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Supersonic Flow Past Pointed Bodies of Revolution
at Small Angles of Attack

By

Keiichi KARASHIMA and Kenjiro IWASAKI*

Summary. A general method of theoretical approach to supersonic flow past lifting
bodies of revolution with arbitrary geometry is presented assuming that the flow behind
an attached shock wave consists of a basic non-lifting field upon which is superimposed
. a perturbation field due to small angles of attack and is particularly applied to circular-
cones as a simple example.

It is shown that, although the nonlinearity in fundamental equations predicting the
basic field has a predominant effect on aerodynamic characteristics of the body, a linear
approximation of perturbation field with respect to angle of attack still seems to be
available even if the body is not so slender. Experimental results also confirm this.

SYMBoOLS
, 7, 0) cylindrical coordinates system
(7, ¢, ) polar coordinates system
a local velocity vector
(u, v, w) components of local velocity vector in cylindrical coordinates system
(%, v, w) components of local velocity vector in polar coordinates system
D pressure
o density
7 unit vector normal to shock wave surface
. (z,r,¢)  transformed coordinates system

(u, v, w) reduced components of local velocity vector
P reduced pressure

) reduced density

77 sonic speed

c limiting speed

M free stream Mach number

@ angle of attack

Bs initial shock wave angle at zero angle of attack
7 ratio of specific heats
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~ . .
0 semi-vertex angle of cone
& conical variable defined by 7/x
< matching parameter of surface entropy
K parameter corresponding to deviation of shock wave axis from body
axis

& component of stream function in basic conical field
F© density function in basic conical field
g(f) shape functions of shock wave
h(x)
T tan 8,
w(x, r, §) entropy function defined by p/p’
S@, 7, #) function indicating shock wave surface
S entropy
e, specific heat at constant volume ) .
R gas constant
Cn, slope of normal force coefficient at @ =0° »
Cm, slope of pitching-moment coefficient at a = 0°
Cn normal force coefficient
Cx axial force coefficient
Cm pitching-moment coefficient
Cp pressure coefficient
Ze. p location of center of pressure

SUBSCRIPTS:
0 value in basic field
1 value in perturbation field

value in free stream

value at shock wave

value at outer edge of vortical layer

value at cone surface

tangential component to shock wave surface
normal component to shock wave surface

Y derivative with respect to argument

8

AR T ®»

1. INTRODUCTION

Among many analytical approaches which have been already developed for
lifting bodies of revolution at supersonic speeds, the linearized theory seems to
be one of the most well-refined and convenient for many scientific and engineering
interests. However, being based upon an assumption of small perturbation, the
linearized theory is known to be inaccurate when it is applied to such thick bodies
of practical interest, for which the essential feature of flow is nonlinear.

This circumstance required more rigorous methods of analytical approach and

»
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several nonlinear theories applied to circular-cones having small angles of attack
have been developed by taking entropy change into consideration, since the flow
past circular-cones has a simple geometry and a similar exact solution [/ ] at zero
angle of attack has already been obtained. For example, by means of the develop-
ment proposed by Stone [2], values of flow properties around circular-cones at an
angle of attack were tabulated by Kopal [3].

However, Ferri [4] pointed out that the existence of a singular point at the cone
surface is neglected in references [2] and [3] and, consequently, an erroneous
distribution of entropy at the cone surface is obtained. He tried to treat this
singular point by introducing a concept of a vortical layer next to the cone surface
and showed that the Kopal’s tables can be used if a simple correction is introduced.
Later, Sims [5] presented a detailed chart of tables of flow properties around right
circular-cones at small angles of attack. The results contained in these tables were
computed in the same basic manner as those of reference [3] with the correct
velocity normal to meridian planes.

Ferri further presented a series of papers [6], [7], [8] concerning a general
method of numerical approach to supersonic flow past lifting bodies of revolution.
This method is developed by use of an intrinsic coordinates system and is called
as ‘linearized characteristics method’. Recently, Rakich [9] obtained numerical
solutions of supersonic flow past blunt cones and ogival bodies of revolution at
small angles of attack by using the linearized characteristics method to continue the
blunt body solutions proposed by Van Dyke and Gordon [10] to supersonic region.

These methods are based upon an assumption that the physical properties in flow
field can be developed in Fourier series in terms of the angle of attack. From
experimental point of view, this assumption seems to be reasonable for small angles
attack even in case that the body is comparatively thick.

In this paper, a general method of analytical approach to supersonic flow past
pointed bodies of revolution at small angles of attack. Although the same assump-
tion as was made in existing works is used in development of flow properties, the
present approach has a different procedure for determining the flow around pointed
bodies at small angles of attack in a sense that it can be obtained as a result of an
extension of the analytical approach to axially symmetric supersonic flows proposed
by Karashima [//] to lifting problems. The values obtained in this way are com-
pared with experimental results at several values of angle of attack.

2. FUNDAMENTAL EQUATIONS

Let the origin of a cylindrical coordinates system (Z, 7, §) be taken at the vertex
of the body, Z-axis being aligned with the body axis (see Fig. 1a). The continuity
equation, three momentum equations and entropy equation are expressed, respec-
tively, as

(AP + @R, + (pW),=0, 2.1a)
Wiy + 07 o+ T+ L F. =0, 2.1b)
7 o
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____ Shock wave axis

a/’(‘/o X

Fic. la. Cylindrical coordinates system.

7o, +55, 4+ 2 5,- 2+ 15 —o, 2.1¢)
T T P
Wy + 5w, + 2w+ 2% L 5,0, 2.1d)
T T 1‘p
W o
Vw; +V0-+—w0,=0, w=p/p’. (2.1e)
r

Introducing a transformation of variable such as

=z, 7‘:—1—17, r=tan §,, 2.2)
T

TG {a+cu@, ), d=1+—2

>

GG+ 1)M:?
V=q.tv(x, 7, 0), .
W=qurw(®, 1, 0), SN CE)
p=Pup(x, 7, 0),
P=D.yM’’p(, 1, 0),
and rewriting Eq. (2.1), then, yields
{ro@+c*u)} ; + (rpv), + (pw),=0, (2.42)
@+ T uu, +vu,+.’§_ up+ Lp.=0, (2.4b)
o
2
@+ w)v,+ o0, +-w—vﬁ——u—)—+r}~p,.:—_0, (2.4¢)
r r o
@+ uWyw, +ow, +—w—- w,+ﬂ+—1— p,=0, (2.44d)
r T T
(d+r2u)w$+'vw.,+~1£—w(,:'0, w=p/p’. (2.4¢)
r

This document is provided by JAXA.
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If the body is at a small angle of attack, flow field down-stream of an attached
shock wave can be considered to consist of a basic field corresponding to zero angle
of attack upon which is superimposed a perturbation field due to the incidence.
Therefore, it will be reasonable to assume that physical properties in the disturbed
field have the forms, as a first-order approximation, as

ux, r, ) =u,(x, r)+au,(x, r)sin g,

v, r, ) =v,(x, )+ av,(z, r)sinf, ?
w(x, 7, ) =aw,(x, 1) cos @, 2.5)
p(x, v, 0)=p(x, )+ ap,(x, r) sin 4, j'

P, 7, ) =po(x, )+ ap,(x, r) sin 6.

Substitution of Eq. (2.5) into Eq. (2.4) and equating like powers of a yields
. simuitaneous equations concerning the basic field and perturbation field, respec-

tively. The equations for the basic field can be written as
R
{T«OO(a + Tzuo)} 2t (TPo'Uo),-Z 0,

1 pO.L':O’

pO {

) - (2.6)

Po

(a’+72u0)war+vowor"_‘09 O)OZpO/AO(T)'

@+ T°U) U+ VU, +

(&_l_z-z,lto)vol—*_ vaOT + pOT:O’

It is clear that Eq. (2.6) is the fundamental equations for axially symmetric flow
and the solution can be obtained by use of the method proposed by Karashima [71].
The simultaneous equations for perturbation field of the first-order are given as

{7"91(& + Tzuo)} -t (Tpoux)z + (7”.01'00)7- + (Tpovl)r — PW, =0,

(&+ Tzuo)ulx + Tgun.tul + vou’lr + u’orvl + —’p‘_r —"w?)i - O 3
Lo 2o

. (&+T2u())/vl.r+z-2,val"ul+v0’vlr+’vorvl+_&__£iz:'ﬁt‘::o’
O Do
2.7)

—\/

@+ cu)w,, + vaw,, + 2% 4 P o,
r 70,

(a‘ + Tzu:))wlz + T?wm'ul + /Uowlr + (l),,r'Ul = O ’

o, =P TPy

Pf) p6+l
3. GENERALIZED BOUNDARY CONDITIONS

The conditions across an attached shock wave can be divided into two parts.
The one is conservation of tangential velocity component and the another is jump
conditions of flow properties normal to the shock wave surface. If the shock wave
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surface is given by the equation
S@&, 7, 6)=0, 3.1)

then, generalized shock wave conditions can be written as
(tangential condition)

G, =4, 3.2)
(normal conditions)
- 1 2
on =7 Qps> 3.3
q 74 (3.3)
m 2
_ o gp(ZE)
fs ey ﬁ._,m 5 .:-F-, (3_4)
fe (r—l)( q'”) +2
— ST
By B (R, (3.5)
Deo r+1 e,
where unit vector normal to shock wave surface, #, is defined by the equation
n=_rS (3.6)
7S]
By use of relations
G, =AXPXH=g—n(7H-q), } 3.7
zjn = ﬁm' ?I) ’
velocity vector just downstream of shock wave can be expressed as
as = @;; + ans
=Go—(1—D)7(1G.) - 3.8)
On the other hand, since velocity components in free stream are given by
U,.=(q.COSa,
V.,=¢q,Sinasing,
— q_ . “ 3.9
W,=4q, sin a cos b,
Zjuo = I aml 3

velocity components just behind the shock wave can be obtained by use of Egs.
(3.8) and (3.9) as

f‘ =COs a~(1—F)E§3,

qm

s _gin o sin 0—(1—1)3Ss, (3.10)
d.

RN |
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&:sinacosﬁ—(l~1“)e‘é§0, J
9w r
where
5:—; S}cos a+§;sinasin0+:l—§asinacosa}. 3.11)
PSP 7

If the first-order shock wave shape is assumed to have a form
7. =9(X)+ ah(Z) sin 4, 3.12)

then, the shock wave conditions are given, neglecting the terms of order of a2, as

—?Z: :1+ 2 _ 2912
% G+DM G+ D(I+g7)
— asing?9 AM9"” —(1+g")} [ 2K —(1+9") 4 2{M—(1+g"™)} ]
G+DMg*(1+9™) 1+g" Mg —(1+g) 1

"_’a: 2 g’ (1_ 1+gm)
9. 7+1 1+9" Mg
+ asinﬁ[l— 2{M*g"—(1+ ¢"} { (A=)l —(1+ g™
r+DMg" 1+ g™ 1497
+ 2{W =1 +g™)} ]
M2g/2___(1+glz)

_@:acoso[l—fi 29'{M*g" —(1+¢")} ] (3.13)
9 9 G+DMg”(1+9")

o G+ DMg" [1+4asin6’ W—(1+9") |

o (=DM'9"+2(1+ g 9H{G—DM* 9" +2(1+ 9"}

o G+DA+9") +Dg'(1+4g")?

P _ M9 —(G=D(A+9") | 4 Mg (I — (149"} .

3

It remains to discuss the condition on body surface. If the body surface is given
by the equation

B, 7)=0, (3.14)
tangency condition along the body surface is expressed as
G-grad B=0,
which can be interpretted into
V,=—u,B;/B; at B=0, (3.15)

where subscript b denotes conditions on body surface.
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4. APPLICATION TO CIRCULAR-CONES

As a simple example, consider a supersonic flow past a circular-cone at small
angles of attack. In this case, it has been already found that the flow field can be
assumed to be conical without axial symmetry. Therefore, the shock wave shape
can be assumed to have a simple form

7,=12(1 + rkasinf), “4.1)

where £ is an unknown constant to be determined from given boundary conditions.
« has a physical meaning that shock wave axis deviates from body axis due to an
angle of attack and the deviation is proportional to ax. Since the basic field is
conical with axial symmetry and isentropic, an exact similar solution exists.
Detailed discussion on this similar solution appropriate to basic conical field was
made by Karashima [//] in a different sense from Taylor-Maccoll’s conical
theory [I] by introducing a conical variable §, a stream function ¢ and a density
function F' such as

F=g@=1F, =,
r
o, =€) o N=FE, 4.2)
. _ 2yMiet—(y—1D(1 417 (y—DMz*+2(1+7%) |7
w,=const. = T(T+ 1)M22'2(1 +7?) { (7,+ 1)M21'2 } >
and, hence,
a+ U, (2, 1)= SJZ’ ’
, (4.3)
v,(x, ’I’): ——y::jﬁvgv .
By use of these relations, Eq. (2.6) can be written as
4fzf/l__2ff/2 =7‘0)0£:2FTF' {fl ‘_725(2f"”$f’)} ,
4.4

pra e Qf =6 + T cu B =KEF,

¥ —_—
!

where K :1+_-2T)—M——, and the shock wave conditions are obtained from Eq.
r—HM*
(3.13) as
1
=—,
f(1) > ?
o {GADHG=DM 20+ |
Fiy= 1472 G—DM*2*+2(1+7%) S (4:3)
F)= (r+ HM?<? )

(— DMz +2(1 + %) '

i

o
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Another condition is that the stream function vanishes on the cone surface E=¢,.
Hence,

f¢)=0. (4.6)

Thus, semi-vertex of the cone, §, is obtained by the relation
tan 0 =17§,. 4.7

Substitution of Eq. (4.3) into Eq. (2.7) and rewriting the equations by use of

conical variable leads to the following linear simultaneous equations for the
perturbation field;

2fFp,—2fF'p, + 8 F*(Fu,)) —EF*v, — F*(F + £F")v, + F*w, =0,
208 fFu + S SR —f/(F +EFNYu, — {§Ff"—f'(F +EF")} v,
+oEF D — o FrFp, =0,
26fFv + EF (" —&f") — Qf —§fYF +EF)} v,
— o {EF(f' — &) — Cf —&fYF +EF)}u, (4.8)
—E&Fpi+ 1w, F'F'p, =0,

25fw£+ (zf“‘éf’)wl —EpL:O’

Fp;“?‘F’p1"?’quT_l(FP;‘F’Pl):O'
Shock wave conditions appropriate to perturbation field can be obtained from Eqs.
(3.13) and (4.1) as

2{M*z*+ (1 + %)} 4 ,
)= — o(1
) G+ DM+ L+ D+ ed) -t )}
v.(1y= T =DMT+ G+ DMr* —2(1 + 7%
1 G+ DMz (1+1?)
5 Mz (1= + (1 4% “”"’(l)l’
(r+ DMz (1 + 2>
_ 1, 2{M—(1+Y)} 4.9
wid) T § (r+DM*z*(147?) ’ -9
o,(1)= — .+ DM*z( + %)
! {G—DM*c* +2(1 +1%)?
4(r + HM?z? 0
R B Ty T T e B )
4 4 ,
= — — Dy Di.
)= ey T GEDa ey )}

It remains to determine the unknown constant «. It can be so determined as to
satisfy the tangency condition, Eq. (3.15), that is

V1 ) =16 U (5 8) (4.10)
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5. DISCUSSION ON DISCONTINUITY OF ENTROPY AT CONE SURFACE

In the last section, fundamental equations and boundary conditions appropriate
to supersonic flow past circular-cones at small angles of attack have been derived
approximately by assuming a conical field without axial symmetry and by neglect-
ing the terms of order of a®. However, as has been already pointed out by
Ferri [4], such a development as is made in the present approach results in a
discontinuous distribution of entropy near the cone surface, which can be shown
by the following procedure.

Rewriting Eq. (2.4e) by use of conical variable, then, gives

{v—-s(&+72u)}mf+fg— w,=0. .1

Since the first term of the above equation vanishes at the cone surface (tangency !
condition), it is easily known that @, must be zero there because of w=x0. This
means that surface entropy must be constant, that is i

w(&,, §) =const. (5.2

On the other hand, the final equation in Eq. (2.7) is clearly obtained by assuming
that w, is of order of a* in the whole flow field and, consequently, negligible,

@, =0. (5.3)

This means that entropy in each meridian plane remains constant. However, since
the cone is at an angle of attack, the axis of conical shock wave does no longer
remain coincident with the direction of free stream velocity vector and, therefore,
entropy function just behind the shock wave must have a form

o(l, =w,+aw,(1)sind,
where
w, = const.

2 oD}, (5.4) ) 4
XORMPX

From the assumption denoted by Eq. (5.3), surface entropy is given by the
equation

wl'——wl(l):a)o{

o, N=w,+aw,sind, (5.5

which is obviously a function of 6. Therefore, if w, is of order of unity, there
arises a contradiction between Egs. (5.2) and (5.3).

The inconsistency in entropy distribution is clearly due to the assumption of
conical field without axial symmetry and also to the prediction of perturbation of
flow quantities such as given by Eq. (2.5). In order to examine this circumstance
in more detail, consider a polar coordinates system (7, ¢, ¢) (see Fig. 1b) with its
origin coincident with vertex of the cone. Then, continuity equation can be written
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<L

~
=

¢ \

FiG. 1b. Polar coordinates system.

by use of the assumption of conical field as

O L W O e ae_ g, (5.6)
0p sing Je

where (%, ¥, W) denotes velocity components in this coordinates system. If velocity
components are assumed to have forms
WT, ¢, ) =U (T, )+ alt, (T, ¢p) sin e, ]
V(T, ¢, &)=D,(F, §)+a?,(T, ¢) sin e, 5.7
w(T, ¢, €)= aw, (T, ¢) cos ¢,

the following relations can be obtained from the continuity equation by neglecting
the terme of order of a?,

3¢ —Pe=0 \
N (5.8)
ou, - —0
1 b
o¢

On the other hand, since vorticity components in the disturbed flow field can be
expressed, respectively, by use of Eq. (5.7) as

rot;g=-2%5¢ (17;1 cos ¢ + sin ¢%~ ~i}l), (5.92)
7sin ¢ 0¢
rot;j:“"?“( , v.._wl), (5.9b)
7 sin ¢
1= | (7o) tasime(o- T}
rot,g=— - +asing| ¥, ——1 |}, (5.90)
q 7 Vo 3¢ 1 Py

it is easily found from Eq. (5.8) that rot,q is of order of «? and, hence, negligible,
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that is
rot,g=0.
Moreover, it follows from Crocco’s vortex law,
g Xrotg=—Tgrad S, (5.10)

that rot,q is also of order of «* and negligible from the assumption, where T de-
notes temperature and S is entropy. This, in turn, gives a relation

U, =W, COS ¢.

Differentiation of the above equation with respect to ¢ and substituting it into Eq.
(5.9a) leads to a result that rot>g also vanishes. Hence,

rot g=0. (5.1

As can be seen from Eq. (5.10), this result clearly indicates a remarkable fact
that the assumptions made in the present development is essentially consistent with
an assumption of isentropic flow everywhere in the disturbed field, which contradicts
the azimuthal distribution of entropy aft of the shock wave, if w, is of order of unity.
Because of this circumstance, validity of the present approach seems to depend
mainly upon the order of magnitude of w,.

Substitution of Eq. (4.9) into Eq. (5.4) gives

14172 rG—D{M*c*— (1 +1?)}?
)(1 +)2rM*— (G —DA + )} {(G— DM+ 2(1 + %)} .
(5.12)
Since the term {M*r*— (1 +¢*)} is of order of 4§, w, must be of order of 2. There-

fore, the isentropic assumption consistent with the present development can be ap-
proximately satisfied, if ¢ is small so that

o, =4w, (/c —

-
[

ad*K1. (5.13)

However, it must be noted that, irrespective of an additional condition given by
Eq. (5.13), the assumption denoted by Eq. (5.3) seems to be applicable near the
shock wave even in case of a large cone angle, since both % and w, are of order of
a there. This fact leads to a statement that entropy in each meridian plane is
approximately constant near the shock wave and most of entropy increase which
is of order of « occurs near the cone surface. This implicitly suggests that the
present development may be further applicable to a cone with comparatively large
semi-vertex angle by introducing a suitable correction of entropy distribution near
the surface. Thus, it becomes of primary interest to inquire the region in which
an abrupt entropy change takes place.

For this purpose is to be introduced a replacement

v, =v—E(@+ ), (5.14)
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which corresponds to velocity component normal to each ray from the origin (# in
polar coordinates system). Since v, must vanish at the cone surface £=¢,, Eq.
(5.14) can be expressed near the surface as

vn;':.‘A(g—Sc)’

where A is a constant of order of unity. In the region where v, is of order of unity
w, is of order of «* and the entropy change in this region is of order of a?. Near
the surface where (£ —¢£,) is of order of «, v, also tends to be order of @. Although
w, may become of order of « in this region, corresponding entropy increase must
be of order of «* and, therefore, negligible from the assumption, since thickness of
this region is of order of «. These results expliciltly suggest that an abrupt entropy
increase of order of « must take place in a layer of thickness of order of «? next to
the cone surface where v, tends to be of order of @?. This layer was called the
vortical layer by Ferri[4], in which vorticity cannot be neglected. The axis of
vortex can be easily shown to align with meridian line of the cone.

The appearance of thin vortical layer next to the cone at small angles of attack
can be recognized as follows. Since v, is always negative, all streamlines that start
at the shock wave approach the cone surface as they flow downstream. Near the
shock wave azimuthal displacement of the streamlines is very small because of v,
~0(1) and w~0(«), and entropy change in this region is, therefore, of order of «?.
Near the cone surface v, becomes very small, so that streamlines tend to be parallel
to the surface because of cross flow w. Moreover, since w=0 in meridian planes
0=+=/2 and w>0 in —x/2<H<x/2, projection of streamlines near the cone
surface to a spherical surface # =const. tends to diverge at #= — /2 and converge
at 0=mn/2. This converging characteristic of streamline projections with different
entropy level into a thin layer next to the cone surface (vortical layer) causes, there-
fore, an abrupt gradient of entropy normal to the cone.

Consider a vortical layer of infinitesimal thickness next to a cone at small angles
of attack, across which flow properties change abruptly. The conditions at outer
edge of the vortical layer, which is denoted by a subscript e, are assumed to be
given by the solutions of equations formulated in Section 4. Because of w=0 in
meridian plane #= —=/2, streamlines entering this plane through shock wave
remain in the same plane. Furthermore, since there is no singularity in this plane,

it will be reasonable to assume that surface entropy has the same value that is
given in this plane, that is

S,=8,—aS,, (5.15)
where
S,=8.+¢,log yM’z*w,,

S, =c,w,/w,.

(5.16)

This assumption clearly indicates that flow phenomena can be represented by the
equations predicted in Section 4, where entropy remains constant until a vortical
layer of infinitesimal thickness is reached at the cone surface across which an abrupt
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variation of entropy takes place from the value S, +aS,sind to the value S, —al,
that exists at the surface. Thus, increase of entropy across the vortical layer is
given by

4S=8,—8,= —aS,(1+sin 6). .17

By combining an isoenergetic equation with an entropy equation

1= D — -1
“‘(;)“pe"' ;)z Po= — L;"(uuo""v'ua'*'wwu): 3
1 1 (5.18)
I—'s_1%_17T =
= =Dy = Ps
R ) P ) 5 Os

and further by introducing the tangential condition, ¥,=&,%,, a velocity relation
available at the cone surface is obtained as

- — - 6@7) ~(6'17)
VW, =U, Vo —1| ,
[55). 475,

and this equation is further simplified by introducing Egs. (2.3) and (2.5) into
following two relations;

voowlc:(d+TQMOC)ulc'*_vOcvlc’ } (5 19)

_ 2 2
VW =7 U0+ 0,0

However, these two equations are easily shown to be consistent with one another
by substituting the tangential conditions

vﬂc - Sc(a’ + Tzu‘Oc) ’
Vie=176,U,,-
Therefore, cross flow component along the cone surface is obtained from Eq. (5.19)
as
242
14722 u
&,

On the other hand, since thickness of the vortical layer is of order of a? and
must be thinner to vanish as angle of attack approaches zero, it will be reasonable
to assume that

w,,= (5.20)

lc*

ulc—'—culCJ (5.21)
7)lc - C’vle 3
where { is an unknown constant to be determined from matching of entropy across
the vortical layer. It is convenient to see that the assumption denoted by Eq. (5.21)
does not disturb the tangential condition for perturbation field and, consequently,
the unknown constant involved in shock wave conditions can be determined from

the relation

This document is provided by JAXA.



Supersonic Flow Past Pointed Bodies of Revolution at Small Angles of Attack 131

vle(éc;’c)zfgfcule(gc;’f)- (522)
Pressure ratio across the vortical layer being given by the equation
[ #w2__ Ty 2 s S
Pe _ (g;__gga_>;:ie—zrfﬁa;, (5.23)
D, ¢ — Qez

it can be easily found that surface pressure consistent with the entropy increase such
as given by Eq. (5.17) must have a form

Pe=Do+ a(D+p,, sin ), (5.24)

where «ap denotes pressure increase due to the vortical layer. Substituting

Egs. (2.3), (2.5), (5.17), (5.21) and (5.24) into Eq. (5.23) and neglecting
the terms of order of «*, then, leads to

. S )
D=l F7(£),
(r—De,
5.25
I+ 2 (08 @ o) 23
=1+ S, G—1DM?
272ch (1 +72$c2)(&+72u0c)u1e

Now that { is known, correct distribution of velocity at cone surface can be
obtained from Eqs. (5.20) and (5.21), and density distribution is given by the
equation

pc - (wo —awl)pcr5

which can be simplified by neglecting the terms of order of «? as

1 S 1 p .
= cl+a( Ly L wsmaﬂ. (5.26)
£ fo { 7‘—1 cv 7 pOc

6. RESULTS AND DISCUSSIONS

Since the unknown constant « is involved in shock wave conditions appropriate
to perturbation field due to angle of attack, integration of Eq. (4.8) must be carried
out, by use of a trial and error method, by assuming initially several values of «,
finding out a proper value satisfying Eq. (5.22). The actual calculation was
carried out by use of a HIPAC 5020 digital computer and the results are tabulated
in Table 1.
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TaBLE 1.

M g T Do 1 | £ z
8 0.5938 0.6213 —0.7712 2.142 | 1.0120

5 16 0.6886 0.6110 @' —1.0788 1.170 0.9775
24 0.8878 0.5076 —0.8951 0.615 0.8906
2 1.2218 0.3519 —0.5674 0.260 0.7845
8 0.3779 0.7706 —1.9165 2.230 1.0051
3 L 16 0.4910 0.7334 —2.1471 0.860 0.8909
24 0.6519 0.6270 —1.6538 0.346 0.7325

32 0.9036 0.4919 —1.0706 0.100 0.5899

8 0.2938 0.8309 —3.1518 2.130 0.9801

A 16 0.4193 0.7699 ~2.9635 | 0.620 0.7784
24 0.5914 0.6623 —2.1040 | 0.182 0.6011

32 | 0.8156 0.5328 ~1.3334 | 0.005 0.4964

Aerodynamic coefficients for a circular-cone are defined by the equations

-
Cne=— tan 6 P15

Cxy=27p,(£,),

Cm,= ——33’: o —lgf‘{;—a Drl€) e
By =2 (L+ tan’s),

where Cx, denotes axial force coefficient at zero angle of attack and Cm is defined
as pitching-moment coefficient round the nose and head-down moment 1s taken
to be positive.

Figs. 2 to 4 show variations of aerodynamic coefficients with semi-vertex angle
for Mach numbers of 2, 3 and 4, respectively. For any Mach number, slope of
normal force coefficient decreases monotonously with increasz of 0, indicating that
it depends mainly upon semi-vertex angle but is less sensitive to Mach number.
The same trend has already been confirmed by Buford [72] experimentally by use
of a circular-cone with §=10°. In order to compare the present theory with the
others, data of Cn, obtained from Sim’s table [5] are also piotted in these figures.
It is found from the figures that there exists a fairly large difference between present
results and Sims’ data near 6=10°, beyond which the difference is minimized.
The reason for this is not clear.

Cm, seems to depend strongly upon Mach number, since its behaviour is quite
different from each other for various Mach numbers, as is seen in the figures. In
particular, it is remarkable that Cm, at M =4 changes from decreasing to increasing
as cone angle grows. Since both Cn, and Cm, obtained from the present theory
have a trend to agree with linearized theory in the limiting case when cone angle
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tends to vanish, deviation from the linearized theory indicates nonlinear effects of
the fundamental equations on aerodynamic characteristics of a lifting cone at
supersonic speeds.

Fig. 5 shows variation of location of center of pressure with semi-vertex angle.
For circular-cones the location of center of pressure depends only upon cone angle
and it moves backwards monotonously as cone angle increases. Moreover, it is
noticeable that it retires away from base of the cone as growing cone angle goes
beyond 35.26°. Although this result may seem to be curious at a glance, it is
really reasonable from the fact that axial component of surface pressure has a fairly
large amount of contribution to pitching moment round the nose.

In Fig. 6 is presented variation of « with semi-vertex angle for various Mach
numbers together with Sims’ data for comparison. As is seen in the figure, «
decreases monotonously with increase of cone angle. This trend clearly confirms
a physical fact that, the more the body becomes blunt, shock wave shape is less
sensitive to body shape. Moreover, it may be an interesting result that, at M =4
and 6=32°, shock wave shape relative to the cone at small angles of attack is
almost unchanged from that at zero angle of attack, while surface pressure changes
greatly. This may be due to a strong effect of cross flow. In reference [5] are
presented values of ratio of shock wave yaw, », to body yaw, @, so that a simple

30
\ ‘ M sle)
K \'\ o 2 10
I o 2 e |
25 ! Experiment
74N 3 16
\( [ 4 4057
20
— Present Theory
1.1 T T —-— Sims. ref.(5)
Yc‘p. O  Experiment 1.5 .)
1.O —
0.9 1.0
0.8 \ \ M=3
05
07 M=
Xcp{ linearized )
I | o) : °
06 o 20 30 a0 0 10 20 30 40 50
S (degree) S(deqree)
Fic. 5. Location of center of pres- Fic. 6. Variation of « with semi-vertex angle of

sure for cone.

cone.
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transformation relation obtained by neglecting the terms of order of a® was used
for interpretation of Sims’ data, which is expressed as

=17 1) 6.2

«@

C

So long as « is concerned, the agreement between present theory and Sims’ data is
quite good, as is seen in the figure.

7. EXPERIMENT

As has been already pointed out in the last section, there exists a remarkable
difference in behaviour of Cn, between present theory and Sims’ data. However,
as to the other aerodynamic characteristics, for example, ¢ etc., any serious differ-
ence does not seem to exist and, therefore, an experimental confirmation on this
point becomes of a primary interest.

In order to confirm the theoretical results obtained from present development
an experimental investigation was carried out by use of a blow-down type super-
sonic wind tunnel. Two models made of steel were used in the experiment, the one
is a finite cone with semi-vertex angle of 16° and the another is a cone-cylinder
with semi-vertex angle of 40.57°. The former was used for measurement of aero-
dynamic forces and surface pressure distribution and the latter for schlieren
observation only. Detail of size of the models is shown in Fig. 7. Reynolds
number of model (A) referred to cone length is 2.73x10¢ at M=2 and 6.80x10¢
at M=3, respectively, and Reynolds number of model (B) referred to nose-cone
length is 7.41x10 at M=4.

A sting balance of moment type with 22 mme in diameter and 195 mm in length
was used to measure normal, axial forces and pitching moment. Since a cylindrical
afterbody may contribute to some extent to aerodynamic forces, the sting balance
was used only for model (A). In this case, however, another difficulty arised in
the measurement that almost over a half in length of the sting balance must be
exposed in air stream at high speed, because the model was shorter. In order to
avoid this difficulty a cylindrical steel pipe of 30 mme¢ in outer diameter was, as
a protection, so used not to interfere with the balance. Moreover, model (A) has
8 holes at its base in order to measure an average value of base pressure.

Figs. 8 and 9 show measured surface pressure distribution on model (A) at
Mach numbers of 2 and 3, respectively, together with theoretical results for com-
parison. Agreement between theory and experiment is fairly good. In Figs. 10
and 11 are presented variations of measured aerodynamic characteristics with angle
of attack. In the figures, axial force coefficient, Cz, is defined by the equation

Cr=Czx,4Cx,, (7.1

where Cz, and Cz, denote total coefficient measured by the balance and thrust
coeflicient due to base pressure, respectively. Axial force coefficient due to skin
friction is neglected in experimental evaluation of Cuz, since, from a theoretical
evaluation, it is found to be very small compared with the others.
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Cn Cm Cx Xcp. ‘
] | l

2 4 6

a (degree)

o Cn

a Cm

o Cx

x Xce.

CNa = 1790
Cma = 1290
CX. = 058'
Xcp. = 0722

-02
F1G. 10. Variation of Cn, Cm, Cx and «., with angle of

attack. M=2.

As is seen in the figures, both normal force and pitching-moment coefficients
vary linearly with angle of attack up to +6°, thus confirming the linear approxima-
tion of perturbation properties with respect to small angles of attack. The same
linear variation of normal force and pitching-moment was shown by Hottner [13]
experimentally, using a circular-cone with d=10° mounted in a shock tunnel at
M=3.86. Experimental slopes of normal force and pitching-moment coefficients
and axial force coefficient at zero angle of attack are also plotted in Figs. 2 and 3
and location of center of pressure is plotted in Fig. 5 for comparison. As is seen
in the figures, the agreement between theory and experiment is quite good.

In order to further confirm the present theory, a schlieren observation of shock
wave attached to model (A) was made for Mach numbers of 2 and 3. Several
photographs are shown in Figs. (12a) to (12d). Values of & obtained from
schlieren photographs ar¢ plotted also in Fig. 6 together with another datum at
M=2 and 6=10° for comparison. Furthermore, a schlieren observation of shock
wave shape was made for a Mach number of 4 by use of model (B). This model
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attack. M=3.

has a fairly large semi-vertex angle than 32° at which the present theory reveals

that shock wave shape relative to the body is almost insensitive to small angles of @
attack, when M=4. Furthermore, at semi-vertex angle of model (B), Sims’ data

seem to indicate that relative location of shock wave axis to body axis will be

reversed at M=4. Figs. (13a) and (13b) show schlieren photographs of flow

pattern past model (B) at a=0°, M=4 and «a=4°, M =4, respectively. The

figures clearly show that the shock wave shape relative to the cone at a=4° is

almost unchanged from that at zero angle of attack. However, the deduction of

reversion of relative location of shock wave axis to body axis mentioned above

cannot be confirmed obviously from these figures.

This document is provided by JAXA.



-

Supersonic Flow Past Pointed Bodies of Revolution at Small Angles of Attack 139

Fic. 12a. Schlieren photograph of a flow FiG. 12b. 'Schlieréﬁ phaz)grapﬁ of a flow
field around a cone. M=2, field around a cone. M=2,
6=16°, a=0°. 3=16°, a=4°.

F1G. 12c. Schlieren photograph of a flow Fic. 12d. uélchliie‘rverrlmpho.to'graph of a flow
field around a cone. M=3, field around a cone. M=3,
§=16°, a=0°. §=16°, a=4°.

by :

Fic. 13a. Schlieren photograph of a flow FiG. 13b. Schheren photogaph of a flow
field around a cone. M=4, field around a cone. M=4,
5=40.57°, a=0°. : §=40.57°, a=4".
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8. CONCLUSION

A general method of analytical approach to supersonic flow past pointed bodies
of revolution at small angles of attack was presented and applied to circular-cones
as a simple example. It is shown that nonlinearity in fundamental equations has
predominant effects on aerodynamic characteristics of lifting bodies, thus indicat-
ing that the linearizezd theory does not adequately predict an essential feature of
flow phenomena.

However, it is noticeable that a linear approximation of lifting flow field with
respect to small angles of attack is still available even if the body is not so slender
for which an essential feature of the basic flow field is nonlinear. This fact was
also confirmed by the present experiment.

The assumptions used in the present development and also in works of Stone
and Ferri was shown to be consistent essentially with an assumption of isentropic
flow everywhere in the disturbed field which causes a discontinuous distribution
of entropy near the body surface. This difficulty, however, was shown to be
avoidable, if body thickness is small. Furthermore, even in case that the body is
not so slender, the present development was shown to be applicable by introducing
a simple correction of entropy distribution near the surface.

The fact that a parameter £, which corresponds to deviation of shock wave axis
from body axis due to small angles of attack, decreases monotonously as cone
angle grows clearly indicates a physical evidence that shock wave shape is less
sensitive to body shape as the body becomes blunt.
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