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Elastic Stability of Spherical Shells Subjected
to External Pressure
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Megumi SUNAKAWA

Summary: The nonlinear fundamental equations of a spherical shell for thermoelastic
problems, subjected to the pressure and the change in temperature, are derived first of all,
taking a large deformation into account. Then, the equations are solved approximately
assuming the deformation pattern to be the axisymmetric damped wave. The relations
between the external pressure and the deflection at the center of the shell are obtained by
use of the Galerkin method and the critical pressures are discussed based on the author’s
viewpoint that the buckling phenomenon of spherical shell is of a local one at the initial
stage of its occurrence and the localized deformation has the triggering effect in inducing
the much larger dynamic deformation and that the buckling process of spherical shell
under external pressure is of a “snapping through”. The result obtained seems to be one
of the promising contributions to bridge the gap between the theoretical and experimental
values of the problem.

NOMENCLATURE

thickness of the spherical shell.

Eq. (3.5).

damping coefficient, Eq. (3.1).

number of half waves of deflection, Eq. (3.1); fi=nr.
normal pressure (positive for the external pressure).
non-dimensional U and W with respect to A.
rectangular coordinates, Fig. 2.1.

Egs. (3.1) and (3.3).

integral constants, Egs. (3.9) and (3.10).

flexural rigidity; D =FEh®/12(1 —?).

moduli of elasticity and rigidity, respectively.

free energy in a unit volume.
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radius of curvature of the spherical shell.

change in temperature from the initial state.

Eqgs. (2.10).

displacement components in the middle plane in the x- and z-direc-
tions, respectively.
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126 M. Sunakawa

a . coefficient of linear thermal expansion.

0=—w(0): non-dimensional deflection at the center of the spherical shell.

€115 €23 : extensional strains in the x- and y-directions, respectively.

€19 : shearing strain in the xy-plane.

Gy, O : extensional stresses in the x- and y-directions, respectively.

012 : shearing stress in the xy-plane.

K1, kg : change of curvatures of the middle plane about x- and y-axes,
respectively.

K1 : change of twist of the middle plane.

] : Fig. 2.1.

0, . reference semi-apex angle of the shell.

I=6/8,

y : Poisson’s ratio.

§=m/n : Eq. (3.4).

/4 . total potential energy.

X : stress function.

] : geometrical parameter, ¢ =63 (%) .

Subscript 4(9) denotes the differentiation with respect to 6(9).
Bar over letter refers to the middle plane.

1. INTRODUCTION

The existence of large discrepancy between the classical theoretical values and
experimental ones of the critical loads of shells has resulted in the development of
approaches from many viewpoints. Using the nonlinear or finite deformation theory,
von Karmén and Tsien [/] have analyzed the buckling of complete spherical shell
subjected to external pressure and gave a light in attacking these problems.
Yoshimura and Uemura [2] have analyzed the same problem using the similar ap-
proach and obtained a more detailed result. Investigations on partial spherical
shells have also been proceeded in accordance with the practical importance. The
analyses carried out in the early stage of nonlinear research have adopted the axi-
symmetric deformation patterns only. The discrepancy mentioned above has still
existed in spite of much efforts which have been concentrated on these problems
including also the effects of initial geometrical imperfections, and the asymmetric
modes of buckling have been introduced lately. The post buckling behaviors have
been analyzed parallel to the prebuckling and buckling analyses. Some of the analy-
ses followed are referred in References [3]-[26] at the end of paper.

On the other hand, there exist some doubts on the experimental results [27]-[33]
reported so far. It is very difficult or rather impossible to make the perfect shells.
The initial geometrical imperfections and residual stresses are necessarily introduced
in fabricating and supporting shells. And the practical boundary conditions do not
necessarily coincide with the conditions used in the theoretical analyses. Another
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Elastic Stability of Spherical Shells Subjected to External Pressure 127

important factor is the technique in carrying out the experiments. So it seems that
the discrepancy between the theoretical and experimental values has to be reduced
from both the theoretical and experimental approaches.

The spherical shell is one of the most important structural components, and the
fields of its utilization have a wide range of variety. The loads which the shells
have to carry are also various, and the most important one is the normally distri-
buted load. The thermal load also cannot be ignored in many fields of engineering,
especially in the field of aerospace engineering.

In the present paper, the nonlinear fundamental equations of a spherical shell for
thermoelastic problems, subjected to the pressure and the change in temperature,
are derived first of all. Then, a tentative solution for the shell subjected to external
pressure is presented, where special attentions are paid to the damped deformation
pattern and to the discussion on the initiation of the buckling based on the author’s
opinion that the buckling is a local phenomenon at the initial stage of its occurrence
and that the buckling process of spherical shell under external pressure is of a
“snapping through”.

2. DERIVATION OF FUNDAMENTAL EqQuaATIiONS

A spherical shell as shown in Fig. 2.1 is considered, and it is assumed that the
shell is subjected to external pressure and is heated at the outer or inner surface and
there exist the temperature gradients in the x-direction on the middle plane and
through the thickness of the shell.

The two-dimensional stress-strain law can be given by

1
Euz*E"’(o'n—VUzz) +aT,
1
522"—‘—(022_“011)4‘“11, 2.1
E
1 2(1
512:““712—‘(“5—{)* 12>

where, using the hypothesis of Kirchhoff-Love, the
strain components can be given as follows :

€11 =€ —Zky,

€92 =E39— LKy, (2.2)

Fic. 2.1. Spherical shell.

€1y =E1a— 22Ky, .

Now, the following assumptions are introduced.

(i) the deformation of the shell is rotationally symmetrical with respect to the
axis of symmetry,

(ii) the semi-apex angle of the spherical shell considered is small, and

(iii) the temperature distribution in the shell is also rotationally symmetrical
with respect to the axis of symmetry.
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L)
Then the strain components and the change of curvatures of the middle plane for ¢
the case of axisymmetric deformation can be expressed [34] as in Eqgs. (2.3) and
(2.4), where the terms of the first order of infinitesimal only have been taken into
account.
fu= (U, + W) +_L
11— —k_ ] "'Z_Ez— (2]
€= 0 ’
1
k1= “E;Wrm
1 g
Kz:FWO Cot 0, (2‘4) ‘.
Ifm :O . ‘ .
And so Egs. (2.2) reduce to the following expressions.
1 1 z
En= *E(U0+W) +'2"R—2W3"‘7{T 600>
1 V4
522:_E(U cot0+W)~——£{W, cot 4, (2.5)
61220.
The equilibrium equations can be derived by the variational method with the aid
of the well-known theorem of the stationary potential energy. The process is the
same as that in the case of rectangular plates [35], and so its detailed description
will not be given here.
The total potential energy, II of an element of the spherical shell which is
bounded by two conical surfaces normal to the meridians and inclined to the axis of
symmetry by the angle 4, and ¢, and by the outer and inner surfaces is expressed as ‘.
H:S FdV+S pWdsS
v S
02 "h/2 2
=2zR? (S S F sin 0dzd6 + g pW sin BdH) , (2.6)
015 -h/2 01
where, the free energy, F can be given as
F= —E—'“ [Efx + 2vepen + e +*1— (1- V)Efz]
2(1—v%) 2
EoT
— % _(en+tew)+Cr(T). 2.7
(1—v)
Operating the variational process on II with respect to the displacement com-
9 ®
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ponents, U and W, and using the usual theorem of the stationary potential energy,
that is, 61 =0, the following equilibrium equations in the x- and z-directions can
be obtained.

“i Uz i ey T)
44 W2 Ucotfd+W T |cosé@
[(1__u2) (Us+ )+ +—( +W) =y 0s
d Eh 1 v
_ h__ W Wi+ ¥ (U cotd W]
[{(1——-»2)[ Ut W)+ e Wit g (U cot 04 W)
~ Eha T}sin@]:O, (2.8)
(I—-v)
E 1 1 1 Eha =) ..
[(1_ ¢! +D)[ (Ua+W)+—R—{ ’+§(Ucot0+W)j|—2( — T} sin 4
_d({ Eh[ w 1szv ¢ W]
do \ (1= U, +W)+ SRE i+ —(Ucotd+W)
Eha *}1 . ] Id[d{[ ER (1 v )
— T W, O+ = —f ey ——— ([ — W, +——W,cotd
U—n IR TR 25\ 2 12(1-y=) Rt R0
Eh ] } [ ER? ( ) Ehe ] ]
T|sing} —| ——" (-2 W, +—_W,cotg T |cos 6
oy 12(1—) \Re "+ o)t Ay e
+pRsin =0, 2.9)
where
. 1 h/2
T:--S T, z)dz,
h J-nnr
=1 (»2 . (2.10)
T:———~S zT (0, z)dz.
h? J-rn

In the followings, some approximations to the trigonometric functions, say
sinf==60 and cosd=1 and so on, are used in accordance with the assumption that
the semi-apex angle of the spherical shell is small.

Introducing the extensional stresses a,, and g,, and the shearing stress gy, in the
middle plane corresponding to &,, &, and &, respectively with the following
relations :

- 1, — 7
511:E(011_9022)+01T,
Ezz:é*(a—zz—“’a—u) +aT, p (2.11)
s 2(1+v) G
1= E G125 )
Eq. (2.8) is reduced to
9 ‘251911 +(511“Ezz)=0 ’ (2~12)
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§
N
where
7
=" 2.13
b (2.13)

Eq. (2.12) can be satisfied by introducing Airy’s stress function, ¥ defined by the
relations,

O _ 1 In _ AL 2.14)

E 9’ E 49
Then, the equilibrium equation in the z-direction, Eq. (2.9) is expressed by

Ty 7 a7 a s a ) )
_L_‘L[(_,_¢) (RH__ @ (%)ii(,g”) —2¢P,  (2.15)

. 9 a9 Rl 1T A=y w9 a9 \Vag @
w:%, (2.16) 8
¢=0g(_’§), 2.17)
-3 (E)(2)

Eliminating U from Egs. (2.3) and using Egs. (2.11) and (2.14), the following
compatibility equation can be obtained.

Vasls a0 ) =% 2 () (5005 @

Equations (2.15) and (2.19) are the fundamental equations for a spherical shell
subjected to normal pressure and heating. They coincide naturally with the funda-
mental equations for a heated circular plate [36] of radius r,, by putting Rf,—=r
and the radius of curvature, R infinitely large.

All the natural boundary conditions obtained are summarized in Eqgs. (2.20). .
at §=4, and 64, (
(Ehz) [1( 0+W)+ W3+ (UcotﬁH—W)] Eh“)T:O,

‘—U
Eh y Eha = .
L RO+ Wit 5 coto4w)| - B2 rliy,sing
d 1 ERta +] .
_E{[D<R= ”+FW °°t0>+ (1—-1))T]Sm0} (2.20)
1 Ehe 4
DI —W,+—W, tﬁ) T]cos =0,
+[ (Rz AR TR Rl
1 y ERa +
D(—kz—W,,—}-_E;W, cot e) T =0,
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As seen in Eq. (2.15), the existence of the term of ;1%7 (S%) is equivalent to

that of the normal pressure p. That is to say, when there exists a temperature
gradient through the thickness of the shell and ?i% (8%) is not equal to zero, the
shell has to carry the normal load due to thermal gradient in addition to the normal
pressure, not to speak of another thermal effects, and the former load is considered
to be apt to be non-uniform over the surface of the shell and its effect on the
stability of the shell must be examined carefully. Furthermore, where the edge is

simply-supported, one of its boundary conditions, [D (X}IW“_*’%?W’ cot 0) +
2 — -
(fh “) T] means that the existence of T on the boundary is equivalent to that
. —Yy #=101,02
.L . d ( dT

of edge moment on the boundary, even if 79 8;19—) =0. And, for the case of

free edge condition, ( has the same action as that of the shearing force

ar
——) 6=01,02
at the edge. These are obvious from Egs. (2.20).

The spherical shell is one of the most important structural components, especial-
ly in the field of the aerospace engineering. The field of its application has a wide
range of variety, and so the shell has to carry frequently the pressure and thermal
loads as well as another loads. Furthermore, the difficulty in fabricating shells in
the shape desired and in clamping the edge necessarily result in the additional prob-
lems such as that of the initial geometrical and dynamical imperfections, that is,
initial deformations and residual stresses.

The behavior of the perfect spherical shell subjected to external pressure is dis-
cussed in the proceeding sections.

3. THEORETICAL ANALYSIS

.‘“ . Before studying the effects of initial geometrical imperfections, residual stresses

4 and thermal gradients on the deformation behavior of spherical shells subjected to
external pressure, it is necessary to know in advance the exact behavior of perfect
shells under external pressure where there exists no other effect. Unfortunately,
however, the definite solution has not yet been found out in spite of the fact
that much researches have been carried out and many papers have been
published [/]-[33].

It is very difficult to solve exactly the fundamental equations (2.15) and (2.19)
because they are simultaneous nonlinear differential equations, so an approximate
approach is presented here to solve the fundamental equations.

In the present analysis, a special attention is paid to the local damped defor-
mation because the local deformation can be considered to have a triggering effect
to induce the much larger deformation, for some cases, accompanied with the snap-
through buckling.
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FiG. 3-1. Geometry of
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The shell clamped at the edge is considered
(Fig. 3.1), and the variation of the slope of the
deflection with respect to the distance from the
apex and corresponding to the rotationally sym-
metric deformation of the shell is assumed as

dw(9)

=AIJe ™ sin i, 3.1)
dg

where

m: numeral,

Ai=nrm, n: positive integer,
and, integrating Eq. (3.1) so as to satisfy the
boundary conditions, that is, w(0)=—¢ and
partial w(1)=0, the deflection pattern and 4 in Eq.

spherical shell. (3.1) are given as
W(9) = agrwg[kn,f_e-ﬁf&{[zs +A(E +1)9] cos 7Y
+[(§*— 1)+ n&(E*+ 1)9] sin A9}, (3.2)
A=TEE+1 (3.3)
(2E“kn»e)
g="" (3.4)
7
kpe=(—Dre ™26+ A(E*+ 1)], (3.5)

and ¢ is the non-dimensional deflection at the center of the spherical shell.

Integrating the compatibility equation (2.19) by use of Eq. (3.1), the stress func-
tion, X is given as follows:

d

R C
——— :_1_. C2
A= e
—’?(/zj——-% {ﬁ29[2$ cos 79 + (£*—1) sin /9]
3n _ i
3&2—1) cos A9+ £(£2—3) sin A9
+ @D [( ) ( ) ]
3 1 _ o
— —[4&(&*—-1 9 f—682+1 9
Gty LD cos B+ 668+ 1) sin 1)
Aremrmeo 3 301
- 16m% ( 2mE | ame 3)
APe™ {ﬁ%‘)[(f"—- 1) cos 2A9 —2£ sin 279]
16745 + 1)%¢

"l ’
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+ %i)—[f(fz —3) cos 2A9 — (362 —1) sin 279]

__3
4(€*+1)

Then the stress distribution in the middle plane of the shell is given in the follow-
ing equations.

+ —3[(54—652“)(:05 279 — 4 —1)sin 279]}.  (3.6)

an [R C
Su V=1 4C
E (h) g O
Ae ™% _ .
4+ 2= IA?[2& cos A9 2 _1)sin AY
Ty (el +(&—1) sin 9]
_ 34 i[(SE”—- 1) cos 9 + &£(§*— 3) sin rY]
&+1 9
31 .
[4egr—1 9 68241 9
Ty @ D eosaI (=68 Dsing |
Ale-med 3 1 3 1
— 1 2 2
16n28%¢ ( + 2n¢ 9 + 4n%&2 192)
Ale* {ﬁz[(éz— 1) cos 279 —2¢ sin 279]
16A'(&*+ 1)
+“2“(£§_ﬁﬁ§' _;_[5(52— 3) cos 2A9 — (36— 1) sin 279]
3 1

+m —;’;2[(54—6524— 1) cos 2a9 —4&(&*—1) sin 2791},  (3.7)

Gy (R C,
E (F) =T TG
Ae=m%?
TwEETy
+2A%[2¢ cos A9+ (§*—1) sin nJ]

{Ff'(éz + 1)9(cos A9 + £ sin 1)

+ (523f1) T;--[(3524) cos 719 + £(&— 3) sin 7]
31 _ o
N — P § 2 1 9 468241 9
+(52+1)2 92[ £(8*—1) cos A9 +(§'—06&*+ 1) sin 7 ]}
Aze—2ﬁé-9 _ 3 1 3 1
2|2 2 = L
" Terety ( R P T 92)
A2e—2i69 g _ . _
- T6A e+ 1) {2n (€24 1)I(& cos 279 —sin 2n9)
+ 2 [(£2—1) cos 2A9 — 2§ sin 27Y]
3n 1 _ e
T [E(8-3 279 — (362 —1) sin 279
+2($2+1) 8[5(& ) cos 279 — (36— 1) sin 279]
v+ 3 e —6er+1) cos 289 —45(*—1) sin 2ﬁ9]} . (3.3

eIy
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134 M. Sunakawa

The integral constants, C; and C. are determined, from the conditions that the
stresses must be finite at 9=0 and the displacement component u vanishes at 9 =0
and 1, respectively, as follows:

_ 1258 —1DA | 3(106°+5¢4+48+ DA

L= ~ (3.9
ﬁ4(52+ 1)4 64’1454(52'{— 1)4¢
14y
C2: ( )C1
1—v
DA™ ey 1y 4204 one+ 202 e -+ ZEU ||

(1—)r*§*+1)* (€*+1)
(1 e 20 (14 L]

ng*+1)

T 16(1—v)g \ 2 2nE 2nE
1 _ _
- 3 2 2 282
T Prg@+ 1) +@+9mE -1
3140) [opps a4y, (E'—6841D) .
e o3+ 5550 1) G-10)

And, the damping parameter, & has to satisfy the following relation to assure the
condition that the stresses must be finite at 9=0.

1288 —1)(26 —kno)  _ 0 3.11)
g+ 1)%(106° + 56+ 48+ 1) ¢

Eq. (3.11) shows that the damping factor cannot be arbitrarily specified but it is
to be given as the function of the deflection at the center, 6, the number of half
waves of deflection, n and the geometrical parameter, ¢ in a way to remove the
stress singularity at the center of the shell.

Eq. (3.9) is simplified as follows by use of Eq. (3.11).

= _6&’—nH4 (3.90)
e+ 1)t

To obtain the relation between the external pressure and the deflection at the
center of the spherical shell, the Galerkin method is used. In applying the Galerkin
method to the equilibrium equation, Eq. (3.1) rather than Eq. (3.2) is more con-
venient to be used as the multiplier. And the integration of the Galerkin method
must represent the work done, so the equilibrium equation with respect to the
shearing force is necessary to be used when Eq. (3.1), that is, the slope of the deflec-
tion is used as the multiplier.

By integrating for once Eq.(2.15), which is the equation of equilibrium with
respect to the normal force, the equilibrium equation with respect to the shearing
force is obtained as Eq. (3.12), where the integral constant is chosen to be zero
from the condition that the shearing force must be finite, or zero for the symmetric
deformation, at 9=0.

‘9
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e Sl S G- sh(S] a0

Then, the Galerkin method is applied to Eq. (3.12) as

| s s L7 s |

dw(9)
P&} 9d9=0.
TV =g

vai)) = (a7 G)

(3.13)

Integrating Eq. (3.13) by use of Eqgs. (3.1) and (3.6), and substituting Egs. (3.9q)
and (3.10) into the result, the relation between the external pressure and the deflec-
tion at the center of the spherical shell is given as follows after some tedious inte-

grations and calculations.

Fy(n, &)P= [Fn(n, £) + Fiy(n, &) ] 0

¢2 (2E“kn,$)
0? é®
—F0n,&)—— —+F(n, ) ————, 3.14
(n, &) GE—F, ) (n, &) ek g (3.14)
where
Fo(”, E):fo,o(f)"‘fu,l(ns E)e-’ﬁf’ (3-15)
Fu(n, &) =fuon, &) +fua(n, &)e ™

+ fu,a(n, §)e*™, (3.16)
Fiy(n, &) =fia.o(n, &) +fraa(n, £)e>, (3.17)

Fy(n, &)=f,o(n, §) +fou(n, £)e™™
+f2,2(na S)e—2ﬁ€+f2,3(na E)e-Sﬁe7 (3'18)

Fyn, &) =fy4(n, &) +f,:(n, §)e™*™
+f5,4(n1, £, (3.19)
faa(§) =221 (3.15.1)

(& +1y

(1P [ 66 6Ge-1)  24ee-D]
fuals £)=—( )(52+1)[+ﬁ(52+1> RE T 1) ﬁ3(52+1)3]
(3.15.2)

fuan, = 2 =D [ G864 80+ )EE D]

o (&2 +1)* 16 (1 —v)R*E2+1)°
3 [(E—de—1) | &@—1) 5161
e G T I (3.16.1)

L 36AEE—1) [, . 22+)E | H(L+0)Be—1)

11,107¢ =—(—1 1

Fualh, €)=~ )(1~v)(52+1>3[ TRETD T RELy
12(1'{'”)5(52‘—1)], (3.16.2)

@+ 1)
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(P RO =g - (434 59)]
s, 9= RN
331 —v)§*—14(11 +1)E*+ 3(9—v)]
S+ 1
| 3E[5(1— )& —2(241 + 1110)E 4+ (233 4 870)]
8(1—9)n(E"+ 1)
3[5(1—)&*— (1835 —14290)¢* + (1547 + 1141)8*— (101 4 911)]
16(1— (e + 1)
L 1440 1 08E - DEE D) | 28814 EE — 1)
(1—y)r*(2 41y (1 —v)r*(e2+1)°

+ﬁ(§2—1)(1+ 3 . 3 3 )

4¢ 2AE  2AEr 4RSS
3¢°-3) (1. 1 1 368+ (1, 1 31
+ 42+ 1) ( * né * 2ﬁ252) + 4ng(er 4 1) ( + 2ﬁg>}’ (3.16.3)
_ A4 +38+1) 3.17.1
f1z,o(n, E)"" 64(1——))2)54 > ( . . )
__ mE+1 3 326 +1)
s £)= 48(1— )¢ [1 METTRIET e
3(45“+3$2+1)] (3.17.2)
amerg 1y I
_n% 1 191 =3)(3¢*—1) , 6(8—-1)(36*+1)
frotn, =" (52“)2[ DEE-D 4 X

4 A +VE =D+ 58 +4¢8 + 1) ]_ 3¢+ 1) [3(29554—802§’+ 119)
(L—p)r*e%(§*+ 1) (9&*+1)? 8(¢*+1)
4 (6756123462 +75) 3(693&4——662524—53)]

&+ DO+ 1) (9¢°+ 1)
_ 367+ 1) [ 818+1) | (9¢*—1) 3.18.1
5”(952+1)3[ 48¢? +(95“'+1)]}’ ( )
2 3M(106° 4564 4462+ 1) 22 +v)é
=—(—1 1
faaln, ©)=—(=1) 16(1—v)&4(E2+1) [+ﬁ(52+1)
31+»)Ge—1) | 120 +»)E(E*-1) ] (3.18.2)
A4 1) nYEr4-1)°
__ 61 [, C+»E&+D) | 3(1+y)(66'+3¢°+1)
faaln, )= (l-—u)(f”«l—l)[ * 2AE(8 4 1) * 4n*EX &+ 1)
+ 3(1+u)(10§6+554+4$2+1)]’ (3.18.3)
8ﬁ353(§2+ 1)3
ey BEED [ 22 40E 30 +v)(38*—1)
s, §)=—( 1)[ 4(1—v)& [ +ﬁ(g=+1) ni(§*+ 1)

G

0

(o
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n 12(1+u)5(€:”—1)][1+ 3382+ 1) n 3(6&*+3&2+1)
ﬁ3(52+ 1)3 2ﬁ§(§2+ 1) 271252(52—4- 1)2
3(106° 4 5¢&* 4462+ 1) ]
4ﬁ363($2+ 1)3

+ﬁ6(52+1)3{ £? [1+(2+u)($2—1)+3(1+v)(€”——3)
8(1—v)E l(&+1) 2hE(E +1) 4R%(E 4 1)
3A+V)E =68+ [, @C+v) , 31+, 3(1+v)

T e 1y ] [+ ane | awe | s ]}

6& 6(382—1) | 24£(&—1)
1
X[ * nE*+1) T nA(&r+ 1) * ng+1)° ]
3n°(£2 4 1) 1 A3E2 1 16ng(£*—1) +17(5$‘-—1053+1)
7 [9ﬁ2(e*+1)["( ST e Nt 1y
MEE—)CE=D | 1 [raaeqy . 4HEOE=5)
* (& +1)° ] ﬁ”(9§2+1)[n(5 )+ (9¢*+1)
6(456' =342+ 1) 45(2435*_23452+19)]
(98 + 1) A(9E + 1)

3 1
E+1)(9e* + 1)
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Eqgs.(3.14) and (3.11) give the relation between the external pressure and the
deflection at the center of the perfect spherical shell where there exists no geometri-
cal imperfection, residual stress or thermal effect.

There are several methods to obtain the critical pressure from the above-
mentioned equations, but it is so difficult to derive analytically the general expres-
sion of critical pressure that some numerical examples will be shown in the next
section to show the behavior of spherical shells subjected to external pressure.
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4. NuUMERICAL EXAMPLES

The relations between the deflection at the center of the spherical shell and the
corresponding values of the damping parameter are calculated from Eq. (3.11) and
shown in Fig. 4.1.

The relations between the external pressure and the deflection at the center of
the spherical shell, which are given by Eq. (3.14) accompanied with Eq. (3.11), are
shown in Figs. 4.2, 4.3, 4.4 and 4.5 for the cases of n=1, 2, 3 and 4, respectively,
where v is put to be y=1/3. The relations for the cases of ¢=10 and 30 are
obtained as shown in Figs. 4.6 and 4.7 from the above figures, where the values of
damping parameter corresponding to each deformed state are also shown. These
figures can be characterized by Fig. 4.8.

‘ The present analysis is concerned with the points where the snap-through buck-
.} ' ling of shells is considered to be possible to take place, and the post-buckling state
of shells is not taken into consideration. In Fig. 4.8, the following points are con-
o | o sidered as the critical ones. (1) point A;,(Ay,): the deformation process follows
the path OAy,(0OAy,) and the shell snaps from the point Ay,(Ay,) to the another
deformed state. (2) point By : the deformation process follows the path OB, and
the shell snaps from the point B, to the another deformed state. (3) point Cy,:
this point corresponds to the so-called upper buckling pressure for n=3. (4)
points A;,(A.,), By, Cyp,: these points correspond to the so-called lower buckling
pressures for n=1, 2 and 3, respectively. (5) point K : on this point it is possible
to exist two different deformation patterns whose damping factors are different

Fic. 4.1. Relation between the deflection at the center of spherical shell and the
damping parameter.

T
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-08

Fic. 4.2. Relation between the external pressure and the deflection at the center of
spherical shell, n=1.

F1G. 4.3. Relation between the external pressure and the deflection at the center of
spherical shell, n=2.
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Fi1G. 4.4.

spherical shell, n=3.

Relation between the external pressure and the deflection at the center of

Fic. 4.5. Relation between the external pressure and the deflection at the center of

spherical shell, n—=4.
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Fic. 4.6.

Relation between the external pressure and the deflection at the center of
spherical shell, ¢ =10.

F1c. 4.7. * Relation between the external pressure and the deflection at the center of
spherical shell, ¢=30.
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Fic. 4.8.
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Schematic drawing of the relation between the external pressure and the
deflection at the center of spherical shell.
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FiG. 4.9. Critical pressures for clamped spherical shells.
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FiG. 4.10. Buckling pressures for clamped spherical shells from theories and experiments.
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Fic. 4.12. Deflection patterns, ¢ =30, n=2.
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Fic. 4.13. Deflection patterns, ¢ =30, n=3.

from each other for the same values of § and n=1. (6) points L, M and so on:
on these points it is possible to exist two different patterns whose values of n and
& are different from each other for the same values of 4§, respectively. It seems
that some another points are not so important in the present analysis and so they
are not described here.

The pressures corresponding to the above-mentioned points are picked up and
summarized in Fig. 4.9 against the geometrical parameter, ¢. As mentioned
already, the special attention in the present analysis is paid to the initiation of snap-
through buckling and the post-buckling state is not analyzed. And so the minimum
snap-through buckling pressures for each value of ¢ are picked up in Fig. 4.9 and
are shown in Fig. 4.10. The theoretical results for the cases of axisymmetric buck-
ling by Keller & Reiss [9], Weinitschke [10], Budiansky [7/1], Thurston [/4],
Archer [16], Keller & Reiss [/8] and Keller & Wolfe [23] and of asymmetric bifur-
cation buckling by Huang [2]] and Weinitschke [22] and the experimental results
by Kaplan & Fung [28] and Krenzke & Kiernan [30] are also shown in Fig. 4.10.

It seems that the present analysis based on the assumption of the damped axisym-
metric deformation cannot explain the experimental results by Kaplan & Fung but
agrees fairly well with those by Krenzke & Kiernan. It is shown in Fig. 4.10 that
there exists no critical pressure for the shell of ¢ <5 and that the deformation pat-
tern which corresponds to the lowest critical pressure is the one at A,,(n=1) for
the range of 5<<¢=<9 and the one at By(n=2) for 9<¢$<20 and thereafter M
gives the lowest critical pressure for the range of ¢ calculated in the present analysis.

Some deformation patterns for the case of ¢=30 are calculated by use of
Eq. (3.2) and are shown in Figs. 4.11, 4.12 and 4.13 for n=1, 2 and 3, respectively.

In the above discussion, the critical pressures have been discussed independently
for each value of the number of waves of the deflection. The comprehensive dis-
cussions including also that of the energy level for respective deformed states are
needed to decide which one of the processes of deformation is followed by the given
shell, and they will be reported separately.
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5. CONCLUSIONS

In the present paper, the nonlinear fundamental equations of a spherical shell for
thermoelastic problems, subjected to the pressure and the change in temperature,
have been derived first of all, taking a large deformation into account. Then, the
equations have been solved approximately assuming the deformation pattern to be
the axisymmetric damped wave, where the damping factor is not constant but a
function of the external load, the number of half waves of deflection with respect to
the distance from the apex and the shell geometry. |

The relations between the external pressure and the deflection at the center of
the shell have been obtained by use of the Galerkin method and the critical pres-
sures have been discussed based on the author’s viewpoint that the buckling phe-
nomenon of spherical shell is of a local one at the initial stage of its occurrence and
the localized deformation has the triggering effect in inducing the much larger
dynamic deformation and that the buckling process of spherical shell under external
pressure is of a “snapping through”.

The analytical result obtained has been compared with the theoretical and experi-
mental results reported so far, and it seems that the present result is one of the
promising contributions to bridge the gap between the theoretical and experimental
values of the problem.

An extensive experiment has been carried on at the author’s laboratory, and the
buckling pressures have not scattered so much but dropped into a narrow band of
pressure and are higher than 80% of the classical value except for a few special
cases, and its results will be published later on.

The present analysis is a part of the author’s work which had been carried out at
the Applied Mechanics Laboratory of Syracuse University, Syracuse, N.Y., during
the author’s stay through the 1964—65 academical year. The author would like to
express his sincere thanks to Dr. R. M. Evan-Iwanowski, Professor at Syracuse
University, for his successive encouragements and warm arrangement for the work.
The author is grateful to Dr. M. Uemura, Professor at the University of Tokyo, for
his careful discussions given in preparing the manuscript. Thanks are also given to
Messrs. C.-S. Chu at Syracuse University, T. Sakurai at Mitsubishi Atomic Powers
Ind., Inc. and K. Ichida at the University of Tokyo for their assistances in carrying
out the numerical calculations.

Department of Structures,

Institute of Space and Aeronautical Science,
University of Tokyo.

February 5, 1968.
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