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PREFACE

During the academic year 1966-1967, T am on sabbatical leave from the Institute
for Fluid Dynamics and Applied Mathematics, University of Maryland and on a
National Science Foundation Senior Postdoctoral Fellowship of U.S.A. to do re-
search on high temperature flow of gasdynamics in Japan and Austria. With the
kind invitations from Professor N. Takagi, director of the Institute of Space and
Aeronautical Science (ISAS), University of Tokyo and my good friend Professor 1.
Tani, T have the opportunity to stay in ISAS, University of Tokyo as a visiting pro-
fessor for five months from September, 1966 to January 1967. My main purpose to
visit Japan is to exchange scientific ideas with Japanese scientists. Besides many
scientific discussions with colleagues in ISAS. narticularly the group under Professor
R. Kawamura. H. Oguchi, K. Oshima and K. Kzrashima, 1 offer a series of eight lec-
tures on Modern Aspects of Radiation Magnetogasdynamics which concern with
the effects of ionization and thermal radiation on high temperature gas flow. This
report contains main points of my lectures. There are many details of such analysis,
particularly those of multifluid theory which have not been worked out yet. I hope
that this report may give young scientists some inspirations to study this new field
of gasdynamics.

o January 20, 1967
S. I. Par

1. INTRODUCTION

The current trend of the flow problem in aerospace engineering is towards high
temperature and low density of the gas. Under such conditions, the gas will be
ionized and the electromagnetic forces are important. For a first approximation, the
classical magnetogasdynamics of single fluid theory has been successfully used [77**.

* Research Professor, Institute for Fluid Dynamics & Applied Mathematics, University of
Maryland
Visiting Professor, Institute of Space and Aeronautical Science, University of Tokyo
** This number refers to the number of reference in section 9.

[1]
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2 S. I. Pai

The basic assumptions for this set of equations are (i) a generalized Ohm’s law is
used instead of the exact differential equation of electrical current density, (ii) the
fluid has a scalar electrical conductivity and (iii) the temperature of all species in
the electrically conducting fluid are the same. Such a system of equations gives
good results for electrically conducting liquid as well as ionized gas if the strength
of magnetic field is not too large and the density of the gas is not too small.
However in current practice, the strength of magnetic field gradually increases and
the density of the gas decreases. As a result, the Hall current and ion slip will be
important and we should not assume that the electrical conductivity of the gas is a
scalar quantity. When the degree of ionization is large and the density of the gas
is low, gasdynamic forces will affect the electric current density distribution and the
temperature of electrons may be different appreciably from that of heavy particles.
We have to improve our fundamental equations of magnetogasdynamics SO that
these new phenomena may be taken into account. One way to improve the classi-
cal magnetogasdynzmic equations is to use a complicated generalized Ohm’s law
including the Hall current. ion slip and simple gasdynamic effects. Such improve-
ments may still be insufficient for many other effects, such as different temperature
between species. large diffusion velocity. efc. A better and more logic aprrozch
is the multifluid theory of magnetofluid dynamics.

At very high temperature and low density, the thermal radiation may become an
important mode of heat transfer in comparison with heat conduction and heat con-
vection. Hence in many advanced acrospace engineering problems, we shoulA
consider the thermal radiation effects which include (i) the radiation stresses (ii)
the radiation energy density and (iii) the heat flux of radiation [2]. From macro-
scopic point of view, we may use the soccific intensity of radiation to describe the
thermal radiation field in the gas flow. In this renort, we are going to discuss first
the fundamental equations of multifluid theory of magnetogasdynamics including
thermal radiation effects which may be called Radiation Magnetogasdynamics and
then to analysis some flow problems based on these equations.

An ionized gas or a plasma may be considered as a mixture of N species which
consists of ions, electrons and neutral particles. From a macroscopic point of view,
a complete description of the flow field of a plasma should consist of the gas-
dynamic variables of all species, i.e., velocity vectors, pressure, density and temper-
ature; the specific intensity of all species; and the clectromagnetic fields. Such an
analysis is known as multifluid theory of radiation magnetogasdynamics (RMGD).
We are going to discuss the fundamental equations of RMGD in section 1I.  For
many engineering problems, we are mainly interested in the overall effects of the
flow field. For instance, we would like to know the total pressure of the plasma as
a whole on the surface of a body. We shall define the gross variables of the plasma
as a whole from the partial variables of each species in the mixture and derive the
fundamental equations of these gross variables. Tt is interesting to notice that the
fundamental equations for these gross variables are identical to those of single fluid
theory of RMGD. However, these fundamental equations for gross variables are,
in general, not sufficient to describe all the flow phenomena in a plasma. They

This document is provided by JAXA.



"""" : Modern Aspects of Radiation Magnetogasdynamics 3

should be solved simultaneously with some equations of partial variables which
represent diffusion phenomena, chemical reactions, ionization processes, different
temperature of various species and other new phenomena. Since the complete set
of equations of multifluid theory, whether they consist of all the equations of partial
variables or the equations of gross variables together with those equations of some
modified partial variables, is too complicated to be used for practical problems, we
shall discuss various simplifications of these equations which have been successfully
used in analyzing the flow problems of a plasma, including the classical magneto-
gasdynamic approximations. The basic principles and approximations used for the
radiative transfer equation will be discussed in section 3 and those for the electro-
magnetic equations, particularly the equation of electrical current density will be
discussed in section 4.

P In the last four sections, we discuss some interesting flow problems with both
thermal radiation effects and electromagnetic field effects. In sections 5 and 6, we
. discuss the wave motions in RMGD, while in sections 7 and 8, we discuss some

problems associated with heat transfer in RMGD.

2. MULTIFLUID THEORY OF RADIATION MAGNETOGASDYNAMICS [11, [3]

The variables in the multifiuid theory of RMGD are:
The temperature of s th species T,
The pressure of s th species p,
The density of s th species p,=m,n,
The velocity vector of s th species g, with components u; 2.1
The specific intensity of thermal radiation of s th species I,
The electric field strength E' with component E'
and The magnetic field strength H with component H'
where s=1, 2,-.., N and we assume that there are N-species in the plasma, {=
1,2, or 3 which fepresents one of the three spatial directions. The number density
e of$ th species is n, and the mass of a particle of s th species is m,.
There are 7N + 6 variables in this theory which are functions of time # and
spatial coordinates z*. We should find 7N + 6 equations to govern these variables.
The variables T, etc. are known as partial variables in multifluid theory. We
may define the gross variables of the mixture as a whole from these partial variables

as follows:
Pressure of the mixture=p :szj D, 2.2)
number density of the mixture— n:sé n, (2.3)
density of the mixture = o= mn:é1 m,n, (2.4)

where m is the mean mass of the mixture which is a function of the composition of
the mixture.
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4 S. 1. Pai

N
Temperature of the mixture=T=(1 /n)y > n T, 2.5
s=1
N
i th velocity component of the mixture=ui=(1/p) X psU; (2.6)
s=1
i th component of diffusion velocity of the mixture =wi=ul—u’ 2.7

From the definition of flow velocity %’ and diffusion velocity w?, we have

N
s=1
N N
Excess electric charge=p,= 2 Pes= 2 n.e 2.9)
s=1 s=1

where e, is the electric charge of a particle of s th species.

N N N )
ith component of electrical current density=Ji= >, Ji= 2. PosUi= 21 PesWs
s=1 $=1

s=1

N
+u leesziiwL P (2.10)

where i(i%) is the electric conduction current density and p.q is the electric convec-
tion current density.
N
Specific intensity of thermal radiation of the mixture=1I,= > 1, (2.11)
=1
where v is the frequency of the heat wave.
The fundamental equations which govern the partial variables and gross variables
are the 6N gasdynamic equations, N radiative transfer equations and 6 electro-
magnetic field equations. They are as follows:

(i) Equations of state. The ideal gas law may be used and it is
ps::lgAnwjg (2'12)

where R,=1.381x 1071 cm-dyne/°C is the universal gas constant. The sum of
N equations of the type of Eq. (2.12) gives the equation of state of the mixture as
follows :

p=R nT=RpT (2.13)
where R is the gas constant of the mixture which is a function of the composition

of the mixture.
(ii) Equation of continuity. The conservation of mass of each species gives

dp 0 .
_vs v u; =0, 2.14
ST (psus)=0 (2.14)

where o, is the mass source per unit volume of s th species which is due to ionization
process or other chemical reactions. The summation convention is used for the
repeated tensorial indices i but not for indices distinguishing the species s. By the
conservation of mass of the plasma, we have

N
5 g,=0 2.15)

The sum of N equations of the type of Eq. (2.14) gives the equation of continuity
of the plasma as a whole:
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9p | dou’ _, 2.16
ot + ox! (.16
It is interesting to note that Eq. (2.14) is the diffusion equation used in ordinary
gasdynamics but usually some simplified assumptions on the diffusion velocity are
made so that we need not solve simultaneously the equation of diffusion velocity.
Both Egs. (2.13) and (2.16) are the same as those in single fluid theory.
If we multiply 7, =e,/m, to Eq. (2.14), we have
dp 7 ;
=Lt T (o u)=7,0, 2.17
ot T ag PeM)=100 2.17)
On principle, Eq. (2.17) is the same as Eq. (2.14). By conservation of total
electric charge, we have

N
21 7:0,=0 (2.18)
s=1
From Eqgs. (2.17) and (2.18), we have
Op. | 8T _ (2.19)
Jt oxt

Eq. (2.19) is the well know equation of conservation of electric charge which is
important in single fluid theory of RMGD. But in multifluid theory it is simply
another form of the equation of continuity and may be used to replace one of the
equation (2.14).

(i)  Equation of motion. The conservation of momentum of s th species gives
the equation of motion of s th species as follows:

9o, %s +_ma. (osusu{ —ti) =X+ ¢,Z! (2.20)
ot ox’

where ¢,Z; is the ¢th component of the momentum source per unit volume asso-
ciated with the mass source #,. We have

5 0, 2i=0 .21
§=1

The term 77 is the ¢j th component of the stress tensor of s th species. In general
the stress tensor is governed by a complicated partial differential equation. Within
the approximation of the continuum theory, we may divide the stress tensor into
two distinguish parts :one is due to thermal radiation which will be discussed in
section 3 and the other is the viscous stress which may be expressed in terms of
viscosity coefficient s, and the velocity gradient. The difference of the coefficient
of viscosity of each species should be noted.

The body force X' consists of electromagnetic force F,, non-electric force such
as gravitational force F'i, and the interaction forces between species F'i,, which are
given below :
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Fi,=p,, [E'+@xB)] (2.22)
Fi.=p9° (2.23)
Fi= 5 K, (ui— ) (2.24)

where B= yeﬁ is the magnetic induction and g, is the magnetic permeability. K,
is known as the friction coefficient between species s and 1 and we have

i F,=0 (2.25)

The ith component of the gravitational acceleration is ¢i. 1f we add all the N

equations of the type of Eq. (2.20), we have the equation of motion of the mixture
as follows:

out
- U
ot t ox?

- 2 ingJ i
Qp?i+ douw’ _ <6u

oy o ) _ D 9Py afj, LFi4FL (2.26)

Dt oz o
The form of Eq. (2.26) is exactly the same as that of the single fluid theory but it

is interesting to find out the difference by examining the definition of various terms,
particularly the stress tensor.

The non-electric body force such as gravitational force is simple and is

N . .
Fi= élE;s:p'QI (2.27)
The electromagnetic force is
N - —
Fi=> Fi,=p,E'+(J XB)’ (2.28)
s=1

The stress tensor now consists of three parts: one is due to thermal radiation, the
second is due to the viscous stress of each species and the third is due to the diffusion
phenomena. The total pressure Py is the sum of the radiation pressure and the gas
pressure. Formally, we may write the stress tensor z¥/ as follows:

t=r 47y (2.29)

where 7/ is the radiative stress component which will be discussed in section 3.
The term 7i/ is the viscous stress component of the mixture due to the molecular
motion of the particles of the mixture which is

N N
=3 ol — 3 pawiw! (2.30)
8§= §=

where 7 is the 7j th component of the viscous stress tensor of s th species. The
interesting point is that the viscous stress ri4 depends on the diffusion velocity.
Only when the diffusion velocity is small and negligible, we may use the simple
expression as Navier-Stokes relation for the viscous stress of the mixture as a whole.
In general, we should solve the equations of diffusion velocity simultaneous with
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the equation of motion of the plasmas as a whole. The difference of Eqgs. (2.20)
and (2.26) gives the equation of diffusion velocity wi=wul—u' as follows:
f7,7%‘£+u{ %;__gtfﬁﬂf:i Oz +_1_ Op, 1 _afii+]££__F____i+F§_

ot o' dxl p, B p dxt  p dxr | o, P
+-25 (Zi—u) (2.31)

r

We shall show in section 4 that the ordinary generalized Ohm’s law may be derived
from Eq. (2.31) under a number of assumptions. It is always better if we could
use Eq. (2.31) to replace the generalized Ohm’s law as we shall see later.
(iv)  Equation of energy. The conservation of energy of s th species gives the
energy equation for s th species:
oe, o ,_ I ariid (V=
) + Y (e,u] —ulrl? — Qi) =c¢, (2.32)
where e, =p.2, . is the total energy of sth species of the mixture per unit volume
which consists of the internal energy of s th species, kinetic energy of s th species,
potential energy of s th species and radiation energy of sth species [/]. The heat
flux Q! consists of the heat flux due to thermal radiation and that due to conduction.
The energy source «, consists of the term due to electromagnetic field ¢,,, that due
to chemical reactions «,, and that due to elastic collision between species «¢,,.
Now if we add all N equations of the type of Eq. (2.32), we have the energy
equation for the mixture as a whole:
dow'e,, _  op,u | duict QY

dpe
ot * ox’ ox’ + ox’ o’ ter ( )

The form of Eq. (2.33) is the same as that of single fluid theory but the meanings
of various terms are different.

The total energy &, consists of the internal energy, kinetic energy, potential
energy and radiation energy but the definition of the internal energy per unit mass
of the mixture as a whole consists of the diffusion kinetic energy as well as the
ordinary internal energy as follows:

N
Up="L5 (0.Ups+ L pow?) 2.34)
o =1 2

where U,,, is the internal enegy of s th species. The total internal energy is the sum
of internal energy of all species and the diffusion energy of all species. If the
diffusion velocities are not small, we have to solve this energy equation with the
equation of diffusion velocities. Since the internal energy of each species depends
on its partial temperature 7T',, we have to solve the equation for T, with Eq. (2.33)
if the temperatures of all species are not equal.

The heat flux @7 consists of the part due to heat conduction ®! and the other
part due to thermal radiation QJ. Both Q! and Q}, depend on w? and T,.
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The total energy source e, consists of the part due to chemical reaction and the

other part due to electromagnetic fields. '
(v) Maxwell’s equations of electromagnetic fields. The electromagnetic fields

are governed by Maxwell’s equations:

. . oD
pxH=J +5¢ (2.35)
. 0B
pXE=—"73¢ (2.36)
where D — ¢ E = dielectric displacement 2.37)

and ¢ is the inductive capacity. p is the gradient operator. The interaction of
the electromagnetic field equations with the flow of a plasma is through the electri-
cal current density J which represents the relative motion of various charged parti-
cles in the plasma.
(vi) Radiative transfer equation [2]. The conservation of radiative energy
gives the radiative transfer equation:
1 oI, ;00
-‘c—‘ —"5t -+n *533;—- pskus(Jys Iys) (238)
where 7 is the i th component of the direction cosine of the ray of radiation with
respect to 4 th axis, k,, is the absorption coefficient of s th species, J,, is the source
function of radiation of s th species.
The sum of N equations of the type of Eq. (2.38) gives the radiative transfer
equation for the mixture:

1 oI ol

Balidut i 20y — ok (J,—1 2.39
cat+nax1‘p”(” ) (2.39)

where c¢ is the velocity of light. The absorption coefficient of the mixture as a whole
is k, and the corresponding source function is J,. We are going to discuss the
radiative transfer equation and the meaning of various terms in section 3.

3. RADIATIVE TRANSFER * Basic PRINCIPLES [2]

We may either consider the thermal radiation as a stream of photons or as electro-
magnetic waves. When we consider the thermal radiation as a stream of photons,
we should use the relativistic Boltzmann equation to study the motion of these
particles. When we consider the thermal radiation as electromagnetic waves, we
may use the geometrical optics to study the behavior of thermal radiation from the
macroscopic point of view. The results of these two approaches are the same (see
Reference 2). In this report, we consider only the case of continuum theory and
we shall use the treatment of geometrical optics. The thermal radiation may be
expressed in terms of a specific intensity I, which is defined as follows:
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aE, 3.1

I= lim (
doy-cosf-dw-dt-dy

day, dw,dt,dv—0

where I, is a function of time, spatial coordinates, direction # and the frequency
of the wave v. The amount of radiative energy flowing through the area dg, in the
frequency range v and v+ dv, in the direction L which makes an angle § with the
normal of dg, within an solid angle dw in the time interval dt is dE,. The total
amount of energy radiated over the whole spectrum is

dE — f w(g&gi>dx}:1cos gdwdvdt (3.2)
v

where

I= f I ,dv=integrated intensity of thermal radiation. 3.3
0

If the specific intensity I, is known, we may easily calculate the effects of thermal
radiation on the flow field which are:
(i) The flux of heat energy by radiation is ¢%, i.e.,

7= f In‘de (3.4)
4r
where 7' is the directional cosine of the radiation ray with respect to ¢th axis. We
should add the divergence of this radiative heat flux in the energy equation i.e.,

Qr=r Uz (3.5)

In general, Q, is a differentio-integral expression and the energy equation is a dif-
ferentio-integral equation.

(il Energy density of radiation E,. The energy density of radiation within
the frequency range v and v+dv is

uV:-—l—fIydw (3.6)
¢ 4z
and the energy density of radiation for the whole spectrum is then

E,= mu,dv:ifldm (3.7)
(4
0 4z

This radiative energy should be added to the total energy of the gas and it behaves
similar to internal energy of the gas.
(iii)  Stress tensor of radiation. The ¢jth component of stress tensor of radi-

ation is

rf{:——% f In'nide (3.8)
4z
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We may define a radiation pressure p, as follows:

Pa= @+t =r [ldo="1E, (3.9)
3 3¢ J 3
It should be noticed we consider the gas consisting of one species in the above
formulas. If the gas consists of more than one species, we should have similar
expressions for each species. For simplicity, in this section we consider the case
for a single species only.

For macroscopic treatment, the specific intensity of radiation may be expressed
in terms of two overall coefficients: one is the absorption coefficient of radiation
k, and the other is emission coefficient of radiation 7,. They are defined as follows:

(i) Absorption coefficient k, of radiation. The loss of specific intensity along
the ray of radiation over a distance ds is

dl,= —pk 1ds (3.10)
The integration of Eq. (3.10) gives

L) =Ly exp (— [ pleds)=L(s) exp (-~ (3.11)
where 7, is known as optical thickness of radiation of the layer (s—s,) and
LM:L:mean free path of radiation (3.12)
‘0 v

The absorption coefficient k, is a function of the temperature and density of the
medium as well as the frequency v. In general k, consists of two parts: one is the
true absorption and the other is that due to scattering. In macroscopic theory of
radiation gasdynamics, we assume that k, is a known function of temperature,
density and frequency v. The determination of k, can be made by microscopic
theory or experiment. The absorption coefficient in radiation gasdynamics has
similar position as other transport coefficients such as that of viscosity, thermal con-
ductivity in ordinary gasdynamics. It may be considered as a new transport
coefficient.

(it)  Emission coeflicient of radiation j,. The radiation energy emitted from a
mass dm is

dE ,=jdmdwedvdt (3.13)

If we have both the absorption coefficient and the emission coefficient of the
medium, the conservation of radiative energy gives the radiative transfer equation
which governs the specific intensity, i.e.,

dE,—dE,=dE,+dE,—dE, (3.14)

The difference between the outgoing radiative energy dE, and the incoming radia-
tive energy dE, must be equal to the sum of the energy emitted and energy ab-
sorpted minus the net change of radiative energy in the volume with time. Eq.
(3.14) in terms of %, and j, is
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1 ol ol,

— T 4nt r=pk(J,—1 3.15
e e =ph (1) (3.15)
where J,=7,/k,=source function of radiation (3.16)

One of the most difficult problems in radiation gasdynamics is to determine the
source function of radiation. At present stage of investigation, we usually use the
assumption of local thermodynamic equilibrium which may be considered as a first
approximation of the actual case. After we know more about the results under
local thermodynamic condition, we should study the source function in non-equi-
librium condition.

Under complete thermodynamic equilibrium, the specific intensity of thermal
radiation is given by Planck radiation function B, which is also known as black
body radiation function and which is
X 1

B.(v, T)= 2hyf
¢ exp(hv/kT)—1

(3.17)

The properties of B, had been known before Planck found the correct expression
(3.17). For instance, Kirchhoff knew that under thermodynamic equilibrium:

1,=j,/k,=B/T) (3.18)

The function B,(T) must be a function of temperature and independent of the
material. Wien found the displacement law

w=0l) @19

where U, d2=U,dv and 2 is the wave length. Rayleigh-Jean found that at low
frequency :

B(v, T)=(1/¢)8x’kT (3.20)

Of course, Eq. (3.20) is not valid for high frequency which causes the untraviolet
catastroph of Rayleigh-Jeans law.

If we assume that the gas is in local thermodynamic equilibrium, i.e., the emission
is determined by the local temperature, equation (3.15) becomes

1 oI, ol ,

i T =pk(B,—1 .

C 6t+83 pk(B,—1) (3.21)
where

k.=FkJ[1—exp(—hv/kET)] (3.22)

where % is the Planck constant and k is the Boltzmann constant. The reduction of
the absorption coefficient is due to induced emission.

In general we have to solve the radiative transfer equation (3.15) or (3.21) with
other fundamental equations in RMGS with radiation terms in integral forms. These
differentio-integral equations are very difficult to solve. In order to get some essen-
tial features of the effects of thermal radiation, some approximations have been
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used. They are discussed in some detail in reference 2. Here we shall list a few
of the most common ones:

(i) Optical thick medium. When the mean free path of radiation is very small,
the solution of Eq. (3.21) may be expressed as follows:

Iv:Bv_L1€v<ni§£

) O (3.23)
Xt

where L,,=1/pk,. If we neglect higher order terms of L3, the radiation terms in
gasdynamic equations can be easily evaluated, i.e.,

F,=a,T*=3p, (3.24)
where a,, is the Stefan-Boltzmann constant and
-(—iR:DRVER (325)
and
D,=¢c/(30K},) (3.26)
and
Ko ("2 a) (7L 2. )
; oT J k, oT
=Rosseland mean absorption coefficient (3.27)

For the optical thick medium, the differentio-integral equations are reduced to dif-
ferential equations. The equations are essentially the same as ordinary Navier-
Stokes equations of a compressible fluid with a few more terms.

(ii) One dimensional approximation. If the mean free path of radiation is not
small, we have to use more terms in the series expansion of Eq. (3.23). It is
questionable how many terms we should use and it is not known about the con-
vergence of this series. Hence it is better to solve the integro-differential equations.
In many practical problems such as boundary layer flows, the gradient of temper-
ature in one direction is much larger than those in the other directions. Hence we
may assume that the specific intensity I, is essential a function of this predominant
coordinate, say y,i.e., I,(y,6). If we define the optical thickness in terms of y,i.e.,

£y f ! okldy (3.28)
0

we may carry out the integration in solid angle # and ¢. Hence the integral expres-
sions of radiative terms will be simplified. We shall discuss the actual expression in
section 7.

(iii)) Gray gas approximation. The absorption coefficient k| is in general a
function of frequency ». As a result, the integral expression of radiation terms may
not be integrated analytically. Gray gas approximation has been used by assuming
that the absorption coefficient is independent of frequency. Actually we use some
mean value of the absorption coefficient for the overall flow phenomena. Rosseland
mean absorption coefficient (3.27) is the one for optically thick medium. Planck
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mean absorption coefficient K, is the one used for finitc mean free path of radiation
which is defined as
f VB

dev

4. GENERAL CONSIDERATIONS OF ELECTROMAGNETIC
EqQuaATiIONS [/], [3]

(3.29)

Among the electromagnetic equations, it is usually to make considerable simplifi-
- cations in the equation of electrical current density in magnetogasdynamics. It is
worthwhile to examine these simplifications and to find ways to improve the results.

By definition, (Eq. (2.10)), the electrical current density is

N
= 2 PesWi+ p W =T+ p, 0’ 4.1
§=1

The most difficult part is to find the proper equation for the conducting current ‘.
Since #¢ is essentially a function of the diffusion velocity w}, we may easily calculate
1" if we know all the diffusion velocities w!. The exact diffusion velocity equation
from macroscopic point of view is as follows: (cf. Eq. (2.31))

lau jout _ 1 97/ |1 op, 1 977

w, —_—ud B
at + - 0w’ ox’  p, 0a’ * p dxt p Fra
+ & P 9 (ziu 4.2)
o o 0

Since it is extremely difficult to solve Eq. (4.2) with other magnetogasdynamic
equations, the following assumptions have been made in order to get some essential
PR features of the flow of an electrically conducting fluid:

(i) The electrical conducting current or the diffusion velocity is explicitly inde-
pendent of time ¢ and spatial coordinates .

(ii) The electromagnetic forces are the only dominant forces in determining
the diffusion velocities and then the electrical conduction current.

(iii) There is no source term in the process.

Under these assumptions, Eq. (4.2) is reduced to the simple form [/]:

- - — N . N
(pper—ﬂrpr)Eu + (ppcr/wrwprz) XB=p Z‘IK”(W’— w,) (4.3)
where
E,=E+GxB (4.4)

Eq. (4.3) gives a set of linear algebraic equations for ), if we assume that p,, p.,,
E,, B and K,, are given. After we slove for w,, we may easily find the conduc-

mmmmm
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otin current t. However the general solution of Eq. (4.3) gives a result which is
still more complicated than the simple generalized Ohm’s law used in the classical
magnetogasdynamics.

In order to find the relation of Eq. (4.3) with the well known simple generalized
Ohm’s law in classical magnetogasdynamics and their limitations, we consider the
case of a slightly ionized monatomic gas such as argon, which consists of electrons
(subscript ¢€), ions (subscript /) and neutral atoms (subscript a). We assume that
the gas is slightly ionized, the relations between the number densities of these three
species are

ne;ni<<na (4-5)
We further assume that the ions are singly charged so that
v.=—en+en,=0 (4.6)
and the mass density of the plasma is
p=mn,+mmn,+mn,=m,(n,+n,) 4.7

where the masses of these species have the relation: m,<m,=m,.
The diffusion velocities of these species have the relation:

mnw,+mmnw,+mmn,w,=0 (4.8)

Since the three terms of Eq. (4.8) should be of the same order of magnitude, we
have

W[ W] > W,/ (4.9)
The general solution of Eq. (4.3) may be written in the following form:
oE,=Aji+ A,(ixB)+ A,(ix Byx B (4.10)

The factors A,, A, and A, depend on the collision frequencies between species,
their number densities and the magnetic induction B. Usually the collision effects
due to neutral particles are negligible, and then Eq. (4.10) may be written in the
following form:

A4BB) 4+ " (L+BE)+B
aB. E =\ =
+(1+ﬁiﬁg)2+ﬂz(“é“XEu)”"TEu (say) (.11

= (E'u-ﬁ)(E/B2):component of E, parallel to B

=Bx(E,X §) /B*=component of Eu perpendicular to B
o=ne’/K,,=scalar electric conductivity (4.12)
B.=en.B/K,,= o ,/f=Hall factor

w,=en,B/m,=cyclotrone frequency of electrons

where FE
E;

f=collision frequency between ions and electrons=K,,/m,
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8= ) en,B

ne Km,+ (1+ ne )Kai
N,

=ion slip factor

a

If the strength of the magnetic induction is not too large and the density of the
plasma is not too low, we usually have the relation 1> 8, 8;. If we neglect both
B. and B,, we have the simple generalized Ohm’s law of classical magnetogas-
dynamics from Eq. (4.11), i.e.,

i=qkE, (4.13)

and the electrical conductivity of the plasma is a scalar quantity ¢. If the Hall

factor 8, or both the Hall factor 3, and the ion slip factor 3, are not negligible, we
‘‘‘‘‘‘ should use Eq. (4.11), the electrical conductivity ¢, of the plasma is then a tensor
quantity and the conduction current 1 is in general not parallel to the electric field
E,.

Since the diffusion velocity and the electric conduction current depend also on
other forces than the electromagnetic forces alone, Eq. (4.11) is only a first approxi-
mation. We should include other forces if more accurate results are required.
Since the diffusion velocity of the electrons %, is the major component of the con-
duction current, we may include the pressure gradient of the electrons in the equa-
tion of the diffusion velocity of electrons as a first improvement of the generalized
Ohm’s law. If we neglect 8, and include only 3,, the equation of electric conduction
current becomes:

i+ L GxBy=0 (E’u+~]— Vpc) =oE,, (4.14)
en, en,

The effect of the pressure gradient of electrons is to increase the effective electric
field strength. If we consider the ion slip factor §,, other additional terms due to
pp, will be added to Eq. (4.14). Since such a piecewise improvement of the
electric current equation will not include all the gasdynamic effects, particularly the
effects of different temperatures between species, the author prefers to the use of
multifluid theory in which all the gasdynamic effects on the electric current density
will be included.

I would like to point out that for different forms of the electric current density
equation, the flow pattern of an electrical conducting fluid may be entirely different
under the same geometric boundary and the same externally applied electromagnetic
fields. For instance, we consider the flow of an electrically conducting fluid be-
tween two infinite parallel plates under a uniform magnetic field perpendicular to
the plates. If the average flow direction is along the x-axis and the applied mag-
netic field is along the y-direction, the plates are in the planes of y=constant and the
z-direction is perpendicular to both z- and y-axis. If the electric conductivity of
the fluid is a scalar quantity, we may assume that only velocity component which is
different from zero is the x-component %#(¥y) and the x-component of the magnetic
field is not zero but the z-component of the magnetic field is zero. However, if the
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electric conductivity of the fluid is a tensor quantity, both the z-component of
velocity and the z-component of magnetic field are not zero, even though the
average mass flow of the fluid is in the z-direction only. We will find sinusoidal
distribution of the z-component of velocity with zero net flow in the z-direction when
the electric conductivity of the fluid is a tensor [3].

For more general form of the equation of electrical current density, we expect
that many new phenemena will be found which will be missed in the classical theory
of magnetogasdynamics where Eq. (4.13) is used.

In the last three sections, we discuss briefly the fundamental equations of radiation
magnetogasdynamics. In the next four sections. we are going to consider some
simple flow problems based on these fundamental equations or its simplified forms.
We are especially interested in the effects of radiative transfer as well as the multi-
fluid treatment on the flow field of a plasma or a high temperature gas.

5. WAVE MoTIONS IN RADIATION MAGNETOGASDYNAMICS
SINGLE FLulD THEORY

The study of wave propagation in a radiating and ionized gas has both academic
interest and practical applications. The wave motion will bring out many charac-
teristic features in radiation magnetogasdvnamics which may differ considerably
from those in ordinary gasdynamics. The practical applications of wave propa-
gation are numerous. Some of the important applications are: (i) space com-
munication systems, (ii) radio wave propagation in ionosphere, (iii) magnetofluid
dynamic power generation, (iv) travelling wave tubes, (v) many geophysical prob-
lems such as geomagnetic storms, auroras and other ionospheric disturbances, (vi)
many astrophysical problems such as solar flares, generation of cosmic rf radiction,
etc. (vii) diagnostic and confinement schemes in nuclear fusion devices and
(viii) other problems of plasma dynamics associated with wave phenomena such
as plasma jets. Because of these wide range of interest, wave motion in a plasma
has been extensively studied.

The properties of a wave in a radiating and electrically conducting fluid depend
on the amplitude of the wave. The simplest type of wave is the wave of infinitesimal
amplitude. Ordinary sound wave and radio waves belong to such a group. Both
of these waves may be considered as a special case of magnetogasdynamic waves.
In fact, the magnetogasdynamic wave is a resultant wave due to the interaction of
a sound wave and an electromagnetic wave by the means of an externally applied
magnetic field. Such an interaction will give us many new phenomena which are
not in either ordinary gasdynamics nor in ordinary electrodynamics. Thermal
radiation may interact with ordinary sound wave and electromagnetic wave too.
One of the main features of these waves of infinitesimal amplitude is that super-
position principle is applicable to these waves. Mathematically speaking, we may
linearize the equations which govern these waves. Since these equations are linear,
the sum of two solutions of them is also a solution of these equations. Thus we
may study any typical solution of these wave equations which will give the general
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features of the wave propagation.

For waves of finite amplitude, the shape of the wave will distort as the wave
propagates while the wave of infinitesimal amplitude will maintain its shape when
it propagates. When the distortion is large, ordinary waves will develop into shock
wave in which a large change of physical variables occurs in a very thin region. We
are going to discuss the waves of infinitesimal amplitude in radiation magnetogas-
dynamics first and then the shock wave.

(i) Waves of small amplitude in an optically thick and electrically conducting
medium. In the study of propagation of wave of small amplitude, we consider the
equilibrium condition under small disturbances. Hence the details of the wave
motion depend on the forces considered. The more detail of the flow field is
investigated, more modes of wave will be found. First we consider a simple case
but the effects of thermal radiation and electromagnetic fields will be brought out
clearly. The case which we consider is that the governing equations are those given
by the single fluid theory with simple generalized Ohm’s law (4.13) and simple
expressions of radiation terms by Eqgs. (3.24) and (3.25).

We assume that originally the plasma is at rest with a pressure p,, a temperature
T, and a density p, and that it is subjected to an externally applied uniform mag-
netic field H 0= iH .,,+§"H .+ %0 where 1, y’t and k are respectively the 2-, ¥- and z-
wise unit vectors; H, and H, are constant. There is no electrical current, nor excess
electric charge, nor applied electric field. The plasma is perturbed by a small dis-
turbance so that in the resultant disturbed motion, we have

u=u(x, t); v=o(x,t); w=w(x, t); p=p,+p'(x, t); T=T,+T'(x, t)
p=po+p'(x, t); E=E(z, t); J=J(x, t); p.=p.(x,1); ﬁ:flo+ﬁ(x, ) (5.1

where u, v, and w are respectively the perturbed x-, /- and z-components, prime
refers to the pertubed quantities, E, J , 0. and I are the electromagnetic pertubed
quantities with their usual meanings. For simplicity, we assume that all the per-
turbed quantities are functions of one spatial coordinate x and time ¢ only. Thus
we consider the wave propagation in the a-direction. Substituting Eq. (5.1) into
the fundamental equations and neglecting the higher order terms, we have 16 linear
partial differential equations for the 16 magnetogasdynamic variables. These mag-
netogasdynamic variables may be divided into three independent groups:

(a) h,=0 which is independent of all the other variables.

(b) Transverse waves: w, h,, J,, J,, £, £, and p,.

(¢) Longitudinal waves: u, v, p’, T, o/, h,, J, and E,

We are looking for periodic solution in which all the perturbed quantities are
proportional to

exp [i(wt—Ax)]=exp [ —td(x — V)] exp (1,%) (5.2)
where o is a given real angular frequency, 1= 2, + 4, is the complex wave number,
i=A4—1 and

V=2 —speed of wave propagation (5.3)

R
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Substituting the expressions in the form of Eq. (5.2) into the linearized equations
of radiation magnetogasdynamics, we obtain the dispersion relation i(w) for both
the transverse and the longitudinal waves.

The dispersion relation for the transverse wave is

2 2 2
(iw—v,, o )[(iw+ugz2) (iw+v,,22—-u,, « ) +V5<22—£)7)]
c* C C .
2 2
——%)2— | & <iw+u,,,22—u,,~%){) =0 (5.4)

where v, is the kinematic viscosity, u,,:wl — is the magnetic diffusivity, V,
ot
=H (p./05)'”* is the z-component of Alfven’s wave velocity and V, = H (1z,/p,)"* is
the y-component of Alfven’s wave velocity. From Eq. (5.4), we see that the trans-
verse wave is independent of compressibility and thermal radiation. There are
two basic transverse waves which are (i) viscous wave depending on v, and (ii)
electromagnetic wave depending on v,,. Eq. (5.4) gives two roots of 2> which
represent the interaction of these two basic transverse waves due to the applied
magnetic field. In classical magnetogasdynamics where the displacement current
is neglected, all the terms with (1/¢*) in Eq. (5.4) vanish. For an ideal plasma,
ie., v,=v,=0, Eq. (5.4) gives the Alfven’s wave.
The dispersion relation of the longitudinal wave is

1 . 4wy w’K* 4y @?
K*<u+z—-—g>2“-{ + g (I+12(y—1)R))
[ Qo 3D, Do 3Ty(r—1) r ’

—iw(C,+20RR, + 16RR;)} 7 _T(“”_l) (1+ 12— 1)R1,)]
o\y —

[ (ZZUH +io—vy, E’_:_) (i +v,2%) + V2 (zz - “i) ]
Cc [

2 2 y % 92
— (zz—fé’z_) (’L‘w—l—vglz)[ﬁ(;)_—l) (A+12(— 1)Rp)~“"_i_*_]V;:o (5.5)
where K*=K +12RR _p,D,, is the effective coefficient of heat conductivity with
thermal radiation and R,=a,T}/3Rp, is the ratio of radiation pressure to gas
pressure.

The first square bracket of Eq. (5.5) gives the sound waves in radiation gas-
dynamics, the second square bracket is the transverse magnetogasdynamic waves
and the last term gives the interaction between the sound wave and electromagnetic
waves.

Some simple waves may be obtained from Eq. (5.5) as special cases:

(a) Sound waves. The first square bracket of Eq. (5.5) gives two roots of A2
which represent two modes of sound waves in a viscous, heat-conducting and radiat-
ing gas. These modes are the modifications of ordinary sound wave and the heat
wave. The heat wave depends on the effective thermal conductivity K*. If K*=0,
there is no heat wave. In an inviscid and non-heat-conducting gas, there is no heat
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wave if the thermal radiation is also negligible. If the thermal radiation is not
negligible, it will introduce a heat wave even if the ordinary thermal conduction is
negligible. Ordinary sound wave exists in an inviscid, non-heat-conducting and
non-radiating heat flux medium. The sound wave speed will be increased by radi-
ation pressure. If we take v, =0, K*=0, the first square bracket will give a sound
speed, i.e., the speed of wave propagation V as follows:

/1+20(I_:l.)R,,+16(I_11_)R;

V=2 _(C — r 7
7 on=h,/ 1+12(;—DE,

(5.6)

where @, is ordinary sound speed with R,=0. Hence thermal radiation increases
the sound speed.

(b) Radiation magnetogasdynamic waves. If V,=0, there is no interaction
between sound wave and electromagnetic wave. If V,0, there is interaction
between sound wave and electromagnetic wave. In general, Eq. (5.5) gives four
different roots of 2* which represent four different modes of the longitudinal wave
of RMGD, which are due to the interaction of heat wave, sound wave, viscous
wave and electromagnetic wave. For an ideal plasma v,=v,=K*=0 with
magnetogasdynamic approximation, Eq. (5.5) becomes

(CR—=VH(Vi-VH—-VV:=0 6.7

where V is the speed of propagation of the RMGD waves in an ideal plasma.
Eq. (5.7) is identical to the well known equation of fast and slow waves of magneto-
gasdynamics except that the radiation sound speed C,, replaces the ordinary sound
speed a,.

(ii) Waves of small amplitude in an optically thin medium. For optically thin
medium, we have to use the integro-differential equations to derive the dispersion
relation. Because of the dependence of the absorption coefficient with frequency,
the speed of propagation depends on the frequency of the wave. The complete
solution of this problem has not been obtained yet. However, some special cases
have been studied which are given in reference [2].

(iii) Shock waves in an optically thick medium. One dimensional flow analysis
may be used to study this problem. The fundamental equations are:

pu=constant=1m (5.8)

mu+p,+(1/2)p H* — (4/3) p(du/dx) = constant =mC, (5.9)

mh, +up,— (4/3)pu(du/dx) — K*(dT/dx)+ EB=constant=mC, (5.10)
uH —v, (dH/dx)=constant=F (5.11)

where B=p,H is the transverse magnetic induction, p, is the sum of radiation
pressure and gas pressure, and %, is the effective enthalphy with radiation effect,
i.e., the enthalphy plus radiation energy density.

We may obtain the Rankine-Hugoniot relation and the shock structure by solving
the system of equations (5.8) to (5.11).
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(a) Rankine-Hugoniot relations. From Egs. (5.8) to (5.11), we have the fol-
lowing Rankine-Hugoniot relations for a normal shock in a radiating and electrically
conducting medium under a transverse magnetic field.

The drop in velocity across the normal shock is given by the ratio:
_ 2 _ 2y 712
u? 1|: 7’6 1 +272(Pe+h1)]+ 1 {[ re 1 +2rP(PV‘+hl)]

U,y 2 Te‘}‘l TL‘*’]. 2 Tc"*‘l TC+1 ’
L 27"
) h_(—re—} (5.12)
[T
where
— 4(T*I)Rll2+r P:(l M2
"3 —DR, 1] o
Pe:(l +Rp1)f(R1ﬁ)P ’ hl:ﬁ
1/ He

The jump in temperature is given by the relation
TZ —_ 1+R7)1

T, _ 4 6L — DIy +20( —HR,, +16(r — DE ] }”4 (5.13)
7, "R, TR+ 1207 — D]

where subscript 1 refers to the value in front of the shock and subscript 2 refers to
the value behind the shock.

As the effective Mach number in front of the shock M,,=u,/C, is very large,
Eq. (5.13) becomes

T,/T,=1.033M:} (5.14)

where we take y=5/3. It is interesting to notice that with radiation effects, the
jump in temperature is proportional to the square root of the Mach number M,
while without radiation effect. the jump of temperature is proportional to the square
of the Mach number M, as M, is very large.

(b) Shock wave structure. There are three diffusion phenomena, i.e., ( i) mo-
lecular diffusion (viscosity and heat conduction), (ii) radiation heat diffusion and
(iii) charged particle diffusion (electrical conductivity). The complete problem has
not been solved particularly for large radiation pressure number. (sce reference [2]).

6. WAVE MOTIONS IN RADIATION MAGNETOGASDYNAMICS
MuLTIFLUID THEORY [4], [5]

Since the multifluid theory considers more detail of flow field than the single fluid
theory, we would expect that new phenomena will appear in multifluid theory which
have been neglected in single fluid theory. The general treatment of multifluid
theory is very complicated and has not been extensively studied yet, particularly
when the thermal radiation effects are considered. In order to show the main
features of multifluid theory, in this section, we consider a simple case in which the
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medium is assumed to be a fully ionized plasma which consists of electrons and one
kind of singly charged ions (N=2) with the following assumptions:
(i) Both ions and electrons may be considered as inviscid and non-heat-con-
ducting gas,
(i1) Thermal radiation effects are negligible,
(iii) Perfect gas law may be applied to all species, and
(iv) The interaction forces between ions and electrons are proportional to the
difference between their mean velocities:

F‘ie:Kie(qi-zie): —Iﬁei (6’1)

where subscript ¢ refers to the value of electrons and subscript ¢ refers to the value
of ions and K,,=K,, is the friction coefficient of the plasma.

In a similar manner as in the single fluid theory, we assume that the disturbed
flow field has the following quantities:

Us= (@, t); Py=D,+ 0., t); T,=T,+Tyx,t);
n,=n,+n)x,t); E=E,t); H=H,+ hx, t)

where s=1 or e and subscript o refers to the partial variables in the undisturbed
state.

Now there are 18 perturbed quantities. We may obtain 18 linearized equations
for these pertubed quantities [3]. Similar to the case of single fluid theory, we find
that 2,=0. However, all the other 17 variables are coupled if the external applied
magnetic field H o is of arbitrary orientation. We may consider again the periodic
motion and find the dispersion relation in the same manner as in the single fluid
theory. Of course, the dispersion relation is much more complicated than those in
the single fluid theory.

(i) Basic waves. If there is no external magnetic field, i.e., Hozo, the 17 per-
turbed quantitics may be separated into three independent groups which may be
considered as three basic waves in the present case. These basic waves are:

P (a) First basic transverse wave with variables v,, v,, £, and &,

(b) Second basic transverse wave with variables w;, w,, K, and h,

(¢) Basic longitudinal waves with variables u,, ., p,, p., T, T., n,, n.,, and E,
We obtain the dispersion relations for these basic waves as follows:

(ii) Basic transverse waves. Since there is no external magnetic field, we can-
not distinguish the two transverse waves and their dispersion relations are identical.
The dispersion relation for the basic transverse wave is:

} 6.2)

. 1—iK3
6222 — 2__ Z w12 6‘ 3
¢ *L+iK3% ¢
where
w,=e(n,/e m,)t =electron plasma frequency (6.4)

m, is the mass of an electron and K}%=K,,/(m n,w). For ideal plasma, K, =0,
the velocity of propagation of these transverse waves is
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V=L=-__ ¢ 6.5
A ( w? ) 3 6.3)

1— Y

(1)2
From Eq. (6.5), we see that the transverse wave is an undamped wave only where
o>, and a damped wave when w < @, which is the mechanism of black-out of
radio communication during the reentry of a space vehicle. In vacuum, n,=0 and
w,=0, Eq. (6.5) gives V=c¢, i.e., the electromagnetic wave is propagated at a

speed of light.

(iii) Basic longitudinal waves. The dispersion relation for the basic longi-
tudinal waves is

p=_2 {[ (1 ) 35_) 12K m] + ” (1 _2 ‘“i) + 2K 7"4]
2a? ? m; w’ m;
2 2 172
41— viral ] (6.6)
where
a,= (yp,/m,n,)t =sound speed of s th species (6.7)
w,= e(n,/m; €)* =ion plasma frequency (6.8)

There are two basic longitudinal waves from Eq. (6.6): One is the ion sound
wave (Corresponding to +sign) which is always an undamped wave and as w—0,
the velocity of propagation of this wave is V,=,2 a,=a, which is the sound speed
of the plasma as a whole. V), decreases as w increases and as w— o, V,=a,, the
sound speed for ions alone. The other longitudinal wave is the electron sound
wave (corresponding to —sign). This wave is a damped wave when w<w, and
undamped wave when o >w,. As w— oo, the speed of propagation of this second
longitudinal wave is V,=a,, the sound speed of electrons alone. The single fluid
theory gives only the results corresponding to w—0.

(iv) Waves under longitudinal external magnetic field [4]. 1t H,+0and H,=0,
the basic longitudinal waves are not affected by the magnetic field. The two basic
transverse waves are interacted. The dispersion relation for these interacted trans-
verse waves is

AQ +24,8+A,=0 (6.9)

The coefficients A,, A, and A, are functions of plasma frequencies, cyclotron fre-
quencies of the species, frequency w and friction coefficient K. For an ideal
plasma, we have the following values for these coefficients:

A — (1_9.fv_i> <1_.€”§e>
° W’ w?

2 2 2 K
A= [(1 ___cs)_) _&2@‘(1 _ _‘.i’m")] 6.10)
c’ w? 08 w? ’ )
4 2 2 2
A — (O} [ (1 . w + W ;W e ) — D ;W e W ]
=2
¢t w? w? OHOK
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and

w“:—gl—g—’i:cyclotron frequency of s th species (6.11)
m

8

The two solutions of 2* of Eq. (6.9) are
—A,+lA]—AA,

A= i = extraordinary waves (ions) (6.12)
0

A= A,— JAAZ— AA, ordinary wave (electrons) (6.13)
0

The variations of A2 and 1} with frequency o are shown in Fig. 6.1. One interest-
ing result is that as w—0, the speed of wave propagation for these two interacted
transverse waves is given by the same formula:

V.
V=2__ 'z

P V (6.14)
\/1 + a

Hence with applied longitudinal magnetic field, we have undamped transverse wavcs
at low frequency instead of damped waves for the case without applied magnetic

+

F1G. 6.1. Variation of 22 with frequency o for interacted transverse waves
given by Egs. (6.12) and (6.13)

field. Hence the applied magnetic field improves the transverse wave propagation
at low frequencies. The detailed discussions of these two interacted waves are given
in reference [4].

(v) Waves under transverse magnetic field [4]. When H,=0 and H,+0, the
first transverse wave (v, etc.) is not affected by the applied magnetic field and the
second transverse wave is interacted with the two longitudinal waves and three new
transverse-longitudinal waves result. The dispersion relations of these interacted
waves is

24 S A+ S+ Sy=0 (6.15)

where the coefficients S,, S, and S, are functions of the sound speeds, plasma fre-
quencies, and cyclotron frequencies of the two species and friction coefficients. For
an ideal plasma, these coefficients have the following values:

‘‘‘‘‘‘‘
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N

Fi1G. 6.2. Dispersion relations for the interacted transverse-longitudinal
waves under transverse magnetic field in an ideal plasma

2 2
S4=i ( (ugﬂ_1> +,f2;_ (2 o)] 14 (:),,L(uq,(>

c? ® i (1)Z w”
o o’
S2 = 2.7t 1 — 14 2 WyiWye
¢ al o’ (uZ ®*
4 2 2
) ® W,
L R e (6.16)
S,= . —(’)2— @ 1 ’ + @y 2 o + @i _ 1
o 4 2 w? 2 2 2
¢ aja; w 0] 19)
eB,
ys T T
m

There are three roots of 2% obtained from Eq. (6.15) which represent three differ-
ent modes of these interacted waves. These roots are sketched in Fig. 6.2. At low
frequency w—0, only one mode is an undamped wave which has the speed of propa-
gation as

V=da:+V: (6.17)

Hence the single fluid theory gives only the results at low frequency. At very high
frequencies w— oo, the three basic modes are decoupled. In reference [4], detailed
discussion of these modes are given.

(vi) Waves under arbitrarily oriented magnetic field [4]. 1f both H_ and H,
are different from zero, all the four basic waves interact and we have four new
modes of the waves in a plasma whose dispersion relation [4] is

Cod*+ C 2+ Codt + C 22+ C, =0 (6.18)

The coefficients C, etc. are functions of plasma frequencies, cyclotron frequencies,
sound speed of these two species and friction coefficient. In Fig. 6.3, we sketch the
case for an ideal plasma. At low frequencies, w—0, there are three undamped
waves and one damped waves. These three undamped waves are the fast wave,
slow wave and transverse wave same as those given in single fluid theory. As
@ >0, the actual results differ greatly from the single fluid theory. The fourth mode
is closely related with the sound waves of electrons which becomes undamped when

w > w,.
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X

FiG. 6.3. Dispersion relations for the interacted waves under arbitrary
oriented magnetic field in an ideal plasma

From the above results, we see that single fluid theory gives correct results for
o—0 only. In general, the actual wave motion differs greatly from those given by
the single fluid theory.

In the above study, we consider only the two fluid theory. If the plasma consists
of more than two species, new modes of wave will results. For instance, if we con-
sider a partially ionized plasma consisting of three species, electrons, one kind of
ions and one kind of neutral particles, we will have a sound wave for the neutral
particles which will interact with all the other waves discussed above. Some pre-
liminary study has been given in reference [5].

7. HEAT TRANSFER IN RADIATION MAGNETOGASDYNAMICS
SINGLE FLUID THEORY [2], [6]

One of the main topics of research for aerospace engineers is the heat transfer
problem. Since at very high temperature both thermal radiation and ionization are
important, we should include these effects in our actual analysis of heat transfer
problems. It seems that the effect of thermal radiation has even less discussed than
that due to electromagnetic field. We thus first discuss a case for thermal radiation
only without the influence of electromagnetic field and then discuss a case with both
thermal radiation and electromagnetic field effects.

(1) Blasius problem in radiation gasdynamics [6]. We consider a uniform flow
of velocity U and temperature T, over a semi-infinite flat plate. We assume that
the temperature 7', is so high that the radiative heat transfer is of the same order of
magnitude as the heat transfer by conduction and convection but the radiation
stresses and radiation energy density are still negligible. We shall neglect those
complicated boundary layer effects of high temperature due to chemical reaction,
diffusion, etc. so that we consider only the essential effects of radiative heat transfer
on the boundary layer over a flat plate. We assume that there is no external applied
magnetic field and the induced electromagnetic field effects are negligible. Under
these conditions, the fundamental equations of our problem are as follows:

p=RpT = constant (7.1)
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dpu  00v _ g (7.2)
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where & is the enthalpy. We may solve for u, v, p and h from Egs. (7.1) to (7.4)
with proper boundary conditions if we can express the radiative heat flux q,, in
terms of the state variables p and T

(a) Radiative heat flux. 1n general, we should express g, in terms of specific
intensity of radiation I, and add the radiative transfer equation for I, in our funda-
mental equations as we have discussed before. For a first approximation, we may
find an expression of ¢, in terms of temperature T and the mean free path of
radiation by making the following approximations :

(1) The thermal radiation is under local thermodynamic equilibrium.

(2) The gas is a gray gas so that the absorption coefficient k; is independent
of frequency v. Actually we may use cither the Rosseland mean absorption co-
efficient (Eq. (3.27)) for the optically thick medium or Planck mean absorption
coefficient K, for the general case or optically thin case. Planck mean absorption
coefficient K, is defined by the formula:

1 had ’
K—_1_ f kB.d 7.5
=B, y (7.5)
where

B(T)= f "By, T)dv

(3) One dimensional approximation, in which we assume that the temperature
and the absorption coefficient depend only on one spatial coordinate . This is a
good approximation for boundary layer problems.

By the gray gas assumption, the integration of ¢, with respect to v may be
carried out and by one dimensional approximation, the integration of ¢q,, with
respect to the angle § may be carried. As a result, the radiative transfer term
becomes [2]:

,__3;1; zzapr[ f Tt —t)dt + f e (8 — tydt —2T" + T%‘uez(t)] (7.6)
/| 0 L

where

t:f‘”pK,,dy

0

c@)= [ exp (—a2)dz
1
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g= —‘1: ca,=Stefan-Boltzmann constant for radiative transfer

(b) Velocity profile. In our study of the thermal radiation effects on the flow
field, we find that the radiative heat flux has only a small effect on the velocity
profile. Hence we use the well known assumptions of boundary layer flow of a
compressible fluid such as the coefficient of viscosity is linearly proportional to the
temperature and then the velocity profile is the Blasius profile in the following form:

Yy __ 0 1, JepU cp 7.7
0 &, v or 3 o Ef'—1) (7.7)
where
'''''' e Y, [oUz y:f'_fi_dy
X ‘Uoo 0 Poo

and f(&) is the well known Blasius function and prime refers to the differentiation
with respect to £&. The velocity profile is similar [6].

(c) Temperature profile. After the velocity profile is obtained, we may calcu-
late the temperature profile from the energy equation:

oh 0k _ Opto (i’“) C1fter (@f’.h)

w420 = : s
dx | 9Y  p. \oY! ' P, \aY

+ 2(;pr[ f “Pre(t—t)dt + f Pt — At + Then(?) —2T“] (7.8)
0 t

where the boundary conditions are
x>0: Y=0, T=T,; Yoo, T-T.,

Even though the velocity profile is similar, the temperature profile is in general not
similar.
Eq. (7.8) has been numerically integrated for various case. Since we consider a
- large variation of temperature, the dependence of the mean absorption coefficient K,
with respect to state variables is important. The following formula is used:

K,=4.5x107"p""exp(5.18 X 10~ T —7.13 X 10°"T?) (7.9)

where K, is in ¢m™', p is in atmospheres and 7' is in °K. The Prandtl number P,
is taken as 0.74 and the wall temperature is assumed to be 2,000°K. The
numerical results are shown in Figs. 7.1 to 7.4.

Fig. 7.1 shows the temperature distribution at a low Mach number M_=1.25.
Since the temperature profile is not similar, we find that it is convenient to us the
following Radiative Flux number R, to denote the x-coordinate:

T3 x‘l
R.—=_91=% 7.10
""K._L,. (7.10)

Without radiation effect, R ,=0 which is shown by the dotted curve in Fig. 7.1.
The solution without radiation effect is a similar solution which holds for all x.
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Fic. 7.1. Temperature Distribution of a Radiating Gas over a Flat Plate.
Low Mach Number Case.

With radiation effect, the thermal boundary layer thickness increases with the radi-
ative flux number R, and the slope d7T/d¢ at the wall decreases with increase
of B,.

Fig. 7.2 shows the temperature distribution of a high Mach number case M_ =
15.00. It is well known that under high Mach number, viscous dissipation becomes
important and the maximum temperature inside the boundary layer will be higher
than those of the free stream temperature 7' and that of the wall 7,. The same
situation exists for the boundary layer of a radiating gas. The effects of thermal
radiation are (i) to decrease the maximum temperature, (ii) to increase the bound-
ary layer thickness and (iii) to decrease the slope dT/d¢ at the wall.

Fig. 7.3 shows the case of an optically thick medium in which the expression
Eq. (3.25) is used for the radiative heat flux. In this case, we have similar solution
for the temperaturc profile. It is advisable in this case to use a radiative flux
number E; independent of 2 to show the effect of radiative heat transfer. We thus
use the following definition for the radiative flux number:

0T Ly..
K

R,= (7.11)

oo

In comparing the resuits of optically thick approximation of Fig. 7.3 with the more
accurate results of Fig. 7.1, we see that the optically thick approximation overesti-
mate the effect of thermal radiation because for the values of same order of magni-
tude of radiative flux, the optically thick approximation gives larger boundary layer
thickness and smaller slope d7/d¢ at the wall than those of the accurate formula of
integral expression.
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FiG. 7.2. Temperature Distribution of a Radiating Gas over a Flat Plate.
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Fi16. 7.3. Temperature Distribution of a Radiating Gas over a Flat Plate.
(Optically Thick Approximation).

In many current literature of radiative heat transfer problems, an optically thin
approximation has been used. For very small absorption, the integral terms in the
accurate formula (7.6) may be neglected and the radiative heat transfer term for
an optically thin medium may be approximated by the formula

s — 40K, (~1'+1 1) (7.12)
Since in our example, T',, is always much smaller than T except in the neighborhood
of the wall, Eq. (7.12) shows that the radiative heat transfer acts as a heat source
in the boundary layer. It increases the temperature inside the boundary layer but
has little effect on the boundary layer thickness which depends mainly on the
absorptivity of the gas. In Fig. 7.4, we show an example that the optically thin
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FiG. 7.4. Temperature Distribution of a Radiating Gas over a Flat Plate.

(Optically Thin Approximation).

approximation gives entirely wrong results in comparison wtih the exact formula
(7.6). Hence special care should be made for the application of optically thin
approximation.

From the temperature distributions, we may calculate the conductive heat transfer
to the wall by means of Nusselt number. In general, the Nusselt number increases
with the pressure and the Mach number of the free stream.

When the radiation effect is very large, we may not have thermal boundary layer
and the wall will have an upstream influence [6].

(ii)  Plane Couette Flow in Radiation Magnetogasdvnamics. Our second cx-
ample is to consider an ionized gas flowing between two parallel plates: One of the
plates is at rest and the other is of uniform motion with a velocity U. There is no
pressure gradient. There is an externally applied transverse magnetic field H,=
H,=constant in the direction perpendicular to the plates and an externally applied
electric field F/,—= E,=constant in the direction perpendicular to both the plates and
the direction of the flow which is in the x-direction. The ionized gas is assumed to
be viscous, heat-conducting, thermal radiating and electrically conducting. The flow
is assumed to be steady and laminar. For simplicity, we assume that all the transport
coeflicients are constant. Thus we may calculate the velocity and magnetic field
first and then the temperature distributions from the energy equation with the known
distributions of the velocity and the x-component of the induced magnetic field. The
equations which govern the velocity % and the magnetic field H, in non-dimensional
form are

7 gﬁ%—ReRHHz:constant (7.13)
dy
dZ“’” —R,(—u+R,) (7.14)
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where R,=LUp,/1r,=Reynolds number of the flow with L as the length of the gap
between the plates; R, =(uH?)/(0,U?)=magnetic pressure number; R,=UL/yv,
=magnetic Reynolds number; R,=F,/uH,U = electric field number. The solu-
tions of Eqs. (7.13) and (7.14) are given in Figs. 7.5 and 7.6 in terms of electric
field number R, and the Hartmann number R, =(R,R, R,)%. It is interesting to
see the influence of the electric field number R, which has not been emphasized in
literature. Even though we call the flow ‘‘Magnetogasdynamics’’, the influence of
the electric field is not negligible. The electric field behaves like a pressure gradient
in the x-direction and it has significant influence in the induced magnetic field H,.

After the velocity and the magnetic field distributions are obtained, we may calcu-
late the temperature distribution from the energy equation:

G—DP, dy; = dy
+ R, R,R,.q,(T)=constant (7.15)

1 dT  ap, @ (:12_ uz) +R.R,R,MH,

upper wall 1.0

lower wall O

|}

Fic. 7.5. Velocity Distribution of Plane Couette Flow in RMGD.
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Fic. 7.6. X-wise Magnetic Field Distribution of Plane Couette Flow in RMGD.

where P, is the Prandtl number of the gas, M= U/a, is the Mach number, R ,=
D1o/Do=radiation pressure number of the lower wall whose temperature is the
reference temperature T,, R,=cL/UL, is the radiation flux number.

In order to slove Eq. (7.15), we have to know the expression of the radiative
heat flux q,. Two expressions have been used for q,: One is the optically thick
approximation which is
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4 mdl

7.16
dy (7.16)

U=

and the other is the modified optically thin approximation. Since we know from
our previous example, we cannot neglect completely the absorption. If the mean
free path of radiation is large in comparison of the typical length L, the following
radiative heat flux expression may be used:

q,{(T):23:.{(T*;+1)T(,,4r f Pty dt— f “Ttydt (7.17)
7 5
where 7,=7(L,/L) and r= fy* pk.dy*, y* is dimensional coordinate.
0

The integration of the energy cquation with ¢q,, given by Eq. (7.16) is

AT —1—y(T—1)]+—T [T —1—(T,—1
[ UTi= D1+ 5 Y(T:—1)]

1 Y
— @Ry [ Hoay— ["Hay |+ w—wy  (7.18)
0 0
where A=R R ,R, and with the expression of ¢, by Eq. (7.17) is

9, 1
-;—A ;— (T%+l)(y‘3—y)+fllﬁdy~yf lndy}
(¢} 0

T [T 1—y(T\—1
oy [T 1=uT=D)

— M@ BBy [ Hdy— ["Hdy |+ i@y (719)
0 0 i

where

l= f Ty — f "Ti(y)dy
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Fic. 7.7. Temperature Distributions fo Plane Couette Flow in RMGD.

Fig. 7.7 shows a typical case of temperature distribution. Without radiation effect,
A =0, the temperature in the flow field is enormously high for the case of large E,
and R,. With the radiation effects considered, the maximum temperature in the
flow field drops a great deal. For the optical thick approximation, the formula
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overestimate the effect of radiation. It is better to use the integral expression. Due
to the effect of thermal radiation, there is a tendency that the temperature in the
central portion of the flow field becomes more or less uniform.

If we want to get more accurate numerical results, we should consider that the
transport coefficients are functions of temperature and pressure. The resulting
equations can be integrated numerically by the help of high speed computing
machine.

8. HEAT TRANSFER IN RADIATION MAGNETOGASDYNAMICS
MuLTIFLUID THEORY [7], [8]

The complete analysis of heat transfer problem in radiation magnetogasdynamics
by multifluid theory has not been worked out yet. In this section we are limited our-
selves to the influence of ionization on the heat transfer problem by the help of
multifluid theory. The continued interest in high energy gas flow phenomena has
led to an increasing number of investigations directed at improving our knowledge
and understanding of the influence of ionization on the fluid flows. These investi-
gations have, in general, been concentrated in two areas: namely, investigations of
the electrical characteristics of flows and investigations of surface heat transfer in
ionized flows. The studies of plasma electrical characteristics are, in general, di-
rected toward the improvement of diasnostic techniques such as the Lanemuir-tvpe
probe, which is used to measure ion and electren number densities. The heat trans-
fer investigations are generally directed toward the solution of problems of planetary
entry or toward the solution of problems of design of very high tempcrature experi-
mental facilities. TIn this section, we are concerned primarily with the study of heat
transfer mechanisms. Althoush these arens of investigation can in some cases b~
explored separately, it is probable that the electric effects, whether induced or
applied, will be present and hence, will contribute to the heat transfer process.

In this section. we seek to assess the effects of (a) the difference of temperature

. of electrons and that of heavy narticles. (b) the non-cquilibrium in degree of ioni-
zation due to clectrical field and (¢) the contribution of heat tronsfer bv thermal
conduction. diffusion and viscous dissination in the flow field of an ionized gas.
Multifluid theory will be used in the analysis.

We consider a partially ionized monatomic argon eas flowing between two parallel
plates. a distance L apart. with the lower plate stationarv and the upper plate mov-
ing at an aporeciate velocity in the positive x-direction. Fig. 8.1 shows a sketch
of this problem. The lower plate is considered to be the cooler surface and is com-
pletely catelytic in recombination of the ion-electron flux reaching it by diffusion.
The upper moving plate is at quite a high temperature and is assumed to be capable
of ionizing the incident atom flux with a specified efficiency. Although the surface
ionization mechanism was not specified, its hypothesis was necessary, since only
heterogeneous chemical reactions were assumed. Otherwise expressed, the dif-
fusional flow normal to the plates consists of a flux of atoms, originating at the cool
plate by the deionization, which flows to the hot plate and is ionized, thereby initiat-

‘‘‘‘‘
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ing a flux of ions and electrons from the hot to cooled plates. For the multifluid
theory investigations, we make the further assumption that the cool plate has a small
negative potential, whereas the hot plate has a slightly positive potential, but their
magnitude is such that there is zero net current flow.

Two further assumptions were made which are generally considered consistent
with the assumed physical model. First, it was considered that the ions and atoms
are mutually in thermal equilibrium. This assumption is based on the fact that
particles of approximately equal mass exchange a large percentage of the initial
differcnce in the kinetic energy in a collision, and, hence, very few collisions would
be necessary for thermal equilibrium. The converse of this reasoning, when applied
to electron-heavy particle collisions, is the basis of the concent of clectron thermal
nonequilibrium. The second assumption was that the z-component of all species
velocities is considered equal.

The solution of our problem depends on the accuracy of the determination of the
transport coefficients 4, k,, K,, and K/,. Considerable effort has been made in
determination of these coefficients. The details are given by Powers [8]. The varia-
tions of these transport coefficients for ionized Argon with the state variables are
as follows:

(i) Coefficients of viscosity:

10%2,=0.8167,—3.903 x 10-*T2 4 1.073 X 10~*T? g/cm-sec. for T ,<1500°K

(8.1a)

10%,=0.0249T".™ g/cm-sec. for T, >1500°K (8.1b)

1.=0.434 < 107°T%/In (1.24 X 10*T}*/n}/*) g/cm-sec. (8.1¢)

,=1.171 X 10~"T??/In (1.24 X 10'T%*/n}*) g/cm-sec. (8.1d)
(ii) Coeflicients of thermal conductivity:

k,=0.1867p, cal/cm-sec.°K (8.22)

k,=1.334 10", cal/cm-sec.°K (8.2b)

k;=0.1861p, cal/cm-sec.°K (8.2¢)
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where subscript “a” refers to neutral atoms of argon, subscript “¢” refers to singly
charged ions and subscript “e” refers to electrons. Even though Egs. (8.1) and
(8.2) may be used without reservation for high-temperature. Low-density plasma,
it is apparent that Egs. (8.1c) and (8.1d) are singular when T,=1.87X 10-3nl3.
Physically, this corresponds to the condition that exists when the kinetic energy of
the collision is qual to the Coulombic potential energy at a distance of a Debye
radius, and implies that such low-energy collisions should not be properly included.
To circumvent this difficulty, the low-temperature values of ion or electron transport
coefficients were assumed to be linear in temperature with constant of proportional-
ity chosen as a function of number density %, in such 2 manner as to insure con-
tinuity in the first derivatives with respect to temperature T, at the point of transition

from low- to high- temperature expression, i.e.,

9

3
prem Foym e lem K exp—g_[l—ln(l.24><10“/nx1})] P (8.3)

When the transport properties of either the atoms, ions, or electrons in the pres-
ence of other species were required, these properties were derived in manner that
mixture law based on mean free path considerations will be used [8], i.e., the vis-
cosity and thermal conductivity in the presence of other species was the pure species
value multiplied by the ratio of the pure species mean free path to the mean free path
taking into account collisions with other species.

(iii) Resistance coefficients.

32
logm[ K"“X&]:o.ms log,, T, —0.0356
na%i
+(0.168 10g,, T, —0.0356)'— 0.154 log, T, +2.54'* (8.4a,

where T, is in degrees Kclvin.

4 2
= 8rte nineln(3%RATeru/e ) [ _rrz_% erf —q; __wq*_ e_q%w] (8.4b)
,uieq‘ 144 a

where

Hie™= mime/(mi +m,) , Yp= (RA Te/47r'ne6)§
a*=[2R ,(m,T.+m/T)/mm;]t, q=|v;—,|

Kr— 4renn,In BR,T.r,/€’) erf( q > (8.4¢)

!liaq —C—(—

We neglect K,, and K%, which are found to be very small.
The important parameters in our problem are as follows:
(i) Reynolds number of sth specics based on velocity v,:

Revs = msnsvsL/,usL

(ii) Mach numbers:
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M = Vsr, ) M — Uy,
* QR,T, /m)} Y QR,T,/m)t

(iii) Prandtl number:

2mk,,

(iv) Electrical, potential parameters:

dre*n,, L? dren,, L*
P,= "¢ Rerts p,= R0
mv;, mo?,

(v) Interaction force parameters:

K, L? T L?
Rypgp=—2 ’ R =1
HsL sLTsL

where subscript L refers to the value on the upper plate, i.e., y=L.

In order to define our problem, we have to know the range of these non-
dimensional parameters. What we have considered are the following physical
conditions [7]:

(i) Temperature range is from 5,000°K to 10,000°K.

(1) u, is from 1.2 x 10’ to 7 x 10* meters/sec.

(iii) Pressure is of the order of 10~* atmosphere.

(iv) L=1cm.

As we have mentioned, the following assumptions are made:

(a) The lower plate is a cool plate and is completely catalytic in recombination
of the ion-electron flux reaching it by diffusion.

(b) The upper plate is at quite a high temperature and is assumed to be capable
of ionizing the incident atom flux with a specified efficiency.

(¢) The temperature of heavy particles are equal, 7,=T,.

(d) The z-components of velocity of all species are equal, u,=u.

(e) There is no source term.

Under these conditions, the basic differential equations for the unknowns u, n,,
v, T,, T, and E, are as follows:

danov, (8.5)
dy
(vt oot p0) G =1L Gt 1) o] (8.6)
XN _C(z;;;_— % -ol% (gs %;A) +R, d?f*‘-: til K, (v,—wv,) 8.7

4 dv, \* ( dv, )] BT ( dv, dv, )
i Ty i\ - - LY n, — TNy
3 [‘“"< dy ) e dy | . Fiate dy + dy
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d' n @ T(',

,@E}/. =4re(n,—n,) (8.10)
dy

The above equations are suitable for the physical conditions of our problem in
which M <1, M, /R, <1 and M2 P,>1 and the inertial and viscous terms are
““““““ ‘ negligible in the y-wise momentum equations and ambipolar diffusion exists over a
major portion of the core region. There is a very thin sheath layer near the upper
and lower plates, which are of a thickness of a few Debye lengths. Hence it is
sufficiént to study the flow in the core region given by Egs. (8.5) to (8.10) with the
sheath layer as a boundary condition to determine the electron temperature.

Eqgs. (8.5) to (8.10) should be solved for proper boundary conditions. Since
the mean free path of the gas is much smaller than the characteristic length L in our
problem, no slip of all velocities on the wall and no temperature jump for the heavy
particles on the wall may be used as the proper boundary conditions. The bound-
ary condition on the electron temperature was evaluated by applying a very ele-
mentary sheath layer concept. Within the sheath layer, charge neutrality breaks
down and the sheath potential varies to its wall value in such a manner that there is
zero net current flowing to the walls. Under the physical model considered, the
lower wall was assumed to be at a small negative potential, and, hence, only
electrons possessing kinetic energy, which is greater than the electrostatic potential
energy of the wall, will be able to reach the wall. Similarly, the upper wall is
assumed to be at a small positive potential. In this case, only electrons of sufficient
kinetic energy can overcome the attractive potential and enter the core region where
they come under the influence of diffusive forces. Using these concepts, one can
compute the energy of electrons at the edge of a sheath layer, and then, accounting
for the energy change across the sheath because of the wail potential ¢, it is possible
to obtain an electron energy balance between the core and sheath layers. From the
boundary condition, the electron temperature is given in terms of the wall potentials.

The last boundary condition is to assume a fixed number flux n,v, for a given
case.

The solution of the core system of equations consists mathematically of solving
five ordinary differential equations for the five functions: u(y), v.(¥), v,=v.(¥),
T.(y) and T,(y). The equations are coupled, and the boundary conditions are
split; hence, they must be integrated simultaneously, and one must deduce the cor-
rect values of a given number of initial conditions at one wall to satisfy the bound-
ary conditions at the other wall.

In our computations, the given boundary conditions and a set of trial values were

This document is provided by JAXA.



38 S. 1. Pai

used at one wall to start the numerical integration of the equation system. 1f the
trial values did not satisfy the boundary conditions at thz other wall, the difierence
between the desired and obtained values was retained. Then small perturbations in
each of the trial values were made successively, and the complete system of differ-
ential equations was integrated for cach perturbation to obtain increments. Thus,
it was possible to define approximate partial derivatives of the correction in the
dependent variable with respect to a change in the trial values. After a few iter-
ations, a satisfactory solution was generally obtained.

After the functional dependence of the flow variables has been determined by the
preceding numerical procedures, the description of the flow was essentially com-
plete, and the quantities of interest, namely the heat transfer rate and skin friction
coefficient could be expressed in terms of these variables. The expressions for the
heat transfer are a bit more complex because we have to consider the conduction by
the atoms and electrons and the diffusion of deionization energy. The conduction
of ions was negligible.

We compare our results of multifluid theory with the following two well known
single fluid theories:

(a) Equilibrium single fluid theory in which all properties of the flowing par-
tially ionized gas can be determined by relations describing a stationary gas in
thermochemical equilibrium.

(b) Frozen flow single fluid theory in which all chemical reactions are frozen
in the flow. This is the same assumption used in the muitifluid theory and hence,
the frozen single fluid theory might be expected to serve as a better criterion for
comparison with the multifluid results.

Numerical computations have been carried out for the physical conditions de-
scribed above by IBM 7094. The following are some of our main results [7], [8]:

(i) Dependence of upper wall temperature. Fig. 8.2 shows the heat transfer
rate ¢ with upper wall temperature T', at a given lower wall temperature T,=
2500°K. It is seen that at lower temperature with moderate thermal non-equi-
librium, the multifluid theory results are similar to the single fluid theory results and
that at temperature above 8000°K, there is a divergence of the theories. First the
diffusion of deionization energy is greater at higher temperature for the frozen single
fluid theory because the diffusive mass flux is concentration controlled rather than
chemically rated controlled. Second the contribution due to clectron conduction is
important.

(ii) Thermal Non-equilibrium effects. As it became apparent that increased
degrees of thermal non-cquilibrium had a large effect on the electron conductive
heat-transfer contributions, it appears desirable to investigate the phenomenon in
detail. The thermal non-equilibrium depends on the electrical potential. Fig. 8.3
shows the variation of heat transfer rate with wall potential difference. 1t shows
that the heat transfer rate is decreased with more positive potential differences. This
results is consistent with the postulated physical situation and, by examination of

the figure, it is seen to result directly from the decrease in electron conduction
contribution.
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FiGg. 8.3. Heat transfer rate vs wall potential difference.

(iii) Mach number effects and skin friction. Fig. 8.4 shows the variation of
the heat transfer rate with the velocity of the upper plate. The contribution of the
viscous coupling depends on the Mach number of the species. Since the electron
sound speed is much larger than that of the atoms, the clectron conductive heat
transfer contribution is thus insensitive to the velecity u, .

Fig. 8.5 shows the variation of the skin friction cocfficient with the velocity of the
upper wall. There appears to be reasonable similarity between the single- and
multi-fluid {rozen flow calculations.

(iv) Dependence of solution on ionization mechanism. In connection with the
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Fic. 8.4. Heat transfer rate vs velocity of the upper plate.

boundary conditions, the concept of an ionizing upper wall was introduced. This
concept was based on the assumption that the upper wall chemical reactions could
be described by a series of equations that define the species mass fiux in terms of a
non-equilibrium number density and a phenomenalogical efficiency which is related
to the probability of incident atoms being converted to ions at the wall. The vari-
ation of ionization mechanism is equivalent to the variation of the mass flux.
Fig. 8.6 shows the variation of heat transfer rate with the ion number flux. At the
lower pressure level, both of the conductive contribution ¢, and ¢, were fairly inde-
pendent of the number flux. The diffusive contribution resulting from the release
of ionization energy by electron-ion recombination necessarily increases linearly
with the number density flux, causing the total heat transfer q, to increase similarly.
At the higher pressure level, a somewhat unexpected results occurs.  For both upper
wall temperatures we calculate T, =5000°K and 10000°K, the computations indi-
cate a negative conductive contribution from the electrons and, hence a reduction in
the total energy transfer.

Summaring the results in which we have sought to evaluate some of the effects of
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Fic. 8.6. Heat transfer rate vs ion number flux at two pressure levels.

non-equilibrium ionization on surface heat transfer in a fluid flow situation, we have
come to the following general conclusions:

(1) The multifluid theory equation system, when judiciously used, is consistent
with single fluid procedures and is particularly effective in evaluating the relative
importance of different energy transfer mechanisms.

(2) Thermal non-equilibrium, which is characterized by electron temperature
greater than heavy particle temperatures, results in a reduced total heat transfer,
and the possibility of controlling the wall heat transfer by inducing thermal non-
equilibrium through variations in the wall electrical potential is suggested.

(3) The coupling of the viscous flow variables is shown by the multifluid theory
to have a significant effect on the heavy-particle temperature profiles and has a
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negligible effect on the electron temperature profiles.
(4) Finally, the pressure level of the investigation strongly influences the degree
of thermal non-equilibrium which may be realized.
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