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Summary: The linearized thermal balance equations of two-nodes system, in which radi-
ative heat dissipation to outer space from the each node and heat transfer between them
are counted, are analytically solved for several special cases which closely relate to the real
situations in spacecrafts. And general theorems on n-nodes system are presented with rela-
tions to the real spacecraft structure. Based on these discussions, a new method of thermal
analysis of spacecrafts is proposed, which is essentially an experimental analysis of simpli-
fied thermal model. The construction method of this model and the data reduction process
are shown with an illustrative example. Using this method, the thermal character of a
spacecraft can be determined with minimum simulator time and without longsome numeri-
cal computation.
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1. INTRODUCTION

It has been passed over ten years since the first artificial satellite was orbited.
During this period, much progress has been made in every field of space technology.
The thermal analysis of the spacecrafts also has grown up from preliminary stage
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2 K. Oshima and Y. Oshima

to today’s sophisticated arts. Many reports on the analysis used and the results
obtained with regard to the thermal design of the particular spacecrafts have ap-
peared in academic publications [1~3], such as Explorer VII [5] Telstar [6], etc. of
the early type of spacecrafts [4~8], and Pegasus, Mariner, Appolo [9~13], etc. of
the more sophisticated spacecrafts. Now it seems that the thermal design method
has been well-established, at least in the point of view of practical application. The
work presented in this paper is a simplified method to determine the thermal charac-
ter of a spacecraft based on the approximate analytical study as well as on simplified
thermal model test by space simulator.

First step of the thermal analysis of the spacecraft is to determine the radiation
energy input on the spacecraft from the outer space, which consists of the solar
radiation, the planetary albedo and the infra-red radiation of the planet. The
methods of calculations of these effects are well-established in [5~78]. Even on the
most ambiguous factor of these, the earth albedo, too, some data by artificial satel-
lite measurement were reported [/9], and now it seems that one has reliable values
on this effect.

Next step is to determine the optical character of the spacecraft surfaces which
controls the radiation energy input to the surface and the radiative heat output from
it to the outer space. A great deal of efforts has been put on this problem [20~29],
some of which are summarized in [24] and [28]. Many kinds of space environ-
mental testings on these materials as well as actual satellite-born testings were car-
ried out with the emphasis on the in-situ measurements of optical characters. Thus
almost any kind of surface optical characters has become available with reasonable
reliability.

Third step is to determine the thermal parameters of each part of the spacecraft,
such as heat capacity and heat transfer coefficient. Much difficulty in this step
associates with the phenomena of thermal contact resistance of two surfaces and of
the radiative heat exchange between two surfaces. The former problem has been
treated more or less by phenomenological method and some data have been accumu-
lated, though it is not conclusive yet [7] and [30]. The latter relates to an important
application to the space radiator, such as thermal louver system, and has been
enthusiastically worked out. However, due to its inherent mathematical difficulty,
the final solution is far out of sight and one has to relay on the experimental meas-
urement to each case [37].

Based on these knowledge, usually the so-called node analysis has been used to
obtain the temperature distribution and its variation of each part of the spacecraft,
although the more rigorous partial differential equations of heat transfer were solved
for some simple cases, such as spherical hull or cylinder [32~34]. The node analy-
sis is, in essence, a finite difference approximation to the original partial differential
equations, then some ambiguities on the selection of the node points and on the
assignment of the thermal characters to each node point are left open to question.
Very few discussions on this point are found in the literature. Furthermore, many
efforts to solve the thermal balance equations, which have applied various
methods [35~38] including those using electrical analogy, have failed so far to give
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An Analytical Approach to the Thermal Design of Spacecrafts 3

the complete analytical solution of these equations. Therefore this method applied
to the real spacecraft often requires prohibitably large amount of numerical com-
putation even for today’s large electronic computors, though a short-cut method
with a sacrifice of the accuracy has been proposed. On this point, in some extent,
we have to trust on the experimental data.
: The experiments on this problem are usually carried out in the one of the space
environmental simulation facilities. Criteria of these simulation testing facilities
were frequently discussed [39~46]. In general, a vacuum chamber with liquid
nitrogen cooled shroud, now it is common, can sufficiently simulate the space
environment with respect to the thermal balance character of the spacecraft tested.
Probably, the biggest trouble in this simulation testing relates to the solar simulator,
which yet is in a preliminary stage in this country, and is capable to produce
simulated light source with quite insufficient uniformity and hopelessly large diver-
gent angle, even besides its spectral mismatch to the real sun. Therefore, in order
to simulate the heat input to each node point, electric heaters attached to the each
& » node are much more accurate and useful than solar simulators. The amount of heat
being supplied to the each node is calculated from the geometrical relation and the
surface optical characters.

Nextly, the experimental data thus obtained are compared with the computed
results by node analysis. The calculated results are not in analytical form, then
there is no way to deduce the thermal characteristic parameters of each node point
from the experimental data. On the other hand, the simulation test condition has
to be the same as those computed, which means that the long simulator time, which
sometimes runs over several days or even weeks, is necessary and that the model
has to be built in the same way as the computed ones. Thus, for example, the
effect of small modifications of the model characters is completely unknown from
the experimental data.

With some relations to this point, the thermal similitude of the spacecraft testing
has been discussed by many authors, who have treated this problem mainly with the

i relations to the possibility of the scale-down model experiment [47~50]. Many
thermal similitude criteria in spacecraft testing have been established, but none of
them is useful for the data reduction and comparison of the experiment to the model
analysis.

Considering these difficulties of the thermal analysis of spacecrafts, a new process
of thermal analysis is presented in this report. In chapter 2, the basic equations of
node analysis is shown, and the solutions of it for the case of single-node system
are derived in chapters 3 and 4. The solutions of two-nodes system are discussed in
chapters 5 and 6. Based on these special cases, the general characters of the
solutions of the n-nodes system are treated and some useful theorems are presented
in chapter 7. In addition, the Fourier analysis applied to this problem is presented
in chapter 8. In chapter 9, the practical process of thermal analysis is shown with
an example.
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4 K. Oshima and Y. Oshima

2. Basic EQUATIONS

For the theoretical design of spacecrafts, which naturally have thermally com-
plicated structures, the so-called node analysis has been traditionally used, in which
the whole structures of the spacecraft are divided into several node points, as shown
in Fig. 1, and the each node (i) is assumed to have a temperature T,, a difinite
heat capacity C; and heat transfer rates between each others. Then the thermal
balance equation of each node point is expressed as;

aT,
dt

where A4, ¢, ¢, K and F are the thermal radiative area to the outer space, the
thermal emissivity of the surface, the Stefan-Boltzman constant, the thermal con-
ductance and the area factor of the radiative heat exchange, respectively. The
heat input to this node, Q, is composed of the solar radiation, F.;x,I,, the earth
albedo, F”,.I,, the infra-red radiation of the earth, F”/e]],, and the internal heat

3

dissipation within this node, P;;

C, :Qi_AiO'EiT:_ 27'1 Kij(Ti_Tj)— Xj: AioFij(T;”’“T;) ( 1 )

Qi':-F:zi“ils+F:zli05ila+F;,i/5Jc+Pt (2)

where F’,, F” and F/’ are the area receiving the respective radiations, and I;, I,
and I, are the radiation intensities of the sun, the earth albedo and the infra-red

radiation of the earth, respectively.
In this report, we assume that all the material constants, such as the heat capacity
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An Analytical Approach to the Thermal Design of Spacecrafts 5

or the thermal conductance, are constants regardless to the outer conditions, such
as the temperature or the time, and that the heat input to the node point is definitely
given.

The compatibility conditions of the problem are usually given as one of three

1 ways; (1) find out the final balanced temperature distribution under a constant heat
e input after sufficiently long time, (2) follow the temperature variation of each node
1 starting with a definite temperature distribution of system, (3) determine the quasi-
equilibrium state under a cyclic heating during time #, and cooling during time t..
Schematic presentations of these conditions are shown in Fig. 2. Now we can
define the several definite temperatures; the final balanced temperature T,., the
maximum temperature T .., and the minimum temperature 7, _,,, some of which
. are shown in the Figure. Furthermore, we introduce the mean temperature T, ..
. which is
e 1
h T, mean — E‘(Ti max T Ti min)
it
and this temperature becomes asymptotically closer to a temperature when the
cyclic period decreases (¢, +t,—0), which is called the limiting mean temperature.
This temperature should be the same as the final balanced temperature under the
lo time averaged heat input (1,0, +£,0,)/(t, +1,).
:d Under a certain circumstance, the basic equations are linearized to
de,  Q, 1 1
v dt ~ CT, Cg, b= 2 C.R,, 6:=65) 3)
a
?
a, — |
Qn Qu
}
t t2

[V b b+,  hTt

F1G. 2. Illustrative presentation of the compatibility condition
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6 K. Oshima and Y. Oshima

¢
where
3
T,=T, (—I + 61;)
and
S
! 4A4,0¢,T}

_ 1
YT K.+ 4A,0F T}

The temperature T is to be defined in each problem. For example, if we define
it as the temperature of node 1 in the case of the compatibility condition (1), then
we have

T.
o=+, (4) '
1
or
T, ( 0, )1/4 46.)V4
—t=(Z) =44, 5
T, ) 46, (5)

In general, the solution of Q, which corresponds to T is found under the speci-
fied condition corresponding to the definition of T, which derives a general form of

0= 3 F(S, R) 2 (6)

0

Since §,=1/4, we have
To=4Z‘: Fi(S,R)-Q,; (7)

Because that § and R are the functions of T, and so F, is, this relation indirectly
defines the value of T as the function of the thermal characters of the node system
and the heat input. In experimental point of view, this relation is considered as the
relation to obtain the value of F; and then S and R from the measured values of
T, and Q,,

3. SINGLE NoDE SYSTEM—EXACT SOLUTION

As the simplest case, let us consider a single node system. This case corresponds
to a small satellite or a meteor which has a uniform temperature in it. The thermal
balance equation is

cT _0o_ AeoT (8)

dt
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in which the suffix is dropped.
The final balanced temperature T, which relates to the compatibility condition
(1), is writen as

Tm:(AQw)l/4 %)

Regarding to the compatibility condition (2), the temperature variation with the
starting temperature T, at 1=0 is expressed as; if Q=0

In Tt DT o—T) +2tan’1_‘T_.—2tan“‘ T _ 4ecAT

(T —T)(T 4T o) T. T, C

=t (10)

where T, takes the same value as in (9), and if Q=0

T, )3 14 3ecATY,
— ) = —_— 0t 11
( T * C (4

It is interesting to find out the approximate solution with small  for these so-
lutions. They are

T ecd AT, —T3)
A ) (. (12)
T, C

T edAT?
—_— =1 @y .. (13)
T C

for (10) and (11), respectively.
For the case of the compatibility condition (3), the solution is given as a combi-
nation of the former solution. That is, during the cool down period with O,

In (Toez + T)_(_Tmszmnx) +2tan! T —2tan-! Tmnx — 450AT°»2 t (14)
(Tooz - T)(Tooz + Tmax) Tooz Tco2 C

and during the heat up period with Q,

In (T +T)Y(T oy —Ti) +2 tan"—l —2 tan-! Ton _ 4e0AT,, ¢ (15)
(Tool - T)(Tml + Tmin) Tool Taal C

where T, T., are the final balanced temperature with 0, or Q,, respectively,
If 0,=0, the solution (14) should be repaced by

T )3 3ecAT?
iy ) =] 4 T2 max g 16
N a6)

The condition that the temperature of the node must be continuous at the beginning
and the end of the each cycle gives the relations

(Tool"l' Tmu;)(Tool :Tn}_{n) + 2 tan™! Tmnx —2tan-! Tmin — flEO'AT
(Too] - Tmnx)(Twl + Tmin) Tcol Tool C

In

=ty (A7)
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In (Tmz + Tmln)(Tcoz—' Tmax) + 2 tan-! Tmin —2tan™? Tmax — 4ec AT
(Tooz - Tmin)(Tooz + ‘Tmax) 002 Tooz C

=21, (18)
or if Q,=0, instead of (18),
T )3 3ecAT?
max = 1 max .t 19
( Tmln + C ’ ( )
These relations determine the value of 7', and T,,.

From these results, the approximation for the case with small temperature am-
plitude (T, -T..in) gives the relation

TO :tliff},lfo Tmoan (20)
Tr]n_‘eun :1 (21)
0
T — .
maxT Tmm — _::417 % + ...... (22)
0
where
T,— [ Q ( t )}1/4
ecA \t,+1t,
r=CS
§—_ 1
4eg AT}

On the other hand, if the period is sufficiently large, then the temperature at the
end of the heating period becomes closer to the final balanced temperature with a
constant heat input Q;. The solution for this case is

T t 1/4 1 T 1/377 -1
mean . 2 ( 1 ) [1 = (__) ] 23
T, t+t, T 2\t @
Imslx_'T:Iﬂ“L =2 [1 — ( : )1/3] (24)
o 2

4. SINGLE NODE ANALYSIS—LINEARIZED SOLUTION

The linearized equation of the system is

= 25
dt CT, = (23)

For the compatibility condition (1), the final balanced temperature under the heat
input Q is

This document is provided by JAXA.
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_ S0

= (26)
_ (3,50

T.=T.(3+ ":f;) @n

If we take this temperature T, as T,, and §,=6,=1/4, then
T,=45Q (28)

As mentioned before, this relation gives the means to experimentally determine the
value of S.

The solution of the equation (25) is readily given by Laplace transformation.
For the case of the compatibility condition (2), the temperature variation starting at
a temperature T g, and 6, with Q is

SQ {SQ ] _
0= — —0 e (29)
T To
If we here define the temperature 7', as T, and so 6, =1/4, then we have
T _ 3 3 S0 { SO0 1 } )
=" 4= — o= — " le 30
T, 4 + 4 * T, T, 4 GO
or
Z=(2)"=[4%L + [1-4 L] e " (31)
TO 60 TO TO

The series expansion in ¢ gives

2
T (1oSo)r (1 soye . -
T, 4 T,/ t 4 T,/ *
or
£=1_(i_.:iQ)L+i(l_SQ)ﬁ~...... (33)
T, 4 T,/ = 8 \4 T,/ 7*

If 0=0, the solution is

o= i—e‘”’ (34)
,;_:_i_jui.e—t/f (35)
0
or
]T_ = et (36)
0
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10 K. Oshima and Y. Oshima

Using the notation Qy which corresponds to the heat input giving the temperature
T, one has

or
Lotob(-g)ie

Next let us solve the case of the compatibility condition (3), the solution 6,
during the heating period with Q;, and 6, during the cooling period with Q., are

0= 21 4 e (39)
0

6,— STQz + Ayet (40) _
0 [}

respectively, where 4; and A, are the integral constants to be determined from the
initial conditions. The condition which the temperature is continuous at the begin-
ning and the end of the each cycle is expressed as

SQ1 Ae -t/ — SQZ A 41
—_To +A.e = ——_To +4, (41)
SO, SQ s
—=1 +A4,= 2 4 Ae bt 42
T, +4, T, +4, (42)
Then, we have
_ (A—e7)  SO—0Q)
1= (1 ___e—(£1+t:)/r) 1]’0 (43)
Az: . (1 _e~tl/r) S(Q1_Qz) (44)

(1_8—(L1+f::)/r) TO

The mean temperature of the maximum and the minimum temperatures, and the
corresponding value of 4 are

o (3
Tmean: TO (”E + ﬁmonn)

_ |1 A=e)Ate v (1 0, oy
Bonean = [1 2(1 —e~(a+tarr) (1 0, )] T, (45)
Omnx—amin: (1 —e_“/r)(l ——e_w/r) ‘§(Q"l —Qz). (46)

(1 _e—(h*H::)/r) ]‘0

Let us define here T, as the limiting value of T,,,, as f, +1,—0,
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»
fy= 1th0, S 1 (47)
h+t, T, 4
then
T,=4S (M&) (48)
L+t
Thus we have
Tmenn — é_ + ﬁmoan: i + [1 . (1 _e"tz/r)(l +e°t1/f) (1 . ‘Qz_>i|—~ (t] +t2) !]
T, 4 4 2(1 __e—(h-He)/r) Q1 4( 0, ) H
t+1, i
o,
(49)
. ’ and
; _ ) __p—tilt —p—talt
a "_TmﬂxT Tmm - Hmax—amin: (1 f -)((t}+ tz)i ) G +t2)Q (50)
0 (1—e ) 4 (t] +1t, _1)
1
if one assumes ¢,=1,
T
mean :1 51
e (51)
Tmux _ Tmin —_ _:_l_ Ql tanh__t_l_ (52)
To 2 Q1 +Qz T
J if 0,=0
Thun 3 4 [1 _ (Q—e)(1 4tk ] (t,+1,) (53)
; T, 4 2(1 —e~(atea/ry 4t,
i Tmﬂx - Tmln — (t] +t2) !1 ___e-'h/f)(l - e—t:!/r) (54)
"2 b T, 4t (1 —e-t@+earn
‘ } " If t,+t, is small comparing to z, we have the approximate expression as
IH‘:!‘_'_L =1 __1__ (Ql "Qz)(tl —tz) _t%_ o (55)
T, 48 0, + 1:0,) ?
Tois =T __ 12 *_1_(1 _ 1 ou ) 56
T, 4z (l_tzQz) 12 72 + 0)
tlQl

Some of these relations are shown in Figs. 3 and 4, together with the relations

given in the previous chapter. As seen in Fig. 3, the relation (55) gives sufficiently

( accurate expression of T,../T,. Rather it is practically usesul to take 7T ,..=T,

for actual cases. And Fig. 4 shows that the first order expression is accurate enough
for the case of 2¢,<r and the third order correction is needed for #,<1.57,
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0.5
1.0 O1=0
’ f|=i2
appro:;. u’H cases 0.4 exact
I‘+‘
I exccl'-';:—"’=2‘0 exact TT=0‘5']' 1st order
meon | C approx.
B ox v o
T - _ order
:. (h+h)/7=05 by eq.(23) Tmex— T min) approx.
H “” 1 ” To
0.5~ c; o~ 2 ” o2l
Q,;=0
0.k
_h
itk ]
i 1 1 l 1 ' L . 1
R N B B ¥ S v B X 0 03 0y /7 15 20
F1G. 3. The mean temperature of the F16. 4. The temperature variation

single node system

5. Two-NODES SYSTEM—Co0L DowN PROCESS

The equations of the two-nodes system are

dT,
dt

dT
= Q= Ao Ti— Ko (T, — 1)) — A:F 0 (T3~ T))

G,

:Ql _A1510T}1’_K12(T1—' Tz) _“AlFlzg(T§_“Tﬁ4)

C,

After linearization, we have

de, o, 1 1
= — 6,— 6,—6
d CT, CS, ' CR (6:=62)
de, o, 1 1
=< _ 6,— -y
d CT, GCS, ' GCR (6206
where
s=_ 1
4eg ATS
S S
K +4AFgT?

and the suffices 1 and 2 refer to the node 1 and 2, respectively.
clear that K,,=K,,, A,F,;= A4,F, and R,=R,,.
The final balanced temperature under the constant heat inputs is

(R+8)8.0: +5:5,0, ] RS

0100:{

R+S,+S, T,
6., = { 828,01 + (R +51)8:0, }___L
- R+S,+S, T,

1f we use this temperature T, as T,, we have

of the single node system

(37)

(58)

Naturally it is

(39)
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TIM_T 4 (R+S2)S1Q1+SS2Q2

R+S,+5,
+S,+ ©0)
T,. _ 1 (3R+45,)5,0,+ (R +45)S,0,
r, 4 (R+5,)5,0,+5:5,0,

Use of Laplace transformation is made on the equations (58) and the two con-
stants are introduced, which are

1( 1 1 1 1 ) 1[( 1 1 1 1 )2‘
== - + +
“=g\es, Tertes terl Tzl\es, Ter T es, TR

1/2
(s + el les ter) —er erl]
cS, CRI\CS, CR/ CR CR
_ 11 1 1 1>_.i[(1 o1 1 1)2
P=7 (c,s1 tertTes, terl 2lles, Ter Tes, tor

I I I l I I |1l4
{( CISI C]]E ) ( C282 Czla ) (:]12 (:212 ]

(61)

Some of these values are presented in Fig. 5. Then the solutions are

ol v ) & e )

T,
e 9 _ R TR R P N
+,a(a_ﬁ){ a*0,(0) — (0)( s, + CR ) a6,(0) “ e,

PSP U A T

¢S, "CRrR/CT,  CR C.T,
»ﬁ(;_ (0.0 - 000 ( G-+ o5 ) —BHO G5 8 2
+ (cfs + CiR) c% + CIR "C%z"o}
02:’%“ CiR) % + CiR % }’;T,

+ - (Zjﬁ) {a?ﬁz(O)—aaz(O)(EEJr-C%-R—) —a6,(0) C:R - c?';;{

+ (cls + C1R> cszrn + CiR c?lo}

t ﬁ(ﬁ—- @) {M(O) ﬁﬁz(o)(clsl + CTR)#“()](O) C:R —F CQTo

T (CTS, + cfza) C%‘D + CiR c%“o } (62)
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G
- Cz_ Cl_____
3 C——l
~curve for C,=C,S5=5,
ar =1+2§
Cn__,_]_ arT
G 2
G_1
2 2 10
G
C2~10 ]
Sy
Cy
| Qo [P7
C;
curve for C,=GC,;,$=5;
At =1 C_ 1
e =2
G_1
. ——&=1%
0 0.5 SI/R 1.0
5=S5;
(a)
c G
c=10 G, =2 ]rm.
3.-.
C'=l
(o
C_1
¢, 2
S_1 )
2} C. 10
'
-
’d
-z
// ——= Approx.
5
ks
0 - n Iy 1C,— 10 J
0 0.5 SR T 10
S/ 5=0.1
©)

FiG. 5.

=12
2
3k
G,
G,
C_1
[
G
2F Z C i0
-~
“d
Z
———— Approx,
G
=10
G
// CQ—_Q
- Ci_
| &=
=T G
/I"{‘:’_' t~7=
e i I\ N i 7_m )
0 0.5 S./R 1
S
52“0,5.
(b)

C?C
.1
C}—I/?

C
- == . &=1/10

aT

Bt

reT

AT

05 5 x 10

System with an inner canister, S,=co

(d)

The time constants
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and

Tib) - [ 01?0) }1/4

(63)
T, :[ 6, ]1/4
T,(0) 6,(0)
Expanding in the power series of ¢, we have
1 1 1 Q
8,=6,0 _[(___ _.._.)010 — > 6.0 _WJ__] e
1=6,(0) C,Sl+C1R ©0) CR 2(0) CT, + -
(64)
1 1 1 Qo
0:00—[( )ﬁo— 6,(0) — 2]4 ......
2= 6,(0) C282+C2R 2(0) CR 1(0) T, +
e [ R (O A " W (YR
T,(0) 4L\CS, CR C\R 6,00 C,T, 6,0)
S (A S W (I " S P
T,(0) 4 1L\CS, C,R C,R 6,000 C,T, 6,0)
(65)

Let us consider cool down process without Q, and Q, starting with 6,(0)=46,(0)
=1/4, then

- -1— 5 I

T.(0) 4 CS, ©6)
AT T TP

T,(0) 4GS,

These relations show that the cool down of the each node begins linearly with
the time provided with S+0. If S=0, which means that the node is completely
enclosed by the outer hull, the temperature decreases with the second or higher
order of time,

6. TwoO-NODES SYSTEM—QUASI-EQUILIBRIUM STATE

The basic equations (58) have the solution for the cyclic heating and cooling
condition;
during the heat up period

( ")S 1 S2 2 - -pt
] _ (R S,«JQ,,L._‘S,!,,,,QA-J.-}-A e~ +Be?
" R+8,4S)T, ' ]

b SSQuF RIS 4 o oo

(67)

(R+8,+8)T,

during the cool down period
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R+8)5:00u+5500 + 4rooot oo
0 :( 2 112 12X 22 A at Be Bt
"TTTRes, 4S)T, T TE

828,01+ (R +5,)8,0,, /= .
0 — 2111 1 2 Ae at B Bt
“ R+5,+5)T, e he

(68)

where & and § are defined in (61) and the first suffix of 4 and Q refers to the each
node, and the second ones to the heating and the cooling period. Naturally, the
values of Q,, and Q,, are likely to be zero. The values of Ay, A,, A}, A5, B, B,,
B; and B; are determined by the initial conditions, which are

On(t= 0) =0,(t= 1,)
011(t: tl) = 012(": 0)

(69)
021(1“—:0):922(t:t2)
021(t=t1):022(t=0)
and
dell ) Ql‘l 1 1
2 = _— G, (t=0)— 0,,(t=0)—0,4(t=0 N
(g )= o~ s =0 = =0~ 62=0)
dﬁm ) Qm 1 1
( dt |0 CT, G, u(t=0) C,R u(t=0) 0 (1= 0}
de 0 1, 1 f 70
Y12 =_X12 " 4 (1=0)— {0, (t=0)—0,,(t=0
(G ) = = ta1=0) g =0~ 0.0=0)
d822 ) Q22 1 1
e o= G~ e 0= O 00— 0,4=0)
These are written in the explicit form as
__Ale-ntl__Ble-ﬁz: +A;+B{:: (R+S2)S1(Q11"Q12)+Slsz(Q21"_Q22)
(R+S,+8)T,
‘—Aze—ah’-‘Bze_ﬁti-{—Ag'i"Bé: SIS2(Q11—Q12)+(R+S])S2(Q21_Q22)
(R+S8,+8,)T, 1)

—A,—B, 4+ Ale~t>  Ble~#ft2— (R+8,)81(011 — Q12) + 5:8:(Qar — Oy)

— A2 _32 + Age_“‘” +B§e--ﬂt2: S2S1(Qu - le) + (R + S1)Sz(Q21 - sz)

(R+8,+8,)T,

(R+5,1S)T,

@w4~%JA+@w4—§)&+%@+%ﬂﬁo
S, , S. S. S,

e S L R
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(az-l—l——;l—)A{+ (ﬁrl—l_%)BH%AH%B,&:o (72)
(am—1=32) 4y (prim1-S2) 5, + 2 A+ 2 B=0

These can be solved, but the results do not give any explanative presentation.
Rather a few special cases show clear physical image of the problem. Let us study
such cases.

(1) Symmetrical Hull

Assuming C;=C,, S;=S,, which represents a symmetrical spacecraft having two
nodes on the opposite point, such as a spinning spherical satellite hull irradiated by
Sun with an angle between solar vector and the spinning axis, having the two nodes
on the opposite end of the spin axis, then one has the following relations, which
are noted in Fig. 5(a)

ar=1+25
R (73)
pr=1
where we put C,=C,=C, S,=8,=S and r,=r,=r, and
A—=—A —— (1—e=) RS(Qn— 01— 0u+ Q)
' ? 2(1 —e-atiriny (R +28)T,
— —_— (1 “’e_ﬁm) S(Qu““Qm'*‘Qm"sz)
1— &~ 2(1_e—ﬁ($1+te)) To (74)
A= A/ — _ (1—e"=) RS(0n—01—0n+0y)
1 2 2(1 —entexre) (R+29T,
B/ —=B/— (1 "'e_ﬁh) S(Qn"’Qm’i’Qm‘“sz)
' 2(1 — e FGareary T, )

Now we define T, as the mean temperature of very short cyclic period under
Q1,=0un (=0, say) and Q,,=0,,=0, so

4t,

T —
T+,

SQ, (75)

The solutions are written as

VTI mean i + __1__[ (R+S2)S1Q12+S1S2Q22

T, 4 4 (R+S,+8)T,
+ (I—e)(d+e ) RS(Qy;— 04— O0n+ Q,,)
(1 _____e-a(t1+£2)) (R +2S)To
+ (1 —e (1 +e ) (04, — O+ Q05— 0.n) ]
(1 __e—ﬂ(t1+tv.~)) To |
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Timean 3 1 [ 833101, + (R 458,05
T, 4 4 (R+S8,+8)T,
n (A—e)(1+e ) S(Qn—0i+0y—0s)
(1 _e"ﬁ(tr*tz)) To
_ (I—ey(1+e ) RS(Qy—Qp—0u+0s) ] (76)
(1 _____e—a(t1+82)) (R +2S)T0
T1 max'—'Tl min __ (1 ““e_'“l)(l ____e-ng) S(Qn—Q12+Q21 "'sz)
T, 2(1 —eFltaria T,
+ (1—e(1—e ) RS(Qn—01—0n+ 0
2(1 _e—a(t1+cg)) (R+ZS)T°
T, mox— T2 main — (I—e )1 —e ) S(Qn—0n+0n—0u)
T, 2(1 —e-Purtiay T,
_ (Q—emy(l—e) RS(Qu—0Q1—Qu+0s) (77
2(1 — ettty (R+295T,

For the sake of simplicity, we assume that Q,,=Q,,=0 in the following part of

this section.

For the case with t,=t,, we have

T mean =1+ R (ﬁ.Qll = ,Q_.21.>
T, 8(R+2S
0 (R+25) Qo (78)
T2 mean _ 1 __ _**_B____m o (’»Qll - Q21 )
T, 8(R+25) Q,
Tl max; T1 min __ -1~tanh /92t1 + Z RR 55 ”(Qll —'Q21) tanh f_;ti
0 (R+125) O, (79)
Ty pox—T5 mmin — itanh ﬁﬁ_ _ R (Qu—0x) tanh aly,
T, 2 2 4(R +25) o, 2
and for the case of ¢, +1,« r, the relations are expanded as
Timen 1 (=)t + R ( On—0y )
0 12 7’ 2(R+25) 0,
L (RA29) (Qu=0u) (b=t
24 R Q, z?
(80)
H:I_-'?,m,‘i‘!‘,’_ =1— __1_ (tl _tz)’z _— R ( Qll— Qﬂ] )
T, 12 r? 2(R+2S) 0,
_l__ (»B_ﬁ‘zs) (Q]l—QM ) (tl—'tz)tz ______
+ 24 R Q, 7l +
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Tlmax"—T1min:‘_1__l_‘2_(1___l__&) )
T, 4 ¢ 12 ¢?
On—0, ) t 1 (R+42S)} 1t
+(wwwhi leﬁ___"”_m_ii ......
80, /¢ 2 R ol T
1 Qll t2
o i + ......
4 O, *
szax—szln 2_1__{_2_(1_i_ t_ltz_)
T, 4 ¢ 12 ¢*
_Ou—0i b {1 _ 1 (R+25) ﬁiz_} TR
80, T 12 R? 72
1 O, ¢
= . =A + ......
4 Q, t
where use of the relation
Qn + Qzl - 2Qo (82)

is made. Some of these relations are presented in Figs. 6 and 7.

%:0 h=t
» 0} 0.6 Q=2Q,

. o
10k ” 50 o5k S/R="%
T Ist order

T;nn o0l approx.
Tomex™ Tomin

3rd order

(81)

To approx.
gll—{'_Q(;l’ZOoo 0'3_
0.5__ 127 227
0.2} 2nd order
approx.
0.
0 1 }
0l 1
0 1 Q,/Q . 2 0 1 /T
Fi16. 6. The mean temperature of the Fig. 7. The temperature variation of
symmetrical hull the symmetrical hull

19

As an example, let us consider a spherical satellite hull spinning around one axis,
and take the two node points 1 and 2 on the opposite ends of the spin axis. We

assume the case
T,=280°K Q,=500watt ¢=60min {,=30min
§=0.21°C/watt R=2.1°C/watt 7=90min

then the temperatures of the node 1 are plotted in Fig. 8 as the functions of

Q11— Q21/Q,, which directly relates to the solar incident angle to the spin axis.
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/ﬁigg

Ty
Node 1
500 J
cK I
Node 2
T
300} §$=0.21 °C/watt
R=1°C/wat
7 =90min.
T, =280°K
Q=500 watt
t, =60min.
t, =30 min.
100
N i ]
-n/2 0 g n/2
! I 1
0 1 Qn/ Qq 2

FiG. 8. An example of the symmetrical hull system

(2) Small Appendage
Here we assume that S;<R, S:<R, C,>C. and C,S5,=C.S,.

This corresponds

to a small appendage (node 2) attached to a large main structure (node 1) having
a large heat capacity (C;>Cs), both of which have made from the nearly same skin

material and surface finish (C,S,=C,S,). Then we have

S
ar;=1+4 —R’—
g (83)
pri=1+22
These are shown in Fig. 5 (b) and (c) by dotted line, and
Am e — 0= (RES)S0u=0u) +550u=0u) )
(1 —e=tariny (R+S8,+5)T,
A — A — 7(1”—37—”1,) o { (R48)8:(01n — Qo) + 55001 — Qsv) }
T (l—ete) (R+8,+8)T,
B,=B!=0 (84)
B,— (1—e?)  RS§(Qu—01) —RS(Qn—0On)
(1 —e-ftoria) RA+S51+8)T,
B — — .. (1 _e—ﬁtf)_ RSl(Qn"Qm)_R'Sz(Qm“Qaz)
T (L—emp ity (R+S,+8)T,
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In this case let us define T, as a limiting mean temperature of the node 1 with Q1
but Q12=021=022=0. This is

4t1 (R +S2)SIQ11 (85)
ti+1, R+S,+5,

D:

The results are

Tl mean __ i + { (R +52)SIQ12+S1S2Q22 } )
T, 4 (R+S8;+5)T,
+ _1, (1 _eﬁah)(l + e-“tg) { (R +S2)Sl(Q11—‘ le) +S1S1(Q21 - sz) }
2 (l—e ettty (R+S8,+8)T,
T2 mean __ _3_ + { S2SIQ12+ (R +S1)S2Q22 } )
T, 4 (R+8,4+5)T,
+ _1__ (1 —'e_ah)(l +e—"t2) { (R +S2)S1(Q1J “Qm) +S152(Q21 _sz) ]
2 (I—emntrio) (R+S8,+8)T,
___ _}_ (1 "'e“ﬁh)(l +e—’”2) { RSl(Qu“Qw) '“RSzW(Qg;_Qn) ]
2 (et R+8,+8)T,
(86)
Tl max Tl min __ (1 '— e““zl)(l __e-atg) (R +S2)SI(Q11 _ le) + Sl‘sz(QZl '_sz)
To (l_e—a(t1+t2)) (R +SI+S2)T0
Ty mox— T3 min — (1—e)(1—e ) (R+8)8:(Cu—0C) +S:5:(Qn— Os)
To (1_e—a(t1+t::)) (R +S1+S2)T0
_ (11— e—ﬂtl)‘(l _e“ﬁtz)_ RSl(Qn—Qn) “Rsz(Qzl""sz)
(]}_e—ﬁ(uﬂz)) (R +S1+S2)To
&7)
If t,=t, and Q,;=Q,,=0, we have
55’?%%%% |
0 +9, 11 ( (88)
Towan g1 R 1 (R+S5)S, Oy
T, 4 R+S, 4 (R+S5)S8, Ou /
Tl max " lmm :i {1 ]t'l h&h at,
2 U 0, "2
T2 max " . min_ _ _1_ { 2 } t'lllh atl (89)
2 On 2
_1 _RSIQH,, szgaL tanh 2f
2

2 (R+S5)50n

If 1,t,< 7, Q,=0Q,=0, the expanded forms are
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€l
T mean _ S;  Onw 1 R +§Qz_(1 45 O ) (=),
T, 4R+S,) Oy 48 R? R+S, 0Oy 7
T2 mean ___ Tl mesn R RS2 _Q}l_
TO TO 4(R +S2) 4(R + SB)S] Qll
bl RESP (R RS 0u) (b=t
48 R? R+S, (R+SB)S1 On 7]
90)
Timex—Timm _ 1 R4S, (1+ S Qzl)ﬁ_ (1_._1_ R+S8)" ﬁfz)
T, 4 R R4S, Ou/ 12 R? 7]
+ ......
szax—"TZmin: Tlmax—Tlmin__l_{l____‘s_g_ Qzl}_t_g_ GF'
T, T, 4 S Oul =y T
i L RS )y vl
12 R? 2
(91
Some of these are shown in Figs. 9 and 10.
The exact values are not distinguishable
from the approx. values.
1 0.5 h=h
L.nr,fn/ S/ R=0.05
/ Si/ R=0.2 Ist order
IZ?_eln 0.4 Qa/ Q,=0.1 approx.
’ ‘ T mex— T
To
03+ 3rd order
=005 appox
0.5- S 1st order
-R__O'Q 0.2} approx.
h—o7
73 wroree ¢
"
A J o L !
% o awa 0.2 1 1 /T 2
FiG. 9. The mean temperature of the Fi6. 10. The temperature variation of
small appendage system the small appendage system
As an example, a small artificial satellite which has a payload capsule on a
spherical rocket chamber is studied. The schematic diagram of this satellite is
shown in Fig. 11, as shown, this satellite is spinning around its axis and the heat
input to the capsule and the spherical rocket relates to the solar incident angle to
the spin axis. Then the ratio of the heat input to the spherical rocket (node 1) Qi
to the one of the capsule (node 2) Q. relates to this angle, which is plotted in the
figure. Let us consider a case with
This document is provided by JAXA.
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Node 2
- / Sun

T0:280°K
. / Q||=565V‘O“
N / t) =60min,
t,=30min,
350
[N /T2mox
$,=0.,1 °C/ wott /
R=1 °C/walt /
7 =90min //
C,/C=) /3 /
$,=0.3°C/watt T mox
/
/
300} /
//
K /
/
/
/
/
/7 // T 2min
,/ P / Tlmn
7 -
250 / -
/ -
/ Pl
/ P
4 ae
//
0 ' L
Q./Q, 0.5

Fic. 11. An example of the small appendage system

T,=280°K @, =565watt #=60min

C,/C,=1/3 §,=03°C/watt R=1°C/watt
then the mean temperature and the temperature variation of these cases are given

as drawn in the diagram.

(3) Inner Canister System

23

t,=30min S,=0.1°C/watt

Here an inner canister (node 2) enclosed by an outer hull (node 1) is analysed.
In this system, the radiative heat transfer to the outer space from the node 2 is none
(S;= o0) and the cyclic heat input is applied to only the outer hull and the heat
input to the inner canister is usually considered to be constant.

In this case, we have

_ ! ,_CI_>S { 9(_
af—_é_[1+(1+ )+

=g [ ()
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¢ |
where the unnecessary suffices are dropped, that is, we put $3=S and r,=7. The
maximum and the minimum temperatures of the outer hull may take place at the
beginning and the end of the cooling period, respectively, but those of the inner
canister may happen between these instants, which will be noted by t=t;’ and t=1/’,
respectively.

For the sake of simplicity, let us solve the case with only Q1 but Q12=0=
Q..=0. Then the solutions have the forms

b= S?n +Aye e+ Be ¥

0

Oy = S?“ + A,e~*t 4 Bye~#t (93)
0

612: A{e—"t +B£e—‘“
022: Aée—"t +Bé€"6‘

The initial conditions will be given as .

011(t = O) = 012(‘ = tz)
‘911(1: tl) = 012(’ = O)

(94)
0210 - O) = 022(t = tz)
021@ - 11) - 6220 - 0)
011(t= t{) = 021(t = t;) } (95)
012(t: ’é) = 022(’ = té)
dﬁu ) Qll 1 / )
( dt le=vn CT, = u(=H)
(_ﬁ) —0
dt | e=e (96)
(ff@) R N @}i
t Ju=vo CT, =t =
(_d_‘,’&) -0
dt | =t /

It is needless to say about the physical meanings of these relations, which are slight-
ly different from (69) and (70), but much more convenient to calculate the final
results. The solutions of those are

o (—ers@e—1) 50,
1 (1—e <@ (@r—Bpr) T,

are_ (L—em(pr—1) 50,
1 (1—e «@*2)(qr —pr) T,
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Az: (1 _e—atz)ﬁt SQll
(1 __e—a(ti“ﬂ’)(ar ——ﬂ‘l’) To
A;: B (1 _e—-ah)‘BT SQll
(1_e_a(tl+22))(af—ﬁ‘[) TO
(A—e)(az—1) SOy
1 (1 _e_p(cﬁ-m))(az-—-ﬂz‘) TO
Bi= (I—e?)ar—1) SOy
(1—e P+ (gr—pr) T,
_ (l_e-ﬂt2)af SQll
. (1—e#e+ty(gr—pr) T,
B/ — (I—e?)ar 5Qu

2

T (—e Pty (gr—pt) T,

ot [ (1—et)(1 —emPt+ta) ]-,—1,,—
- (1—e~f%)(1 _e-a(c1+zz))

et — [ (1 —e~t1)(1 —eFlrtia) ]—.a—-l-ﬂ_
(]_ _e'ﬂ“)(l _e-a(t1+t:.'))

The results are

-——Tl;mn = % + —;-'-{(912020) +615(t =1,)}
0
_ 341 [doedei o
4 2 (1—e*“+9)(ar — fr)
L (—en +e““2)(ar—1)} SOn
(1 __e~ﬂ(£1+cz))(az-__ﬁr) T,
1 ’ / T mean
——————-——T2]'f;°“ = % + —5{621 (t=n)+0,0=1t)}= “1‘12;”‘“

1min __ {012([ — 0) — ﬁlg(l = tz)}

_ [(1—e ) (1 —ewt)(1 —Br)
(I —e~=) (e —pr)

(I—e (1 —e #)(az—1) } SOy
(1"—3—““”2))(&1‘—‘81‘) To

25

o7

/

The temperature T in this case is defined as the limiting mean temperature of
the node 1, which is

(98)

(99)
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Ty max— Ty min = {Op(t=1)) —0,(t=1))} L
0
= { —(1—e™*™)pe e~at's (1 —e"M)az e b’z
(1 —e*®*ty(qr — Br) (1 —e 8+ (qr — Br)
—1— (1 _e—at:)ﬁz. e 1

(1 ——e""‘(‘l”ﬂ’)(a'r __BT)
(l—e™ar 4] SOy

(1 —e P4+ (g — fr) T,
(100)
For the case of #;=t¢,, we have
Tl mean .. T? mean __ 1
T T
’ ° (101)
Ty mox—Ts min :_1_ M(l_ﬁf) tanh aty 4= 1 (az—1) anhﬂl-
T, 2 (ar—pf7) 2 2 (at—p7) 2
— 8 —a
T2 max Tz min :(1+e—aL1):’:ﬂ‘(1+e—ﬁc1)‘&'—_E___1_ (102)
T, 2
Now, for the case with S R, one has an approximate from of
S
=14+ =
art + R
(103)
__CS
& C,R

These values are plotted in Fig. 5(d). For the case of #,, 1,&« z and SR, we have

Tomee g L1 S) imtite |
T 48 t+t )
0 (h+1)e > (104)
T2 moan __ Tl moan
T, T, !

9

Tl nmx_Tl min __ _t_i’-__ {1 11 (1 + = 28 ) ’,1,’,2,

T, 4z 2 R/ ¢
1 ( )(n 1)1 ]
Ly S) =t 105
+ 12 TR R 7t + o (109)
_T.. max —— T"‘ min __ _‘__I_ (" e _.|_. ......
T, 16C,SC,R )

The case with a constant heat input to the inner canister can be treated using the
law of superposition, the results are
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Tl mean Tl mean "I‘ (tl+ t2)Q2 )
T, Ty, les=0 4,0y,
» (106)
Timen _ | Timen| 4 (h+6)REQ,
T, T, le:==0 41,80, /
Tl max "~ Tl min __ Tl max "~ Tl min )
T(l TO Q2=0
\ (107)
TZ max "~ T2 min __ T2 max "~ T2 min
TO TO Q2=0 /
where we used the same definition for T, as in (98).
Some examples of these relations are shown in Figs. 12 and 13.
opprox";:'k-l, 0.5
/ t =0 t =1,
1.0 gxact =05 S/R=02
\ exocih.ri'izl 0.5 C=C,
rlmcan _,’Tlnm:n) I~ 1st order
To X7 To T T apprex
C’,:_-C2 To
S/R=0.2 0.3 exact
0.5-
Tiew 3rd order
02k approx
0.1 2nd order
7,\ approx.
OO 0l25 '2 O:S 00 ——‘—r—‘-'/ﬂé
W+t /T
Fi1G. 12. The mean temperature of the Fic. 13. The temperature variation of
inner canister system the inner canister system

Let us consider an example with

T,=280°K Qu=1kW #=60min #=30min r=90min
R=1°C/watt C,/C,=10,

then the temperature variations of the nodes 1 and 2 are plotted in Fig. 14, as the
functions of S/R.

7. N-NODES SYSTEM
The general equations of the n-nodes system are expressed as, after linearization,

in a system of n first order ordinary differential equations

16, _ Q; _ 1 n 1
C; Vi =Xt g (6,0, 108
dt r, S, = R”( 2 (108)
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Node 1, T~ To =280°K
Q=1K waott
L] t, =60min.
Node 2 t, =30min.
5$=0.1 °C/wott
T =45min
C,/c, =1
300" Tlmax
————
°K
TZmox
275f Town
Tlmin
2501
1 ]
0 S/R 0.5

FiG. 14. An example of the inner canister system

This is one of the examples of the linear network analysis. Then it may be con-
venient to compare them with electric network analysis. The each quantity has the
analogy to;

6;; electric voltage of the node i
C;; electric capacity of the node i
Q,/T,; electric current flowing into the node i
S;;  electric resistance from the node i to the ground
(leak resistance of the capacitor)
R;;;  electric resistance between the nodes i and j

Then the equations (108) say the conservation of electric current in the node I
which is one of the forms of Kirchhoff’s law.
The solution of this system is written as

01 Zn Zn' . 'Zln Ql

0. | _[Za . 0, 1 (109)
: T,

0-11 Z.nl """ Zn n Qn
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where Z,, are usually called as the impedance, and are functions of C, S, R and the
heating condition (that is, #; and . in this case). Some forms of them are already
shown in the two-nodes system in the previous section. Furthermore the general

theorems of the linear network analysis are also applied in this case. Some of them
are

(1) Law of Superposition

If
011 Zn """" Ql 621 le ....... 0
013 —_ O 1 022 — Q2 -—1—-
TO ’ : : Tu
0,) L -o0-- Znn 0 gm ,,,,,, Znn 0
0.1 Zygevnons 0
............ O |_| 11
0| T
Onn) \ oovvee Znn Q'nn
Then
é, O +0pn+ - +60, Zyge v . 0,
2 P D I 2L o
2 N O : : | T, (110)
o, Orp+ 0o+ +0pn) | oo Z.2 )\ Qoun

This theorem is already used in order to find out the effect of the heat dissipation in
the inner canister (106) (107). And, in the same way, this is useful to find the
effect of variations of the heat input.

(2) Reciprocity Theorem

If
6 Zyyooenes o,
O || P Q| L
: : i | T
01; """ Znn Qn
and
0. VAEERERR 4
o |_| Pl 1
; ; T,
0;1 """ Znn ',n
then
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0014005+ - - - +0,0,=0,0,4+6,0,+ - - - +6,0, (111)
As a special case of this, if
(@9ix;=0  (@Dire=0
then
0,05=0:0; (112)

This theorem confirms the results of the symmetrical hull analysis in general form,
and is useful to calculate the effect of heat input to a small appendage, one of the
special cases of which was treated in 6-(2).

(3) Thévenin’s Theorem

If
Qo/_Tn _8%67_'_0*
Z[ 16, AEAY
0,= 27, L0
0
then
_ 9 113
0=(Z+2,) T (113)

0

This theorem is indispensable to predict the effect of small modification of the
model. Especially, last-minute design change has to be evaluated using this theorem.
And, based on this theorem, the influence of several canisters is analysed using the
result of single canister system presented in 6-(3).

Generally say, these relations are useful to understand the general character of
the system.

For the final balanced temperature with constant heat input, we have the relation

01 ‘Z.llo """" . Ql
bl=] 2L 114
S RN e o
672 """ Znno Qn

where Z,, is the function of S and R (and ¢,, 1, but not C). This temperature is
equal to the limiting mean temperature with averaged heat input (4,0, +40.)/
(fy+1). Thus the temperature T” with KQ,, KQ,, - - - KQ,, - - - is expressed as

/4 73
7=l = (115)
i % -

and the temperature T is the function of only §, R and #, t., but not C.

¢

€
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Based on the above mentioned general theorems of the linear network system and
followed the extrapolatory thoughts from the results of the two-nodes system, we
can reduce the following general expressions for the system with R>S and
tl: t2<<CiSi
S
T\= 2L F; S0, (116)
i R
T, (S ) (S ) (t,—1t)t,
—imen G (2 ) 4G, ) i) 117
T, \®) T\ R a1 (7
T; ox—T; i (S) t (S) 1t
i max zmn::Hi >~ 2 Hi i 12
T, WR'ies, T R sy
g’ (118)
iy H. (i) hiy
‘ THan |1 CSCiR,, +

That is, the zeroth order term with regard to #; and ¢. appears in T'; ... which has
a second order correction term. The temperature variation of the outer part of the
spacecraft, on which §; is relatively small and periodically irradiated by Sun, has
the first order term #,/C,S;. On the other hand, the temperature variation of the
inner canister enclosed by the outer hull on which (82= o), or of the outer hull on
which no solar irradiation takes place, begins with the second order term such as
hts/CR,;,C,S;.

8. SoLUTION BY FOURIER ANALYSIS

The solution of the linearized system may be obtained by Fourier analysis. Here
we treat a thermostat for space use, which consists of triple containers. Each con-
tainer, called the outer, middle and inner canister, respectively, is separated by
thermal insulator, as shown in Fig. 15, and three node points 1, 2 and 3 are assigned
to the respective canister. The linearized equation of this system is

crystal oscillator

outer canister

A T node 1

/ | _—middle canister
// node 2
thermal s
insulation . .
inner canister
NAAAANA g § node 3

Fic. 15. Schematic diagram of a thermos

This document is provided by JAXA.




32 K. Oshima and Y. Oshima

a6, _Q, 6, 1 )
==1_ % _ - (§—6
Ydt T T, S Rz(l X
ds, O 1 1
C,—2=2= _ __ (6,—6,)——(6,—0 119
2 dt TO R2(2 1) Ra(z 3) > ( )
dé, _ Q, 1
—==3 _ _ _(f.—86.
ar T T, R3(3 2

Assuming the Fourier expansion of Q,, Q, and Q,, as

Q

aneiwt
0

Il
8 Y[

QE: Z aneiml
n=0

Qa - Z QSneiwt
n=0

and let us find the solution in the forms of

n=0
- wt
62_ Z 02nel
n=0
03: Z 93‘nemt
n=0

The results are

s 1(/. 1 1/, 1 1) O,
O1n= ‘A— {(]“wcz"}‘ ’12—2 + E) (]an3+——3) “‘—‘g‘J f.o
, 1 1 0 1 1 0
~— (jnaC el 2n il n
+ (“” T RIR T, T RE, T,
5 1 1\1 O 1/, 1 1 1\0
6n:_< C ____)___ 1in __( C o ____)(n C _“) 2n
2 Y JnwCy+ R,/ R, T, +A InwC;+ G + R, JhowC;+ T,
1 1 1\1 O
il C el _)_ 3n
+A(’"“’ ST R R T,
5 1 1 O 1( 1 1) 1 0.,
G. = - in — ineC . —_
"Z A RR, T, T AT TR R T
1 (/. 1 1\/. 1 1 110
— C il M__)( 10C - ____) ________} 3n
+ Y, { JnwC, + + ) N, + R, + R, R T,
(120)
where
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) . 1 . 1 1 1
A= — B C,C,C,+ inwC 16._(__ .%)
JIWwCCCh+ TnwCy Rst +inwC, R3 3 + R,

+j”(UC3( 1 + 1 + 1 )“‘nzwzclcs(—}*—'f' 1)

R,S R,S R.R, R, R,
1 1 1 1
—n2w’C,Cy—— — n%*C,C (—— ——) e
) 1::R3 W' Cyly S+R2 +SR2R3

As before, we define T as the mean temperature of the node 1, then

0

610: (an + Q2n + Qﬂn) _;"

1
; = (121)
E, and
T[): (an + an + QSn)S (122)

1f we consider the case with the heat input @1, during the time #; and Q;,=0
during #., as treated in 6-(3), then we have

= 0 + Ou [(1 —COS wty)sin wt + (1 — icos 2wll) sin2@t+ - .- ]
t+t, T 2
+ Qu [sin wt, Cos wt + %sin 20t cos 2wt 4+ - - - - - ] (123)
T

Thus the solution of this system is obtained.
This gives several useful relations as follows

(inwC,Ry+ 10, + (jncuCle n -’;_2_ + 1) (inwCyRy+1)0s,
2n 1 ffg
—m = — d
Oin {(inoC,R,+ Ko 4 ) (noCRy +1) — Ko 2., ff_:
h{. R, R, A
+ (jna)Cle Py 1)Q3n
+ (jnwCyR;+ I)an + Qm
- R ~ (124)
O+ (inoCiRy + L2 +1) 0,
o _ S
B GneCRA Dyt (inaCRy+ T +1) (10C R+ 10,

. R, . R R, =
+ l(]llcucle-l— S“ + 1) (]I?wC2R3+ 75:- + 1) — "I—éi—} Osn

AR S R AR R

+ (fnwa& n %- + 1) O..
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For the case with Q,=Q,=0 and nwC,R;> 1, nwC,R;>> 1, we have
O | 1 i+t
61!  N1+n%*CiR2  2nzC,R,

Oon | _ 1 L+t
05, N1+ n2!C2R: 2naCyR,

(125)

If the higher mode terms are omitted, we have the approximate forms of

T2 ma.x_'Tz min __ t1+t2

Tl max Tl min 27:C2R2

Tamax—TSmin — t1+t2

Tz max T 2 min 2r CaRs

(126)

These are especially interesting to give the temperature compression ratio by the
thermostat system.
Now let us find the effects of the heat input to the nodes 2 and 3, these are

expressed as
R,

Odosesro [(inwcsRa +1)0,, + (inwcle TR 1) (inwC,Rs + 1)D,,
(02) Q2=Q3=0 A)

+ (neCRy+ 22 +1)0 | + [Gn0CoR,+ 1),0)
)
(08)Q2,Qa#=0 — [” ('n C.R __Iiz_ 1) O
(53)(;2,@3,0 Q1.+ (inwC,R, 5 +1)0,,
. R . R R,) = =
+ {(]’7CUC1R2+ —El + 1) (]an2R3+ —Ri + 1) — R: }QSn:I + 0

(127)

These relations are used for the analysis of the effect of surface contamination which
causes some heat input to the container surfaces. For such practical cases, the fol-
lowing assumptions may hold;

0.0, OOy
nowC,R,>1 nowC,Ry> 1
R,~R,>S

Because the phase relations of Q. and Q3 with respect to Q; are not known, the
only thing we can predict is the maximum possible temperature variations due to
» and @3, which are

Ty max =T min)euy @uro_ — (O2)au 0um0
(Tz max ~ T2 mln)Q-_-= Q3=0 (03)Q2= Qa=0

. C,R, O
~ 1 +joCR, Qs 4 222 X3
"0, T GR, 0,
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~ (2&9&) Qs
t1+t2 Ql
, (128)

(Ta max ~ TS min)Qza Qu#0 (03)Q2» Qa=0
(Ts max T3 min)Q2= Qa=0 (03)Q2= Qa=0

~1+ ijergl — w”C,chst.gi

1 1

2r )2 Q,
=~ C,R,C,R, =2
(t1+t2 ey

Using these relations, we can guess the values of Q2/Q; and Q3/Q; from the meas-
ured temperature variations.

9. EXPERIMENTAL ANALYSIS

Keeping in mind the general expressions of the node’s temperature (117) (118),
let us find the process to analyse the over-all thermal character of a spacecraft using
minimum simulator time. Here we assume that the values of Q, are known and
the provisions to supply the respective heat energy to the every node point using
solar simulator or suitable electric heater are ready.

First of all, a thermal model of the spacecraft will be constructed, which must
have

(1) the same values of S and R

(2) the smaller values of z.

Therefore it is most convenient in the practical point of view;

(1) to use the same main structural frame

(2) to replace the outer hull by plates with the same transverse heat conduc-
tivity and with the low heat capacity,

(3) to simulate the inner canister by a dammy box with the same size but small
heat capacity, and

(4) to assemble them so as to have the same values of R as the real spacecraft.

Then this model is put in a suitable simulator and tested under the simulated
environmental conditions. We assume here that the data obtained are sufficiently
reliable. Firstly, the cyclic heating and cooling with relatively short time period
(say 15 minute) are applied and it continues until the quasi-equilibrium state is
obtained. From this data, the zeroth order term of the mean temperature and the
first order term of the temperature variation are obtained. In the most cases of
the real spacecraft design, these data obtained by the carefully constructed thermal
model are sufficient to predict the thermal character of the spacecraft. However,
if necessary, another cyclic heating experiment with a longer period is repeated and
the data obtained will give the higher order correction terms. These measurements
are repeated to the each heat input conditions with different proportion to each
other.

As an example of this method, an experimental result of a thermal model is
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X Solar Panel B
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FiG. 16. The mean temperature of a thermal model

presented. This thermal model, schematically shown in Fig. 16, is constructed using
the same structural frame but with copper surface panels painted black and with
dammy loads. Thus this model has the same R and S as the real spacecraft but
with one quarter of C of the real one on the nodes of the outer panel and more
smaller fractions of C on the nodes of the inner canister. The simulator test was
carried out using the simulated solar light with 0.16 watt/cm? strength for cyclic
heating and cooling of 15 min. each. Fig. 16 shows the values of the zeroth order
mean temperature (7;) of the model with respect to the sunlit angle, and Fig. 17
gives the data of the first order temperature variations.

From these data, for example, we can derive the mean temperature of the panel
C under the sunlit angle 34° and the strength of 0.14 watt/cm? with 90 min. orbital
period and 30 min. ecliptic time as follows

(1) read out the temperature 0°C from Fig. 16

0.14x 60 T
90

(2) (04273) % —273=11.

0.16x 12
30

The temperature variation of this panel is
(1) read out the values of 63°C in Fig. 17

(2) 63x 30 1 o
53

The mean temperature of the frame is calculated by the same process as the panel
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Fic. 17. The temperature variation of a thermal model

temperature, which happen to be the same as the one of the panel C. The tempera-
ture variation is
(1) read out the value of 10° in Fig. 17

(2) 10x 30x60 1 _»
15%15 ~ 4

10. CONCLUSION

Here, the procedure of the thermal analysis of a spacecraft is summarized.
Firstly, the suitable nodes are assigned on the points of the spacecraft where the
large values of S (or R) and CS (or CR) exist. On the other words, two points
which are connected with small R or have small r are not necessary to be distin-
guished. Secondly, the thermal model which has the same R and S but small z is
constructed and tested in space simulator, finding out the quasi-equilibrium state
under a cyclic heating and cooling condition with a short period. This test will give
the lowest order term of the mean temperature and the temperature variation.
Thirdly, further simulation testing with longer cyclic period is repeated, if necessary,
and the higher order correction terms are found. Forthly, the temperatures at
various orbital conditions are reduced from these data. And at later date, the
additional predictions of the temperature change duc to the design modification of
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the satellite, if any, are derived using the general theorems of the linear network.
This method has been used for several satellite designs, and proved to be useful
by many simulation testings, though any actual flight does not take place yet.

Department of Aerodynamics

Institute of Space and Aeronautical Science
University of Tokyo

December 1, 1967
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