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Summary: A theoretical investigation is presented on the effect of atmospheric non-
uniformity on the decay of shock waves generated by a supersonic aircraft in steady
d level flight with special reference to sonic boom problem:.
At the outset, analysis is made for an axisymmetric body in an adiabatic atmosphere,

together with two-dimensional body case for the sake of reference. The decay rule of a
.’ﬂ bow shock due to atmospheric nonuniformity is obtained by the application of Whitham’s
P theory on the behavior of shock waves at large distances from the body in a uniform
i medium to the case of a stratified atmosphere. Numerical calculations are carried out at
] flight Mach numbers from 1.3 to 3.0 and flight altitudes up to 10 km.
( Extension of the above-mentioned technique makes it possible to obtain the decay of
| a bow shock in an arbitrary stratified atmosphere and a numerical calculation is made

for the case of an axisymmetric body in a standard atmosphere at the same flight Mach
i numbers as above and flight altitudes up to 20km. The result shows good agreement

with existing flight test-data and other theoretical result by different method.

| SyMBOLS

¢: speed of sound
Cp, C»:  specific heats at constant pressure and volume
g: acceleration due to gravity
h(¢): nondimensional shape function of two-dimensional body
i specific enthalpy
‘ K,: reflection factor
* I: body length
m, m':  1/(y-1), 1/(n-1)
M: Mach number
: n: polytropic exponent
3 p: pressure
dp: pressure jump across a shock wave
v, q: flow velocity vector and its magnitude
r»(§): nondimensional radius of the body of revolution
R: wave decay rate due to atmospheric nonuniformity
A gas constant of air
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182 R. Kawamura and M. Makino

s: specific entropy
T: absolute temperature
U: free stream velocity

Vg, Uy, V.. components of nondimensional velocity in Cartesian coordinate
system

Vs, Vry Vy: components of nondimensional velocity in cylindrical coordinate
system

(x, ¥, 2): Cartesian coordinate system
(x, r, 6): cylindrical coordinate system
z*: distance measured downwards from the upper boundary of a poly-
tropic atmosphere

BT,

atmospheric lapse rate

ratio of specific heats

flow deflection angle

Mach angle

€, &, »: nondimensional coordinates, x/I, z/! and r/I, respectively
7.: nondimensional distance between aircraft and tropopause

V" =R ™™

p: density
7. exact characteristic variable
@: velocity potential

Ug: disturbance velocity potential
w: function related to Mach line
®: vorticity
£2: gravitation potential

SUBSCRIPTS

oo :  value in undisturbed field
a: value at flight altitude
g: value on the ground
x, ¥, z: differentiation with respect to x, y and z, respectively

A prime denotes disturbance quantity or differentiation in case by case, and a
bar on a symbol indicates the value in the vertical plane including flight path.

1. INTRODUCTION

The importance of sonic boom phenomena has recently been taken cognizance
of increasingly prior to the introduction of the supersonic transport into com-
mercial air service. This is understood partly from the fact that the number of
papers on sonic boom problems published in the past ten years amounts to near
one handred involving ones on community reaction and the like. Most of the
studies on generation and propagation of sonic boom made so far, however, do
not take into account the complete influences of variation of atmospheric condition
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The Effect of Atmospheric Nonuniformity on Sonic Boom Intensities 183

with altitude, except for acoustic treatment of the refraction of rays due to the
gradient of atmospheric temperature [1], [2].

The far-field behavior of shock waves in a stationary, uniform medium produced
by a supersonic projectile in steady level flight was investigated by G. B. Whitham
in 1952. The essential part of his theory lies in deriving a higher approximation
than the linearized one by the use of so-called Whitham’s technique. He applied
the method first to the case of body of revolution in steady flight [3], and sub-
sequently extended it to the case of thin symmetric wing[4]. P. S. Rao is the first
one who applied Whitham’s method to the sonic boom problem. He dealt with
the case of accelerating flight of a body of revolution in a uniform atmosphere [5].

Although Whitham’s theory itself was not directly derived for the solution of
the sonic boom problem, it is quite useful in constructing sonic boom theory be-
cause of its well description of the behavior of weak shock waves in the far-field
from the origin. Thus, his theory has led up the approach to estimate sonic boom
intensities caused by supersonic aircrafts in steady level flight. However, since his
theory originally refers to a uniform atmosphere, it can not be applied without
modification to the actual atmosphere in which pressure, temperature and density
vary with altitude.

The modification mainly used so far is simply to replace the uniform reference
pressure in Whitham’s theory by the geometric mean of the atmospheric pressures
at flight altitude, p,, and on the ground, p,- As a result, the following formula
generally used to estimate sonic boom intensities on the ground is obtained:

—4—11=er/ Pa _ 21 (Mg—l)ﬁ[fl"F(z)dz]%h—% 1.1
Py py (r+1)t 0

where K, is the reflection factor on the ground, M, the flight Mach number, 7 the
specific heats ratio, /1 the flight altitude, and the integral is a quantity depending
only on the aircraft shape. The above formula participates in a so-called volume
boom.

Although it has been well confirmed by various flight tests [6] that Eq. (1.1)
gives us fairly good estimation of sonic boom intensity, it is still felt that the .
modification mentioned above is in short of full theoretical foundation, and, there-
fore, the present study aims at developing a theory to account for the effect of
atmospheric nonuniformity on shock wave propagation. In 1963, M. P. Fried-
man and his coworkers constructed a numerical method of treating sonic boom
problem in general form by use of ray-shock theory [7]. Comparison of the result
of the present study with that of Friedman’s will be made later.

In the present study, an attempt is made to extend Whitham’s theory to the case
of nonuniform atmosphere and obtain theoretical correction factor for atmospheric
nonuniformity in the sonic boom problem. Attention is restricted only to volume
boom, since lift boom may be treated by introducing the concept of an equivalent
body of revolution by the use of supersonic area rule [8]. In the present analysis
the influence of atmospheric winds is not considered.

In Chapter 2 survey is made of the structure and the state of the atmosphere,
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and in Chapter 3 the relation between atmospheric nonuniformity and creation of
vorticity due to disturbances is discussed. As a result, it is verified that a potential
flow is possible in the whole field only in case of a small disturbance flow in an
adiabatic atmosphere with a special lapse rate as to make the whole flow field
isoenergetic. In Chapter 4 the fundamental equation common to various kinds
of atmosphere is derived. In the first place, the assumption of an adiabatic atmos-
phere is made in order to make analysis easy by use of velocity potential, and
linearized potential equations including the effect of atmospheric nonuniformity
is derived for a thin two-dimensional body as well as a slender axisymmetric body.
Next, the linearized equation for an actual atmosphere is derived for a slender
body of revolution. In Chapter 5 the solutions are obtained for an adiabatic
atmosphere by the application of Whitham’s technique and the expressions of sonic
boom intensities are given for two-dimensional and axisymmetric bodies. In the
latter case, analysis is valid only in the field near the vertical plane including the
flight path. In Chapter 6, is presented a general treatment of the problem in an
arbitrarily nonuniform atmosphere where velocity potential no more exists. Numer-
ical results is obtained for the case of an axisymmetric body in the standard atmos-
phere including the stratosphere.

2. ATMOSPHERIC STATES

The phenomena of sonic boom are brought about due to the propagation of
shock waves through an atmosphere. Therefore, the study of the phenomena
requires the knowledge of atmospheric states. An atmosphere is in stratified
layers and consists of four spheres which are called, upwards from the earth,
troposphere, stratosphere, ionosphere and exosphere. The service flight altitude of
aircrafts is anticipated up to about 20 km even though SST’s are considered of.
Therefore, it is sufficient in the present study to deal with a troposphere and a
stratosphere about 35 km above the sea level. If aircrafts would fly at higher
altitudes, sonic booms would become much weaker on the ground, and so do not
give rise to any public discussion.

According to the standard atmosphere established by ICAO in 1952, a tropos-
phere is defined as a layer 11 km in thickness above the sea level. in which the
atmospheric temperature decrease with altitude at the rate of 0.0065°C/m from
15°C at the sea level, and the temperature in the bottom region of a stratosphere
is prescrived to be —56.5°C independent of altitude. In addition of such tempera-
ture variations, its pressure and density also change keeping static equilibrium
everywhere under the action of gravity. Since atmospheric phenomena change in
a very complicated way, it is difficult to describe the state of an actual atmosphere
exactly by theoretical method.

For the sake of simplicity of calculations are often treated hypothetical atmos-
pheres composed of perfect gases, namely, homogeneous, isothermal, adiabatic and
polytropic atmospheres. An isothermal atmosphere corresponds to the state of
stratosphere, and a polytropic atmosphere with a constant lapse rate does to that
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The Effect of Atmospheric Nonuniformity on Sonic Boom Intensities 185

of a troposphere. The atmosphere with a temperature gradient can not be in
thermal equilibrium, but in mechanical equilibrium. Then a question arises whether
or not the equilibrium of state can be stable; when disturbances are added to break
the equilibrium, it is said to be stable if the displaced air particle tends to return
to its original position. Otherwise, the equilibrium is said to be unstable, and this
leads to the occurrence of convection which tends to mix the medium in the

5 direction of a uniform state.

’ For a polytropic atmosphere there is a relation p=Kp" between pressure and
density, and other kinds of atmospheres are special cases of this atmosphere. For
instance, the case of n = 1 corresponds to an isothermal atmosphere, and the
case of n = y does to an adiabatic atmosphere where v is the ratio of specific heats
for air. By simple calculation, the lapse rate 8 of a polytropic atmosphere is found
to be (n—1)g/(n#), and further investigation of equilibrium shows that the

(" mechanical equilibrium is stable only when B<(r—1)g/(Z%). From this fact

it can be said that an adiabatic atmosphere is in neutral equilibrium. For y=1.40

¢ @ and for #= 287.0 m?/sec® °C, the lapse rate of an adiabatic atmosphere becomes

0.00976°C/m which is larger than the value 0.0065°C/m of troposphere in a

standard atmosphere. In the troposphere of a standard atmosphere with a poly-

tropic exponent n = 1.24, no convection is caused by a disturbance, because the
equilibrium is stable for the case n< 1.40 from the discussion given above.

The fact that the atmospheric temperature in a polytropic atmosphere decreases
with altitude suggests the existance of the upper limit of the atmosphere. Now let
z* be a distance measured vertically downwards from the level where the absolute
temperature of the atmosphere vanishes (Fig. 1), T., be the absolute temperature
at the point z* and 8 be the atmospheric temperature gradient. Then we can write

T, =pz*. (2.1)
Therefore, the speed of sound at this point c¢., becomes

o’

|
L g
Lo *

aircraft

i — -

@]

ground

LTI 7777777 777777777

FiG. 1. Positional relation between coordinate systems for analysis of
sonic boom and for expression of atmospheric state.
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=1 AT..= 1R 2.2)

Further, if the origin of the coordinate system (x, y, z) is chosen at the nose of
a body as shown in Fig. 1, Eq. (2.2) is rewritten by use of the temperature T, and
speed of sound ¢, at the flight altitude as

cz,:c':;(1+ gz) 2.3)

where § is equal to the aforementioned lapse rate (11— Dg/(n%).

3. RELATION BETWEEN VORTICITY AND ATMOSPHERIC NONUNIFORMITY

In case of a uniform atmosphere, entropy change through a shock wave is of
order of the cube of the velocity or pressure change. When the shock wave is
weak, entropy change may be safely neglected in the approximation where smaller
order than the cube of the changes of these quantities is allowed to be neglected.
Hence the flow field can be considered as an isentropic one and can be treated as
a potential flow without vorticity. However, in considering more general cases,
such as an actual atmosphere, the treatment of potential flow is not always per-
mitted even in the same approximation as mentioned above. Next, discussions are
made on this point.

The atmosphere considered is assumed to be composed of a perfect gas with
constant specific heats and without viscosity and heat conductivity. Such a phe-
nomenon as a sonic boom takes place in a so extensive region that the variation
of density due to gravity force has to be taken into account. Therefore, the gravity
force term must be added to the fundamental equations in the ordinary aero-
dynamic. The required equations are given as follows:

continuity : %it)——{—div ov=0, 3.1
. Dv 1
momentum: ——= —grad Q——gradp, 3.2)
Dt 0
Ds
entropy: —-=0, 3.3
Py: - (3.3)
state:  p=Akp" exp(s/c,) (3.4)

where @ is gravitation potential, and s is specific entropy. Assuming the atmosphere
to be adiabatic, let the coordinate system shown in Fig. 1 move in the holizontal
direction of the negative x-axis at a velocity U and we observe the phenomenon
from this system, where y-axis is taken perpendicularly to the x-z plane and the
origin at the nose of the body.

Now. using Eq. (3.2) and the thermal relation, we get

v><w——g1'ad<—})_q"’+.0+i)+Tgrads:0 3.5)
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for the steady state. This equation is called Crocco’s theorem which gives the
relation between entropy and vorticity as w=rotp. Provided that the strength
of a shock wave is so weak that the entropy jump across it is safely neglected, the
entropy becomes constant everywhere in the whole flow field by Eq. (3.3) because
the entropy ahead of the shock wave is uniform in the adiabatic atmosphere and
the last term in the left hand side of Eq. (3.5) vanishes. Making scalar product
of Eq. (3.5) and v, we get

v-grad(%qw.ow):o. (3.6)
Hence, along a streamline,
% q*+ Q +i=const. 3.7)
Here, the gravitation potential 2 is expressed as
Q= —gz* (3.8)
and the enthalpy i is
i=c,T + const 3.9
where ¢, is the specific heat at constant pressure. From Eq. (2.1)
T = 0=1Dg .« (3.10)
&4

for an adiabatic atmosphere, and therefore in the upper stream with constant velo-
city U, the left hand side of Eq. (3.7) becomes, irrespective of the altitude,

1 . 1

—Ut—gz* T.,=-=-U 3.11
) gzt + ¢y 5 ( )
Finally we conclude that Eq. (3.7) is valid in the whole flow field and the constant
in Eq. (3.7) is equal to $U% Rewriting Eq. (3.7) by use of the local speed of

sound c,
1 , e c? 1.,
— — Q2 - :——U‘ 312
54— 9+ L1773 (3.12)
which holds in the whole flow field. In this case Eq. (3.5) becomes simply
vXw=0. (3.13)

This formula implies either the flow is irrotational or the velocity and vorticity
vectors are parallel to each other. Only in two-dimensional flow, where the vorti-
city vector is perpendicular to the velocity vector, Eq. (3.13) implies the flow is
irrotational.

Thus, under the assumption of an adiabatic atmosphere where the vorticity is
zero in the undisturbed field, Eq. (3.13) indicates that the flow is everywhere
irrotational, and we can make use of the velocity potential analysis in approxima-
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188 R. Kawamura and M. Makino

tion of neglecting the entropy change across the shock wave. The entropy for
other than adiabatic atmospheres varies with altitude and the field is not homo-
energetic. Therefore, when disturbances are added to the flow, the vorticities will
be generated even if the state of the undisturbed flow is stable, and the treatment
as irrotational flow fails.

These conclusions are also deduced from the application of Kelvin’s theorem
for a compressible fluid.

4. FUNDAMENTAL EQUATIONS

When the components of the velocity vector v along each axis in the coordin-
ates (x, ¥, z) shown in Fig. 1 are denoted by (v,, vy, v;), Eqs. (3.1) to (3.4) be-
come in a steady flow

continuity : prx+8pvy +a"mz=0, (4.1)
0x ay 0z
momentum: v, av“’ +v, Vs +v, s =~—1~ op , (4.2a)
oy 02 o 0x
ov ov ov 1 0
Vy—Y 4w Y 4y, —¥ = , 4.2b
ox TV dy 0z o oy (4.2)
ov ov ov 1 op
Ve —2 40 24y, — =g — , 4.2c
‘ax+?’ay+ azgpaz (4.2¢)
entropy: v, ——(pp ’)+vy——(pp ’)+vz 5 (pp‘f)— (4.3)
In the undisturbed stream we have
9P, 0P .
wf——2=0, =2=0, Z==0, 4.4
f=g 0z ay ox &4

Next, as shown in Fig. 2, defining a cylindrical coordinate system (x, r, §) with
an origin at the nose of a body, the above equations are converted into the following
form by using the relations

y=rsinf, z=rcosé,

r=Jy'+27}, 6f=tan"(y/z).

Continuity: 0@+ 4 1 0(ervy) 1 3(ev)) _ ¢ (4.6)
ox r or r 06
momentum: v, av“‘+v,21’i‘+ﬂ v, _ 1 ?p , 4.7a)
ox or r o6 p 0x
8v v, 0v, v} I ap
L Vr Uy OUr_ VS cos f — — =, 4.7b)
Y ox + 6 r a6 r g p or (
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-

/U’

Y

FiG. 2. Coordinate system for an axisymmetric body.

v, ov, , v, 0V, , Vv, . 1 op
Vg v, L T = gsinf—— 4.7
ox + or r 06 * r g o rof (4-72)
entropy: v, 0 (P~ ")+, i(pp")+1’fi(pp"’)=0, (4.8)
0x or r 06
p,,,gsinﬁ-{-_l_ @2:0, —pwgccsﬁ—%—@ﬁzo, “4.9)
r 06 or
poo:'%peoToo' (4'5)

Next, these equations will be linearized for the cases of an adiabatic atmosphere
and the standard atmosphere.

I. The Case of an Adiabatic Atmosphere

Since in this case the flow field is homentropic according to the assumption made
in Chapter 3, the energy equation is always satisfied and velocity potential exists
in a small disturbance flow.

(i) Two-Dimensional Body Case

Prior to more general case, two-dimensional problem, though not realistic, is
considered here. In this case the flow does not change in the direction of y-axis.
Using the relations

_1_2:_1_(_98_) 9o _ ¢ 9 (4.10a)
p 0x pl\dp/sdx p 0Ox

1 op_¢ op (4.10D)
p 0z p 02

the following gas-dynamic equation is obtained by eliminating p and p from the
equation of motion (4.2) and the continuity equation (4.1).
v, ov, , v,

+(C2"'v?)‘a_v_z—va'vz (—‘J‘”{"*—*‘)'f‘gvz:() (411)
0x 0z

22
(€ —=v) ax | oz
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Let the velocity potential be denoted by @, and the velocity components are

expressed as
=g, n=2L.
Then Eq. (4.11) becomes
(= P)Ps+ (= P)D2:—29:0.0,, + 99, =0 (4.12)

where the subscripts indicate differentiation with respect to each variable. Further
by using a disturbance potential, U¢, which satisfies

Eq. (4.12) is written in the following from:

‘Ij—i (¢J,x -+ ¢zz) - (1 + ¢.r)2¢zx _¢Z¢zz -2 ¢z(1 + ¢x)¢zx + —Ug? ¢z =0. (4 14)

From Eq. (3.12), which is Bernoulli’s equation, the local speed of sound is given
as
s o _y—1 n_ o _T—1p 2 2
C—c«.————i—-(q —U)—cm———i—U(2¢z+¢.u+¢z) (4.15)

where the relation g*= @?% + @? is used in the last term. The speed of snund at z
in the undisturbed field is given by Eq. (2.3) as

: — 21 5Z) 2.3
c=afi+£) (2.3)

If higher than the second order terms of the perturbation velocity are neglected
after substituting Eq. (4.15) into Eq. (4.14), Eq. (4.14) reduces to the following
linearized equation:

(U2—1)¢“—¢,z— 9_4,=0. (4.16)

cZ c
This equation can be written in a convenient nondimensional form, by introduc--
ing following nondimensional quantities:

e=X =2 o= 4o B e Uit

T I r—1 T, =
M=Y 4.17)
Ca
where ! is the body length. With these notations, Eq. (4.16) becomes
; M:,
(Mo — Dpee— dee—ma—=- ¢, =0. (4.18)

@

(i1) Axisymmetric Body Case
In this case, the velocity components in Eqs. (4.6) and (4.7) are written by
use of a potential function as follows:
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0, _00 . _30

or’ T roe’

If the potential function is given as @=U(x+¢), Eqs. (4.6) and (4.7) are lineariz-
ed as in the case of two-dimensional body and result in

Co

2
(_Uw-—1>¢u—¢,,—i br— g I (¢,.cos 6— L g,sin 0) =0. (4.19)
? r r ck r

Nondimensionalization by the relation

2
s=“f‘, v=§a m:;‘l:.} a= ﬁl, Mi:g » MiL=M;(1+ancos6)”

a

leads Eq. (4.19) to the following:

1 1 M
(M%—1D)pee— ¢,y —— ¢,— — Goo—Max
7 7 M

: (qﬂvcos 7, —% &,SIn 6) =0. (4.20)
II. The Fundamental Equations in a Standard Atmosphere
In this case the velocity potential no more exists and the analysis should be
made over the two regions, a troposphere and a stratosphere. The two-dimensional
body case is so unrealistic that it is not treated here, and axisymmetric body case
alone is considered. The equations are linearized under the assumption of small
disturbance in the same manner as before.

Considering the following expression for velocity components, pressure and
density

v.,=U(1+72"), v,=U0v,, v,=Uv',
p=p.+p, p=p.+0,

and nondimensionalization

x=1§, r=ly,
Eqgs. (4.6) to (4.8) are linearized in the forms
v, |, 9o vl , 00, | 1 ( , o), , ap,,,)
00— + o 4 — | PVe+t Pos +v,—==21=0, 4.21
e e 3E +p 677 + 67] + ” o +p Y] ) Y ( )
e (4.22a)
¢ o0&
., OV op’
LUP— =p'glcos f— , 4.22b)
0 o Y 3 (
s 0V . 1 op :
U —2 = —p'glsin §— — , 4.22¢)
5¢ 09 , 00 (
’ 4 7 4 y/ Ny’
0P 4y 9P 4 ¥ 0P +;—pw( Ve p O vy L "”")zo (4.23)

o0& oy y 00 o0& dp 7 n 00

where Eq. (4.9) is used.
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5. INTENSITIES OF SONIC BOOMS IN AN ADIABATIC ATMOSPHERE
I.  Two-Dimensional Body Case
(1) The Solution of the Linearized Equation
In this case the fundamental equation is Eq. (4.18).
2
(Mi_1)¢es_¢cc“‘ma“];%¢c=0’ M., =M1 +al)™". (4.18)
Now, the solution of this equation is assumed to be in the form
¢=1fE—0)+u il —0)+ 5 flf—w)+ - - - (5.1)
as Rao did in his work dealing with the acceleration effect on sonic booms[5].
Here y, y1, 12 - - - and  are functions of ¢ only, and the following relations are :
assumed to hold: ‘@
¢ ¢ ¢ i
ho=[wd, wo=[taod o= [t G
0 0 0 ¢ 1 B
In the above relations f is an arbitrary function which depends on body configura-
tion. Substituting Eq. (5.1) into Eq. (4.18) and putting the coefficients of fif £
-+ - equal to zero because of the reason that the function f is arbitrary, the follow-
ing equations with respect to w, y, 1, - - - are obtained.
o= (ML —1), (5:3)
xt+Py=0, (5.4a)
X+ Pr=0;, (5.4b)
Yoz T Pra=0,, (5.4¢)
where
1 [ w, M? f
P=_<.&. A), A=maMe 5.5 ;
2 o, + « M (3.5 ‘;
0=t Au (5.64) {1
sz E
0,= et Axe , » (5.6b) :
20 i
From Eq. (5.3) £ —w=const turns out to describe a Mach line. The integration #
of Eqs. (5.3) and (5.4) is easily carried out. ‘
o=+ f(M%, -1 +C, (5.7
y=Ke-Jr%, (5.8a)
1= el [0 + K, (5.8b)
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n=et ”""[I Q,efradg +Kz], (5.8¢)

In Eq. (5.7) the plus sign is taken because only the Mach lines pointing down-
stream from the body are to be considered from the physical view point. Using
the relation M%=M:(1+d)™* the integration of Eq. (5.7) is performed to give
the expression of o in the form of a power series of a as follows:

I M M M
a)-—ﬁ[(Ma D= T c+ Tt 2_1)&}

X(@l)P4-evennn ]+C. (5.9)

The integration constant C in Eq. (5.7) becomes zero by the condition that Eq.
(5.9) should be reduced to the case of a uniform atmosphere by putting a==0.
From Egs. (5.3) and (5.5), the integration of P in Eqs. (5.8) is given by

ML —1\i{/ M, \™
Pd :ln{( = ) ( ) } 5.10)
Jpd M:—-1 M, ( )
Hence, from Eq. (5.8a),
M: -1\ M_\™
=K( : ) ( °°) . 5.11a
X M1 M, ( )
Thus, ¥, xg5 + =+ -+ - are successively determined from Egs. (5.8b), (5.8¢), - - - to.
result in
) ) | (7 +2m(5-1)
=(-=Z¢e K,+K M2 — 1) 2 —1
X (M?,,——l M, 1+ 4Ma ( ) 2 +2m >
1 1 5 1 H
L T R 5.11b)
3 (M2 —1) 12 (M2, —1) ( )

EE

H

) ) T

(L

—1) ’_"___)
1){ +2m<7 1

5 1 ]
+ (M2—1)+12 M —17 )
“27. - {m <~—m_—-l) (-:i +2m~~'11—-1> M2,
16M: 2 4 2
5/(3 m_ 31 Tm w1
(3 om T e —1 <____.m-1)
8(44”'" 2 )( 166 2
77 1 385 1 H
24 (M —1)* 288 (M:—1))1

>~ MIH

+

The integration constants K, K,, K, - - - in Egs. (5.11) are determined so that the
solutions just obtained may be reduced to the solution for a uniform atmosphere
by putting « equal to zero.
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In case of « being zero, the present solution becomes
¢=KfE—JMi—1 )+ K fi(§—IM.~1 )+ Kfo(§ —IM—1 )+ - -+ (5.12)

while in case of a uniform atmosphere the solution obviously takes the familiar
form:

p=f(E—IM;—170). (5.13)

Since Eqgs. (5.12) and (5.13) are to be coincident, K, K, K,, - - - are determined
as follows

K=1, K,=Ky=----- =0. (5.14)

In the solution thus obtained f is related to the coordinate /(&) of the body surface
by the following equation

&)= ”TMTL—”T"“S)' (5.15)

(i1) Pressure Jump across the Shock Wave in the Far-Field

In the following analysis, Whitham’s higher approximation technique is applied
to the linear solution just obtained. This theory is based on the cardinal hypothesis
as follows: the linearized theory gives a correct first approximation to the flow
everywhere provided that the value which it predicts for any physical quantity, at
a given distance { from the axis on the approximate Mach line § — w=const, point-
ing downstream from a given point on the body surface, is interpreted as the value,
at that distance from the axis, on the exact Mach line which points down-stream
from the said point. According to this hypothesis, the higher approximate solu-
tion of the problem can be obtained by replacing (§—w) in Eq. (5.1) by z(§, ),
where z(§, {) = const denoted the exact Mach line. The practical value of the
hypothesis exists in the fact that if a sufficiently good approximation to the exact
Mach lines, e.g. a second approximation, is used, instead of the exact one, the
approximation is still effective in improving the solution. If the linear solution is
known, the second approximation to the Mach lines may be deduced.

Next, we determined this second approximation to the Mach lines. The direc-
tion of a Mach line is given as

gi_ — cot(i+5), (5.16)

where p is the local Mach angle and § is the local flow angle. Using the local
speed of sound ¢ determined from Bernoulli’s equation together with the magnitude
of the velocity g,

p=sin' S =y, — (ML — 1)~} (1 +l‘_‘2:_1_ M‘~;,>va+ 0w+,  (5.17)
q

s=tan=[o/(1 + )" ="+ O +v). (5.18)

Hence. Eq. (5.16) may be reduced to the form
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dS 9 (T‘*‘l)M:Q ’ ’ ’
—=ML—1) + e gl — MLy, + (M2 — D)W, ]+ O +v22).
dag 2(MZ—1) ) ( ) (5.19)

The values for v, and v; are given in the following forms by differentiating Eq.
(5.1) with respect to & and { respectively.

Vol=¢. =1 6 —w)+ pfE— o)+ i —w)+ - - -, (5.20a)
vil= G= _chf/(g”“w) + (Xz;—wcb)f(&“‘w) + (ch_wc):z)f1(§‘—w) Tt (5-2Ob)

In the right side of Eqs. (5.20), those terms other than the first are small by the
factors « or high powers of @ compared with the first. Hence, retaining only the
first term in Eqgs. (5.20), we get

11 g M?z:l 1 M_\™ ree
vlz—qﬁe—(Mi_l) (M) f(E—w), (5.21a)
Vil=¢ = —(ML—1)ig,. (5.21b)

The substitution of Egs. (5.21) in Eq. (5.19) gives, on replacing (¢ —w) with z and
neglecting smaller terms than O(v7?+v/?), the equation of direction of the higher
approximate Mach line. This equation holds all along any downstream-pointing
Mach line along which r is constant, starting from the initial value given by & —
(M;—1) at the body. The integration is performed at z=const resulting in

= ML 1AL kP () 1) + 7, (5.22)

where

b QD 1)
21 Mr

R (GRS Ly

Eq. (5.22) is the second approximation to the equation of the Mach line which
emanates from a point on the axis at a distance = from the nose.

The next step is to determine the shape of the front shock. As is easily ob-
tained from the shock conditions, a weak shock wave has the following geometrical
property: its direction bisects, to the first order in the strength, the Mach directions
ahead of and behind it. The Mach direction angle ahead of the shock wave where
the flow is undisturbed is obviously equal to p.. The gradient of the Mach line
behind the shock is calculated from Eq. (5.22) as

g _ 1

A T e e e T U 5-23
ds (M2 — D)+ kf'(2) - T'(0) tan(ye., +¢,), ( )

where ., + ¢, is the Mach direction angle behind the shock. Hence,
&= —kf'(z) - I({)sin’y.,, . (5.24)

Assuming the shape of the shock in the form

f= f ML — -G | (5.25)
0
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0 ¥
the direction of shock, (#+e,), is given as
dg 1
tan(u, +e&)=—2= . 5.26
et = = == 20
Hence,
&, =G'({) sin’y,, . (5.27)
According to the angle property of shock wave stated above, ¢, is equal to 2¢,, and
therefore, from Egs. (5.24) and (5.27),
G Q== 2 k') TQ). (5.28)
The point (¢, £) under consideration is a cross point of the shock wave and the
Mach line behind it; hence eliminating & ——J\(Mfc—l)id(; from Eqgs. (5.22) and *
(5.25), 0
GO +kf (1)) +7=0. (5.29) o

Since { also can be considered as a function of z, the equation for the function
¢(z) is obtained by differentiating Eq. (5.29) with respect to = and eliminating G’({)
from Eq. (5.28). The result is

—%— kf (') %Q +kf()IE) +1=0, (5.30)
T
or
d 1 72 —_ {7
Z[.2_ kf <r>1<c>] = (o). (5.31)

The shock wave must start at the leading edge of the body. Hence, Eq. (5.31) is
integrated, under the intial condition r =0 when { =0, resulting in

= _ 2 Jfmav
(O= = 252 (5.32)
This formula relates the position on the shock wave with that on the body axis.
From Eq. (5.32) it is possible to find the value of ¢ in the far-field where ¢ is
large. A little investigation of Eq. (5.32) may show that, because I(?) is a monot-
onic increasing function, { becomes very large when ¢ takes the value near 7, which
is the first zero of f'(r) apart from =0 itself. The asymptotic expression of Eq.
(5.31) thus obtained is

[F/(e))san = — [%%%]5 (5.33)

For a closed body, 7, exists since f f'(v)dv=0 and hence there must be at least
0

one zero. Detailed discussions on this point is beyond the scope of this paper and
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should be refered to Whitham’s original paper [3]. Thus from Eq. (5.29) using the
above result,

GO =[—2kfof (WA —7,. (5.34)
The pressure jump across the shock wave is easily found using the shock condi-
tion together with the shock inclination as
dp _p—p. _ 4y (ML-1) .,
A = G'(©). 5.35
Do Per r+1 M : -39
Combining Eqs. (5.28) and (5.33) with Eq. (5.35),

-2 on (L ) o]

Pe (7+1)% M. —1

% [— % f '“f'(u)du] (5.36)

Eq. (5.36) expresses the pressure jump across the front shock at large distance
from the body flying at supersonic speeds in an adiabatic atmosphere. On the
other hand, the pressure jump in the uniform atmosphere can be easily obtained
by putting « equal to zero and its final form is

(—;’9 (ri 5 (M- 1)14-%[__;_ of "’f'(u)d»]"' . (5.37)
Let the ratio of the pressure jump in the adiabatic and the uniform atmospheres be
denoted by R. Then
M:i—1 M_\"+? 4
(M_°'___1) (Ma ) [ fgl(g)df] ©.38)
where
JO=1+A4,al+ Ax(@l)’ + Al + - -+ o+ , (5.39)

3 m
A= Mz — 1-1_(2 __),
1= of ) +2

1 (21 3 o m
sM2—1)1— 3 ap M;‘-—l'l} (2 ) ME(M2 — 1)1
= 2{16 ) 5 Ml ) AN ( )
2+ 5)(+5)
—_— 2 - 3 —~ I
+2( +2)(3+2),
1{231 63 9 rnrs }
d=L P2 - anoe 1+ Lapee—1y-
5 ( )" 0 ( ) +2 ( )
— (22 e mian -0 2 e — 1y
2 16 2
3 (242 3+ 2wz - 1)

Rl g)
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Rewriting Eq. (5.38), the following is obtained.

MZ___I i_ M m+2 A A
1) \a,) LT ett g

A3 3 * e . —%
+0 @0 + } . (5.40)

R thus obtained is the theoretical modification factor which is to replace the

aforementioned classical one, N DPo/D, -

II. Axisymmetric Body Case

(1) The Solution of the Linearized Equation
In this case Eq. (4.20) is used and the solution is obtained by the same way as
in the two-dimensional case. Thus, the solution is assumed in the form

¢:X'f(g—'w)’*'Xl'fl(f_w)+X2‘f2(5—w)+ """ (5.41)
where

f,(0) = f i, )= f B, (5.42)

Here, y, y1, 7:- -and o are functions of 7 and §. Substituting Eq. (5.41) into Eq.
(4.20), and putting the coefficients of 1, f', f, f,- - -equal to zero, we get the fol-
lowing equations for w, y, y,, - -

M —1)—a? — L y2—0, (5.43a)
pe

2

M
20)7)5!1 + @ X + '1- w, X + % WoXp+ 'l‘, Weg), + Mot —= w,x COS 0
7 7’ 7 M

2
a

2
—maM= 1, sino—o, (5.43b)
a 7
1 2 1 M:?
20,0, 00+ — o0+ —3 ©@oYaot —5 @og)a +Mat —=w,y, €08 §
Y U 7 M
—me Mi”—!-w,,sin ﬁzxw-i—w)l?—x”—}——;—g;goﬂtnzo: f’xycosﬁ
—maM=1 . Gng, (5.43¢)

2
a

2

1 1 M2
20%,7(2@ +w,, % + —w,Xs+ % WgXap T — WpXa +m“““2— @, X5€0s @
7 7’ 7’ M

a

2 . 1 1 M:

—me M:“ —l— Wp)Y2 SIN = Y1y + "—l—XIq + —5 Y160 -+ ma——;"xlv cos
:l 77 77 a

—ma °° 1 Y1,8in 6. (5.43d)
a 7

It is not easy to solve Egs. (5.43) in exact forms succesively, because w, ¥, x, - +
are two-variable functions instead of one as in two-dimensional body case. In the
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practical treatment of the sonic boom problem, of most importance is the pressure
jump across the shock in the region directly below the flight path where 6 is nearly
zero. In this point of view and also for the sake of simplicity, we expand o, ¥,
X1, - - -in power series of §* considering symmetricity of the flow field as

0=0® +F0® +fo®. .., (5.44)
Y=+ 0D + 6> .., (5.45)
L=u"+ 00+ 0P + -, (5.46)

..................

where 0@, @™, -+, O, ¥®, ..., KO, ¥ ... are functions of n only. Substituting
these into Eqs. (5.43) with expansion of sin 6 and cos 4, and putting the coeficients
of 6" terms equal to zero, the following equations are derived:

(M2, — 1)—i*=0, (5.47a)
W= 2 L “?_{Wi _, (5.47b)
T ML) AM(M:, — 1yt
8 oV 9 an 1 M: ( M2, )
o® @»_ X Mo 6a 1
T G T a8 G-\ T hE
1 o*
—r (5.47¢)
2 (01 BTy
o 1 2 o® M
0) 0 _
X0+ — 5 ( a)“” +;+ 7 o® + ma Ma);( 0, (5.47d)
1/ o© 10 o M2 1 oW
x;"+——( w1 1000 )x‘”—( 2 —
2 R A M M;l 7 o
Lo 1 aP 6 el
2 @® 2 w‘f’ 7 o® w® 2 M2 ®
ma Mo, oy ML 0___ @y ©
+—4— W—Tnm M4)X wgo)x (5.47¢)
1/ 0® 1 1 x(m
(0) 0
X +—2~( w(”l)”) +; w(O) + 1 M2 )X 2 . w(o)
O) m 2 (0
R iz (D | ma MLy (5.47f)

2n o 7 0" 2 M: @O
where
M:=M:(1+an). (5.48)
On integrating Eq. (5.47a), »'® is determined as

=+ f(Mi"‘ 1)idy+C. (5.49)

Here, the plus sign is taken and the integration constants are equal to zero because
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of the same reason as in two-dimensional body case. Eq. (5.47b) can be integrat-
ed to yield

oW =_1 (M2 — )i g [C +J'(7\2—2-——1); }-1. (5.50)

In case of a uniform atmosphere, v should become zero, and hence, C,=0 in
Eq. (5.50). Combining Eq. (5.47d) with Eqgs. (5.49) and (5.50), we get the fol-
lowing equation for y®:

. 1 +Py©=0 (5.51)
where

1 { 0 1 ./\7[2}

P—_—" 7% o -

2 Vo Oty —1ydy M

Eq. (5.51) has the solution
X = K@e-fPan— K<°>(M§"1)*<M w){ f ”(A_:IEL__I_)%dv] - (5.52)
M: -1/ \M, M2 —1

where K@ is a constant. Similarly, the other functions o®,. .-, ¥®,..., ¥, ..
in Eqgs. (5.47) can be obtained successively. The integration constants K and
others are all determined in the same way as was done in the two-dimensional
body case: that is, first, disturbance velocity components in the adiabatic atmo-
sphere are calculated, and then « is reduced to zero in them. The results must be
coincide with the disturbance velocity components in case of a uniform atmosphere
already obtained in the ordinary supersonic theory.

When « is put equal to zero in the obtained disturbance velocity components in
x-direction v’ and in r-direction v/, they become

Vil=¢:=KVy ¥ (§ —IM;—T7) — [;K("’(MZ 1)~ip-1

— KOy @ = = )+ [ S KoMz~ 1)y
128
— KM =) KOy 1~ M Tyt - (5.53a)

vi=¢,=—KO9 (M}, -1} (—IMi— 1) — [—Z—K””?“-‘
KO M= 1l [ NFE= T ) + [ KoM~ 1)y
4 KO = KPOL— Dy (M= T 4 - (5.53)

On the other hand the gasdynamics equation in case of a uniform atmosphere is

(M§~1)¢es—¢,7,—~;17~¢v:0. (5.54)

3
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From its well known solution, we get

b= — ff-dfi?v o'()dt , (5.550)
) [(E— 1y — (ML — D’}
b= L (-t E=Da s (5.55b)
7 [(¢—2*~Mo— Dy}t
where ¢(&) is related to the distribution function, r,(§), of the body radius as
a(&)=Ir,r}. (5.56)
Egs. (5.55) can be expanded into the following forms:

1 e a'(t)
# QMi—1 17;)*f E—ME_1n—1)}

X[1_$~4M3_177—t+3(5——JM§-1??—f)2
4(M%— 1)y 32(M;— 1)y
_SE—=IME—1 77'“t)3+.. -]dt, (5.57a)
128(M2 — 1)ty
gm ML=V Lol o)
T RIME—T Y E—IMi—19—t)
x[1+3(e—4Mg~1 n—1)_SE—JMI—17—1)
4M2— 1)y 32(M;—Dy*
L TE—IM =171 ..]dt_ (5.57b)

128(M= — 1)iy®

In order that Egs. (5.53) coincide with Eqgs. (5.57) respectively, the following
relations must be satisfied :

KO— _ 1 KO—K®...=0 (5.58)
(ZJMmfb—l )i H 1 2 > :

(E—JME—1p) = t=aul-1y o’ (t)dt _ 5.59

A ” of (E—AME—T7—0)} -2

Thus, in the plane of §=0, the disturbance velocity components in the linearized
theory are expressed as

;5 —_ (O)f’(f (0)) + % O)f(s w(O))+x O)fl(C"CU(O)) 4+, ('5.60‘1)
8,= — o1 Of (€ —0) + (U — AN — ) + () — 027
Xf(E—w®)+ - -, (5.60b)

A detailed investigation of each term in Egs. (5.60) indicates that those terms higher
than the second are small compared to the first ones at a large distance from the
body. Neglecting those terms, we finally obtain

¢e=1"f (¢ —o®), (5.614)

This document is provided by JAXA.




202 R. Kawamura and M. Makino

= — (M~ —1)g,. (5.61b)

Higher approximation can be obtained by replacing the Mach line, & —«‘®=const,
in the linearized theory by the second approximation of the Mach line, z(¢,7)=
const, in Egs. (5.61). Thus, the higher approximation of the disturbance velocity
is given in the following forms from Egs. (5.59) and (5.61),

b e [ 12 o (Y (e o

(5.62a)
§,= —(M%—1)t4, (5.62b)
where
_1( a’'(Hdt
F(r)= ; ) -—w—_(r——t)é . (5.63)

(i) Pressure Jump across the Shock Wave in the Far-Field

The analysis of the pressure jump across the shock wave in the far-field can be
made completely parallel to the case of the two-dimensional body. If the Mach
angle and the flow deflection angle in the plane §=0 are denoted by  and 0 res-
pectively, they are given by

i (12— 173 (14 T L L4 0@ 477 (5.64)
o=0.4+0@1+77). (5.65)
Hence, the direction of Mach line at a point in the disturbed field becomes
dE TR M (T+ 1)]‘7:«; 75/
28 —cot =M% — 1) 42—
g e+ H=( T Sy
— M [v;+ (M2 — D)+ 0@ +77) (5.66)

which gives the equation of the Mach line behind the shock wave as
£ f "ML, —1ytdy —kF(z) - I(n) + = (5.67)
0

where
k=2"%y+1)M,",

1 M 1 Mi—1\%, |-}
I(”)‘! (ML — 1) {f (M1_1)d’7] dr.

0

Finally, the pressure jump across the shock is obtained in the following form:

et S (5 el o]

2} ; Tu % M2_1 % M m+2
e r ] M2 —1 & -g[f F I ] ( —_'L ) ( w)
Gy (M, —1)%y ) O\ 55 7) \ ',
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B, Bz 2 3 3 %
XL Zan+ ey +—E () £ -

% {1 + _:1?(/11 + Dy)an+ ?(Ag_}’ A,D, + Dy)(an)’

A+ 4D+ AD DY) | (5.68)

where A4,, A,, A,,- - -are the same as those given in Eq. (5.39), and

2
B,= "; M2 —1)-,

M:?
Bz—-‘g—M (M — )—2——5&(M3L—1)_1’

BS:_ng(M(zl_l)-a____?’_Mi(Mz 1) L Ma (M" ) s
16 4
1
Dl:_Z”Bls
1/ 3 1
D - — __B2_____B )3
) ( 16 = 377
1/5
i b

................

The ratio, R, of the pressure jump in an adiabatic atmosphere to that in a uni-
form one is given as

2 1 AT m+
() e
1) \'m, 2

B, . b1
+22 @y + -} 1A+ Dy

+ 4 (Aot 4D, + D)@Y + = (As+AD,

+AD,+D)(an) + - - } (5.69)

6. INTENSITIES OF SONIC BOOMS IN A STANDARD ATMOSHERE

(i) The Solution of the Linearized Equation

As already mentioned in Chapter 5, the potential flow is no more valid in this
case, so that the fundamental equations are Eqs. (4.21), (4.22) and (4.23). Now,
the solutions for disturbances in velocity, pressure and density are assumed as
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¢}
V=006 —0) +V5fo(§ —0) +Vifs(E —0)+- - -, (6.1a)
V=V — o) +Vnf(§ — o) TV —w) + - - -, (6.1b)
Vo="Vf1(§ — 0) +Vof o § — @) +V5efs(§ —w) + - - -, (6.10)
P'=pifi§ —w)+pfi§ — @) +pifs6 —aw) + - - -, (6.1d)
o' = pih(§ — ) + pf o —w) + psfs(§ — @) + - - -, (6.1€)
where again the relations (5.42) hold. Substituting these expansions in Egs. (4.21)
to (4.23) and equating the coeficients of f; to zero, we get
2
oL (140} +-2 Jot=0, (6.2)
@, 7 |
vt 22 =0, (6.3) ¢
v 1
209/ 5
pi— =T o, (6.4) N
w')
vn—-2 Log—o, (6.5)
w, 7
1
DI+ 1PV — 0,05 —‘7]—0)07)4’91)20- (6.6)
From Egs. (6.3) to (6.6), the differential equation by which Mach cones are deter-
mined is deduced as
(Mi—l)—wi—%wﬁ:O. (6.7)
7
By putting the coefficient f, equal to zero, the following equations are obtained:
1 /
va.’rz + P; + pw(v:'lq - wﬂ’”:‘z) + ’v;lpnoq + ';; {peﬂvﬂ + Pm(’véla
— Wggn) + 7)$1Pooa} =0, (6.8) ¢
PU V= — D, (6.9)
p U= pigl cos 6 — (p1, — w,p2), (6.10)
2, ’ 1 1 ’
U= — p1gl sin 0—';7‘(1)10"609?9: (6.11)
’ ’ v, ’ ’ ’ v,
P2+ VDoy+ A Do+ 7P {v.r2 + WV, —0,V5) + —771*
7
1 /
+ ’7‘7— (Voro— ©04V) } =0. (6.12)
From Eqgs. (6.9) and (6.10) we get
&
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piglcos 6 —p1,— U™,

Vo= 6.13
o (6.13)
From Egs. (6.10) and (6.11)
A WL - {l(&P;q”l’;av)
7 o, 0.,U? w,
——p{gl<_1- @ cosﬁ-}-sinﬁ)}. (6.14)
/A
From Egs. (6.10) and (6.12)
’
(0U* — 7D — 1P 0?0l — 191 COS 6 + P71, + 0,V7:1P0, + @, % Deos
+ 700, { '52+v?177+ Vi +~“‘(’Ualo w,,’t),’,z)}zo. (6.15)

When Egs. (6.13) and (6.14) are substituted in Eq. (6.15), the coefficient of v,
vanishes automatically using Eq. (6.7). As a result we get

(i ’ 1 1 ’ ’
Ty p19l cos —p;, —— w, —(a)opxq-wypw)
U 7 Uy

4

_p;gl(l w, €0s 6+ o, sin 0) H +1Pu(w, V7, + 0, Un
7

4
+ U),;';l;v;w) + 0, VP, + 0, %‘— Pws— P19l cOs 6 +pf,=0. (6.16)
From Egs. (6.2) and (6.7)
0= %—:M;vg. (6.17)

7

Differenciations of Egs. (6.4) and (6.5) with respect to » and ¢ yield

U =U®
p;r]: ( P ) vvl + P 7117’

7 ‘ wV

U? u,U"
p;a: ( fer >0'U;1 + i r109

W, @,

Using these expressions together with Eq. (6.5), Eq. (6.16) finally can be written

as
27:17]+%(w0) 7w+"1_io(‘£i> 11+'—_{1+( ) _1‘} v:-l
!

w 2 0o /i
+w_lm_ (p‘”) 'v,l———lg(w") gL v;,€08 0
7p 77 w w, [] n [0] Coe
_ @ gl 2 9!, sin =0. (6.18)
w, &

7
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Further we assume v;, and w can be expanded in the form

VL=V D P 4 (6.19)
0= + 0D £ Fo® + . . . (6.20)

Substituting these expressions in Eq. (6.18) and gathering the coefficients of £°, we
have

1 o (5 1 oV 1
/(0) © ’ — 8
v+ S Eer) w1 e (6.21)
where from Eq. (6.7)
w(l) 77 7}2 {f 2 -1
=—24 _ _ dg} : (6.22)
wy? 2 (ML= (M2 —1)
Hence, Eq. (6.21) becomes
v+ {2 (L) : K
VIO _ _ V=0.  (6.23
" e e e — ey | ™ ©29

Integrating this, we find

1 (0) = 1
Y TN P Y
1 U O R v ER Y 7.y ey e

(6.24)
Y M,—1\+( (7 M2—1\%,6 -4
= — KO, — 1yt | 0a (__«_) 1l (.t ) dy) " 6.25
( >\/p o) 1) Lr) (6.25)
We must chose the integration constant as
KO— __ &{ ,,,,,
RIMZ 1)t
because of the same reason as in case of an adiabatic atmosphere. Hence we have
2
T (ML — 1)L ga_(M::_l_)*
QIMz—-1) Y 5, \ ML —1
1 M?—1\3 %
] P
| E—o) (6.26)
where
~~~~~~~~ 1 Iu —1 Ul(t)dt
f§—MI=T = + f AU .
(& =7 (E—IMZ_1p—1)}

(i) Pressure Jump across the shock wave at large distance

From Eq. (3.7) we have
lareree) g rams e Ugey s
r— r—

(6.27)

4

e )

¢
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along any given streamline passing through the point z*, the distance from the
upper limit of an atmosphere. The defiection of the streamline, 4z*, is considered
small, or 4z*/z* « 1. Neglecting 4z*/z*, the local speed of sound becomes as

E:Ew{l—l;—l— My, + O@2+772) (6.28)

which is the same form as in the case of an adiabatic atmosphere. Therefore, the
equation for the direction of the Mach line is given by

¢= [T 1= 1)y —kF () 1) + = (6.29)

where
k=274 + DV pa

1 (7 g (dt
F(T)_Tf (f—z)% ’

(’7)_.( 5. (Mz——l) U (%2:11)%d7)}~%d77

Using Eq. (6.7) and the results obtained above, the pressure jump across the
shock in the far-field can be derived by the parallel process to the adiabatic atmo-
sphere case. The final result becomes

dp_ 2y Mw>2(Mi—1) Pa (M2 — 1)k
p. (r+1)é( M1 \/ ( )

[ () e v*‘( =) (=)
x{ Of ”( %2_11)5(177} ty 77] [ ! F(y)du]% (6.30)

which is capable to describe pressure jumps in any kind of atmospheres. For
instance, in the cases of isothermal and uniform atmospheres, Eq. (6.30) becomes,
respectively,

_;’_Z_ . +1)% — 1) \/pa, —.[Of”\/%v—mﬁ]'%[Ufr”F(u)dp]%, (6.31)

dp 2ty ) - o %

A _ (M2 — )iy %[ f F(u)dv] . (6.32)
P (1) )

Of course, Eq. (6.32) coincide fully with Whitham’s formula. In case of a poly-

tropic atmosphere, we can write as

BB wely
e M, n—1

and

In case of an adiabatic atmosphere which is a special case of a polytropic one.
we can get again Eq. (5.68) by putting n = y in Eq. (6.30).
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208 R. Kawamura and M. Makino

Next, the case of a standard atmosphere will be treated. As already stated in
Chapter 2, the atmosphere has a discontinuity of temperature gradient at altitude
of about 11 km, and under this boundary its temperature gradient is constant,
while above the boundary it is zero, namely, the temperature is constant. The
treatment for the flight under 11 km in altitude can be done by use of Egs. (6.30)
and (6.33), but in case of the flight above 11 km it is necessary to divide the
region into two parts which are of nondimensional breadth of 7. from the aircraft

and of 57—z, from 7, to the ground as shown in Fig. 3.

B A

|
1 aircraht

™

tropopause

ground

LSS 777777777

Fic. 3. Division of the region for flight in a stratosphere.

Fiom Eq. (6.30),

dp_ 2y <£~;)"’(Jl_4_:i)*\/9 (M2 — 1)}
Po G+DY\M, )\ 1) N e

o ([ ME=1 NG R o e\ -
a Pa
clf o [ S
0 7c d had 0
N AT
La — d
+f \/pm(Ma 1) 1) @

o T o]

where by simple calculation,
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¢
Using Egs. (6.35) and (6.36) and reforming it to a convienient form for calcu-
lation we finally get

Adp _p .o vz 7 LI ,
P —R2G+ 00— i f Fo)d| 7, (6.37)

0

Aq m’+2 2
A=

ok e
= ) et -Hep (6.38)
where
n

k=—_" |
2(n—1)
J()={1+ean+elan)’+ean)’+---}-4, (6.40)

(6.39)

-1 (1= T )
7

MMz — 12 (1= 22 ) — 2 a - 1) (1= 2 )
7 6 7

R L (e (BN )
7 16 7
Fom 11— e )
8 7

H(v)z[ Jile_{ @kang) | Gkano® | Qkany)® | } o+ {1+D1(a>7)
7

1.3 1.3.5 1.3.5.7

[—
———
i
N

+ Dy(an)* + Dy(an)® + - - -

1 _ 1 . e 1 . Ne et
D= (A= ga) 1 7)+(§‘ AI)(*;‘)(I‘#.:)

rol%) (- 75)
—a| 4] [1— ,
+41 v o

(6.41)

3 o7y 7 1)
) gl E(1= 20+ {43 Ladr g o

s (Z) (1= 20) - {(Gaarg a) -5 o (2 (1-Z)
Z e — e ) = —a,| —=a L) (1-1L
+16 a, . . 4(11 J+6a- 80 . .y

o

D,= i {A3 —_ (Z a A, +— a,A, + —-1— 03) + (—5?32—0;141 + 'é'(haz)

5 g\ 1 1 1 I
— ag} (1—77—_'-)——-5—{3A3—4(-Za1A2+-6_a2A1+—8- aa)
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¢
3 1 15 AR
5<__a2A -—aa>—~~_ 3} (175)(1—120_) _{3A
Pyt aa) gl AN e
1 1 1 3 1 75
——6<——aA —a,A -—a) 10(——a"’A ——aa)——_ 3}
41z+621+82+ 3211+812 12801
N\, ﬁg 2 —_ vcg _ - _1_ 1 1 )
/<(7]> (1 77?) {Aa 4(4a1A2+-6—a2A1+_8—a3
3 2 1 25 3 e 8 770% 1
+10(-Zatd,+ ) - 35 (%) (1“;7? +{{5 o
1 1 <[ 3 1 75 (pc ‘( _ 7;%)
+€a2A1+'é— a3> 5(“35“1’414'—85‘671“2) +‘l*2“8ﬁ al} —77‘ 1 7t
(5 e+ gaa)— ) () (1-2) |
— = aA,+ —a.a,| ——_ g3} (e} (17" ‘
+ 3 (\32° vt g ' ° 64 7 7ot ‘
0o ¢
+t af(fze> (1_37_2_), ,
128 Ul Ned .
In the above formula 4,, 4,, 4,, - - - and B,, B,, B, - - - are the same as those given '

in Eq. (5.68) in which m is replaced by m’,

7. NUMERICAL RESULTS AND DISCUSSION

The results of numerical calculation of the pressure jump ratio, R, versus flight
altitude are shown in Fig. 4 for several Mach numbers in both cases of two-

1.0

0.8

0. 41

0.20

oxisymmetric body

—~—— two-dimensional body

2 4 6 8 10
tlight altitude (km)

Fic. 4. Variation of R with flight altitude for an adiabatic atmosphere.
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dimensional and axisymmetric bodies. The results for the axisymmetric body in
a standard atmosphere are illustrated in Fig. 5. These calculations have been
carried out by taking the terms up to the third power of af or an. In most of the
existing theory of sonic boom problems, \p,/p, is used instead of R, where p, and
P, are the pressures at the flight level and on the ground respectively. This classical
modification factor is shown by dotted lines in Fig. 4 and Fig. 5.

It is of interest that R obtained in the present analysis, especially for the axi-
symmetric body case, agrees fairly well with Jp,/p,. This seems to indicate that,
for a rough estimation of sonic booms, the method used so far which modifies
Whitham’s theory by the factor |p,/p, would give a good approximation in a
practical sense. However, this factor is not a function of the flight Mach number,
but R depends on the Mach number as shown in the present analysis. In this sense,
R is considered as the more exact correction factor.

The comparison of R in this paper with that obtained by Friedman and his
coworkers by the different method is illustrated in Fig. 6 [9]. The pressure p is
the reference pressure which is determined theoretically, and correspondes to the
average pressure yp,p, in the formula for the pressure jump modified empirically.
Friedman’s work uses the ray-tube method which rests on the basic assumption
that the propagation of the disturbance down each tube may be treated separately,
whereas Whitham’s theory involves disturbances propagating along the shock
front. Fig. 6 indicates good agreement between the two approaches.
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__Eg (ICAD st.atm.)N Mo=1.5
] \\
0.4 - /
~
~
N~
SN
\\\
S~
0.2
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Fic. 5. Variation of R with flight altitude for a standard atmosphere.
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———— presen'

————Friedman

&0

<

40
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Fic. 6. Comparison with Friedman’s result in case of a standard atmosphere.

From Eq. (6.31) the increase of density has an effect on decay of shock strength.
The increase of atmospheric temperature with the decrease of altitude strengthens.
sonic boom intensities on account of ray-focusing effect. The reason why sonic
booms decay towards the ground in the actual atmosphere is because the increase
of atmospheric density has a greater effect on the strength of shock waves than that
of temperature with the decrease of altitude. Further, the formula obtained here
can be applied also to the atmospheric state with invertion, which will give us an
interesting result.

Department of Aerodynamics
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