported edges.
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4.1. THE CASE OF 6<6,,(z,=0).

The change of the period with the amplitude and temperature is given by
Eq. (3.18) (putting 2,=0) or Eq. (3.25) and shown in Figs. 4 a, b and c, inclu-
sively. It can be seen from these figures that the period changes remarkably with the
increase of amplitude and the change in temperature. It is natural that Fig. 4a

Lo
08
—~
©
A
' ) N
2 ! 06 A t
== 15 ! ¥
2 ¥ ; °
- 3 I3
5 15 ;
[¢e]
04l (2b/df2@=0 04F (2bMf20=05 04 2
(2b/df2@=10 3
! ! I 5
1L ! L ! il L 1 1 1 ! ! 1 1 1 ! ] [l
0 04 08 12 ) 04 08 2 0 04 08 12
Z1=2z 2i=2; 2i=2;
(a) (b) {c)

Fic. 4. Influence of large amplitude on period of vibration of rectangular plates,
simply supported edges.

(6=0) coincides with the result by Chu and Herrmann [9]. The change of the

period with aspect ratio of rectangular plates, 2 is shown in Fig. 5. This figure

indicates that the larger the amplitude and the temperature change become, the

larger the difference between the solutions by the linear and the nonlinear theory

will be. For the case of 2=1, the change of the circular frequency with the tempera- -
ture is shown in Fig. 6 using the amplitude as a parameter. Figure 6 shows the U
characteristics similar to that of the vibration of the bar subjected to the axial force,

and the temperature where the restoring force vanishes, that is =0 in the linear

solution, coincides with the thermal buckling temperature of the plate.

4.2. THE CASE OF 6>6,,(z,%0).

Using the values of z,, which can be obtained from Eq. (2.30), in Eq. (3.18),
the change of the circular frequency with the amplitude and temperature is obtained
and shown in Fig. 6 for the case of 2z=1. The circular frequency increases with
the increase of temperature and decreases with the increase of amplitude where
the temperature is constant, and this characteristics is opposed to that of the
prebuckling state.

The relation between the maximum amplitude, z, and the minimum amplitude,

This document is provided by JAXA.



Influences of Temperature Change and Large Amplitude on Vibration of Plates.

59

18] L
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= 20r S T emmmmmmmes T o
/ II/////’/ NL.
ey
1z
;;//
- /4 .
1.5 p L : Linear Theory (21=2:=0)
4 NL : Non-Linear Theory (2,=2:=0.5)
L 1 1 1 i
W23 2 5 &% V &
A
Fi6. 5. Variation of period of vibration of heated rectangular
plates with aspect ratio, simply supported edges.

25 110
320 18
N3 - Zo
3 Sy

1.5 3 406

@
©
1.0 5 H04
S
0.5 102
I L ! 1 1 (@)
OO / 212490) 3 4 5 6 7
(2b/dfa®

Fic. 6. Variation of frequency of vibration of plate with temper-
ature rise and large amplitude, simply supported edges,

A

=1.

— 2, 1s calculated through Eq. (3.20) and shown in Fig. 7. This curve is symmetrical
with respect to —=z,/2,=—1 which is the initial unstrained state, and this is
natural because the direction of the deflection due to buckling is not restricted
toward any of upper or lower side. The half of the curve shown by broken line is
used for the case where the plate buckles toward the lower side.

In Fig. 6, there exists the temperature range where the nonlinear free vibration
cannot occur depending on the value of amplitude, and it seems that this range
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F16. 7. Relation between z; and z, after buckling, simply sup-

ported edges, A=1.

corresponds to the amplitude range, —=z,/2,<<—1 in Fig. 7. That is to say,
—2,/2,< —1 means that the absolute value of the minimum amplitude is larger
than the deflection caused by the heating (buckling), and the snap-through takes
place if the assumed initial deflection (—=z., the minimum amplitude) is tried to
be set. The maximum absolute value of the minimum amplitude, that is, 2,=z,
corresponds to the maximum value of amplitude, z,=0.414z,.

By the aid of Fig. 7, Fig. 6 is transformed into Fig. 8. It also is shown in Fig. 8
that the circular frequency of the vibration decreases with the temperature rise and
reaches the minimum at the buckling temperature and thereafter it increases with
the increase of temperature, and that the effect of amplitude on the vibration is

(2b/d)a@:
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Fic. 8. Variation of frequency of vibration of plate with temperature rise
and large amplitude, simply supported edges, 1=1.
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very important. The points z,’s, where the curves for & >6,, intersect the abscissa,
coincide with the respective z,’s corresponding to the postbuckling displacements
at each of the temperatures.

The above explanation can be given for the case where the initial condition of
the free vibration of plate is given by the minimum value of amplitude, —z,.. If the
initial condition is given by the maximum value of amplitude, z,, the another type
of vibration accompanied by the snap-through phenomenon can also exist mathe-
matically. That is to say, if the initial condition of the free vibration, 2, larger than
2,=0.414z, where the total energy of the system is equal to the energy correspond-
ing to —z,/2,=—1 (Fig. 7) is set, the free vibration where the neutral point of
the upper and lower amplitudes is —z, (initial unstrained state) could be taken
place, and it can also be shown by the use of the phase plane.

In the present paper, the governing equation of the free vibration, Eq. (2.24)
has been derived based on the assumption that the nonlinearity is not so large and
so the inertia in the plate plane can be neglected and hence buoyancy terms in
the equilibrium equation in the z-direction have been eliminated. Moreover, the
stress state in the latter case mentioned above is not necessarily assured to be in
the elastic range of the material. So, the latter case with larger amplitude has to be
analyzed more carefully than the case studied in the present paper and its analysis
will be given separately later.

5. CONCLUSIONS

The influences of the temperature change and large amplitude on the free flexural
vibration of rectangular plates have been studied. It has been shown that the
vibration characteristics of plates are affected remarkably by the in-plane stress
and deflection of plates induced by the temberature change and that this tendency
is conspicuous where the finite amplitude is taken into consideration especially
for the case of larger change in temperature.

It is well known that many vibration problems are dealt with as small oscillations
for convenience’ sake of analysis and frequently it is sufficiently suitable to the
practical understanding of the problems. However, in some special cases such as
problems in the aerothermoelasticity, it seems that the linear theory is not any more
sufficient tool to explain the phenomena and the problems have to be analyzed as
“in the large”, that is the nonlinear ones.

In the present paper, the vibration of plates at the equilibrium state of tempera-
ture after being changed has been analyzed, and so the temperature change during
the vibration has not been considered. For the vibration induced by the thermal
shock it is impossible to assume the deflection as in Eq. (2.16) and Eq. (2.11) has
to be solved directly. And, the problem has been analyzed only for the case of the
lowest order of vibration mode, but the vibrations of higher order of mode can be
examined in the same way.

Some experiments [26] had been carried out to check the present analysis and
a good agreement between the theoretical and experimental results was seen, and
the present analysis has been developed to cover the cases with initial imperfections.
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They will be published later on.

The author would like to express his sincere thanks to Professor Uemura at the
Institute of Space and Aeronautical Science, University of Tokyo, for his careful
discussions on the present analysis.
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