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An Aerodynamic Study of Ablation Near the Region
of Stagnation Point of Axially Symmetric Bodies
at Hypersonic Speeds

By

Keiichi KARASHIMA, Hirotoshi KUBOTA and Kiyoshi SATo

Summary: A theoretical approach to aerodynamic mechanism of ablation is made for the
region downstream of stagnation point of blunt-nosed axially symmetric bodies at hyper-
sonic speeds on the basis of small perturbation approximation. Fundamental equations
are derived, under an assumption of sublimating ablation, for a non-reacting laminar
boundary layer flow of binary gas mixture, in which transport properties are taken exactly
into consideration by use of atomic kinetic theory of gases.

It is shown that all physical properties concerning the ablative field can be uniquely de-
termined by matching of an aerodynamic solution with a static one obtained from chemi-
cal kinetics.

An emphasis is laid on the fact that perturbation field has no longer similar solutions,
while basic field has similar ones for given perimetric conditions.

Numerical calculation carried out for teflon ablator indicates that local ablation rate
decreases gradually with increase of distance from stagnation point and the ratio of local
ablation to stagnation ablation rate tends to increase with increase of stagnation tempera-
ture in free stream.

In order to confirm validity of the present approach, theoretical results are compared
with experimental data for teflon. Agreement between theory and experiment is fairly

good near the region of stagnation point at free stream stagnation temperature near
1200°C.

SYMBOLS
X,Y) orthogonal coordinates system fixed in space
(%, orthogonal coordinates system fixed on body surface
o,v) components of velocity vector in (X, ¥) coordinates system
(@, v) components of velocity vector in (%, ) coodinates system
Tp(X) surface velocity due to ablation
t time
p pressure
D density
T temperature
] mean coefficient of viscosity
£ mean coefficient of thermal conductivity
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binary diffusion coefficient

local radius of body curvature

radius of body curvature at a reference time =0
radius of body curvature used as reference length
cylindrical radius of body

speed of sound

specific heat at constant pressure for each pure species
mean specific heat at constant pressure

specific heat for solid material

latent heat for sublimation

ablation rate

boundary layer thickness

collision diameter

collision integral

non-dimensional coordinates system fixed on body surface
transformed coordinates system (see Eq. (4.5))
reduced components of velocity vector

reduced pressure

reduced density

reduced temperature

reduced coefficient of viscosity for each pure species
mean reduced coefficient of viscosity

mean reduced coeflicient of thermal conductivity
reduced binary diffusion coefficient

reduced cylindrical radius of body

molecular weight of component gas

free stream Mach number

stream function

total enthalpy function

concentration function

Reynolds number

Chapman-Rubesin number

Prandtl number

Schmidt number

Lewis number

non-dimensional latent heat for sublimation normalized by
épzT:t

reduced specific heat at constant pressure for each pure species

mean reduced specific heat at constant pressure
ratio of specific heats for air
local polar angle of body

stagnation conditions in free stream
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conditions in free stream

conditions just aft of shock wave
conditions at outer edge of boundary layer
conditions for basic field

conditions for perturbation field
conditions of foreign gas

conditions of air

conditions at wall

conditions inside the body

differentiation with respect to argument
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Superscripts ;

conditions for non-dimensionalization

1. INTRODUCTION

At high speed reentry of space vehicles to atmospheric environment ablative
heat shield has been found to be one of the practical methods for protection of the
vehicles from severe aerodynamic heating. The device of alleviating aerodynamic
heating by use of ablation is, of course, to sublimate or to melt surface material of
the vehicle, so that a large amount of heat flow from boundary layer is absorbed
efficiently in latent heat for phase change of the surface material so as to diminish
heat conducting inside the vehicle considerably.

The aerodynamic study of ablation has already been developed in many papers
(11, [21, [31, [4], 3], [6], [7], in which aerodynamic mechanism of shielding by
vaporization is shown to be equivalent to that of the boundary layer flow with
coolant mass addition except for the effect of the latent heat. However, these
approaches are based upon simple evaluation of transport properties in boundary
layer flow, which have been found to play an important role in controlling flow
characteristics of the ablating field.

Nevertheless, simple analyses proposed by Roberts [2], [3], [4] seem to be re-
markable in the sense that they may give a qualitative aspect in estimation of effect
on ablation rate of various aerodynamic and substantial parameters, which come
into ablation phenomenon, rather than quantitative information.

With emphasis being laid on an explicit prediction of aerodynamic mechanism of
shielding by vaporization, Karashima and Kubota [8] proposed an analytical ap-
proach to stagnation point ablation associated with hypersonic flight of blunt-nosed
bodies of revolution, in which transport coefficients in laminar boundary layer flow
of binary gas mixture were exactly estimated by use of atomic kinetic theory of
gases. This approach, although complicated in numerical computation, enables to
evaluate all physical quantities concerning ablative field uniquely under the given
perimetric conditions and may be useful one in the sense that it clarifies the essential
aspect of aerodynamic mechanism of ablation not only qualitatively but also
quantitatively.
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On the other hand, in contrast with many existing works on stagnation point
ablation, there seem to exist few previous approaches to downstream characteristics
of the ablative field. Of course, this may be due to the fact that the aerodynamic
heating downstream of stagnation point has already been revealed, from conven-
tional boundary layer theory, to decrease considerably. Nevertheless, it seems
further to be of much interest to investigate detailed characteristics of the ablative
field downstream of the stagnation point in order to clarify the quantitative
information.

It is a purpose of the present paper to propose an approximate, analytical
approach to sublimating ablation downstream of stagnation point of blunt-nosed
bodies of revolution. By introducing a concept of small perturbation, the develop-
ment of the approach is made for extending the range of applicability of the stag-
nation point solutions proposed by Karashima and Kubota [8] to downstream region
in such a way that local ablative field is considered to consist of a basic field corre-
sponding to the stagnation point solutions upon which is superimposed a pertur-
bation field due to body curvature.

In order to simplify the analysis, several assumptions are introduced which do
not degenerate the essential feature of the problem. Numerical calculations are
carried out for teflon ablator and the results are compared with experimental data.

2. PRELIMINARY DISCUSSION ON VALIDITY OF THE ASSUMPTION
OF QUASI-STEADY ABLATION

Since ablation rate 7z (mass loss rate of solid material per unit surface area and
unit time) is a kind of chemical reaction rates, any physical phenomenon involving
ablation is essentially non-steady in a sense that it may cause a net change of body
shape with time. However, if the point of interest is restricted to the very vicinity
of stagnation point of blunt-nosed bodies of revolution, it has been already found
from experimental investigation [9] that the ablation rate becomes either inde-
pendent or dependent very slightly of time after a certain transient time is passed,
and this gives an experimental evidence to the assumption of steady ablation made
in the theoretical approach proposed by Karashima and Kubota [8].

However, in case of developing a theoretical approach applicable further to the
region downstream of stagnation point, the assumption of steady ablation seems, in
exactness, to be incompatible with real physical feature of the problem in a sense
that a net change of geometrical body contour may be inevitable with time, since
local surface velocity due to ablation should be, in general, a function of both time
and a local coordinate measured along body contour from stagnation point.

It must be noted here that an exact steady ablation may be specified as the state
where local surface velocity ¥ parallel to the axis of symmetry is constant every-
where so as to result in no net change of geometrical body contour with time, as is
seen in Fig. 1. Consequently, local ablation rate may be obtained in a form

(ﬁ)swady = 7)0 - COl'lSt 3
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FiG. 1. TIllustration of change of body curvature with time.

=ity cos > | (2.1)

where 7, denotes ablation rate just at the stagnation point.

As has been already mentioned previously, the local surface velocity 9 should be,
in general, a function of X and ¢ and, therefore, the exact steady ablation cannot
exist. However, in case that the rate of change of body shape with time can be
considered to be very small, the assumption of quasi-steady ablation may be appli-
cable for the reason that the geometrical body contour changes very slowly with
time. Fortunately, an experimental study [/0] has already revealed a remarkable
fact that ¥ downstream of stagnation point tends to become either independent or
dependent very slightly of time as well as that at the stagnation point after a certain
transient time is passed. This fact together with small value of ablation rate seems
to be capable of satisfying the requirement for quasi-steady assumption.

In order to examine this circumstance in more quantitative detail, consider the
change of local radius of body curvature with time due to ablation. For the purpose
of simplifying the argument, it is to be assumed that the body has initially a hemi-
spherical contour with nose radius of R, at a specified reference time =0 (see
Fig. 1) and the corresponding surface velocity is independent of time. Then, the
surface velocity distribution may be expressed within the accuracy of the first-order
perturbation, analogously to Eq. (2.1), in a form

q';(x):m-—@l(_%)”Jro{(%) 4} , 2.2)
X

R <1 for stagnation region
0

where 7, is a constant with same order of magnitude as surface velocity just at the
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stagnation point, ¥,. The first-order perturbation approach such as expressed by
Eq. (2.2) may be reasonable, since it will be consistent with solutions of appropriate
boundary layer equations predicting the ablative flow field near the region of stag-
nation point of blunt-nosed bodies of revolution. Thus, the change of local radius
of body curvature with time may be obtained as

Rx,H_ 1 3 t(3~—3r+z'2)(_3?_)2+,,,
R, 11—t 2 (-<¢ \R ’
27,1

(2.3)
r=7(f)=
0
From Eq. (2.3), it will be easily known that, if r(47) defined for a finite time
interval of 4f is very small compared with unity and, hence, negligible, the second
term in right hand side of Eq. (2.3) may also be negligible within the accuracy of
the first-order perturbation approach, that is

29,4t
0

ol <o)

Hence,

R 20,48 [ X% \?
sl S IR @49

Eq. (2.4) clearly indicates that the local radius of body curvature near the region
of stagnation point is almost unchanged within a time interval of 47 which is finite
but is not so large, if [¥,/R,| is very small. This, in turn, can be interpreted into
a statement that the assumption of quasi-steady ablation may be applicable with a
satisfactory accuracy. Thus, validity of the quasi-steady assumption depends main-
ly upon order of magnitude of |7,/R,|.

The order of magnitude of |7,/R,| may be evaluated from the results given in
reference [8], since 9, is of the same order of #,. For hemi-sphere models made of
teflon with radius of nose curvature of order of 1 cm, 7, is found to be of order of
10=*cm-sec™ at free stream stagnation temperature near 10° degree in centigrade.
Therefore,

Vo

R,

z(41)
At

R,

~

~0(1073sec™), 2.5)

which clearly implies that the body shape changes very slowly with time, thus giv-
ing an evidence to the statement that the quasi-steady assumption may be available
within the accuracy of the first-order perturbation approach.

3. Basic EQUATIONS FOR BOUNDARY LAYER Frow

In the last section it has been confirmed that the assumption of quasi-steady
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ablation may be reasonably applicable to the region near downstream of stagnation
point of blunt-nosed bodies of revolution, if surface velocity due to ablation is small.
This assumption seems to be very useful for the boundary layer flow involving
ablation, since it enables to reduce the time-dependent boundary layer equations to
the steady ones. Therefore, with this assumption the present approach is developed
together with several additional assumptions which may be summarized as follows;
(1) quasi-steady sublimating ablation,
(2) boundary layer thickness is small compared with radius of body curvature,
(3) non-reacting laminar boundary layer of binary gas mixture,
(4) no radiation.
The assumptions [3] and [4] are made only for the purpose of simplifying the
analysis and do not degenerate the essential mechanism of the ablation. The effect
of chemical reactions and associated radiation involved in the boundary layer flow
. . of multi-components gas mixture may be taken into consideration in quite the same

' way as will be presented in the subsequent development.

Let the origin of an orthogonal coordinates system (X, Y) fixed in space be
taken at the stagnation point of blunt-noted axially symmetric bodies at a specified
reference time, X-axis being taken along a meridian line of the surface as shown in
Fig. 2, then, the boundary layer equations may be written as

+) [

d(pry |, a(pUR) . 3(pVFy) _,, 3 1a
i T X + oY ’ (3.12)

_oU  _=0U  _0U0 P 5 (_5(7)
e — U—__—_—- V———_;':_‘*"z' —_— ———— P 3.1b
T T TS X v V5 (3.16)
EAC (3.10)

» 0
Shock wave

Shock layer

Boundary layer

Fic. 2. Orthogonal coordinates system.
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0
a_a.a}_?[(zl;—1)pﬁ(c’:m—ép,)7_g.§] , (3.1d)
where H is total enthalpy defined by the equation
ﬁ:épﬂ%m . (3.2)

Since surface velocity 7, normal to the ablative surface is assumed to be inde-

pendent of time, the above equations can be reduced to a set of steady equations .
expressed in an orthogonal coordinates system (%, ) fixed on moving body surface . %

by use of a transformation of variables such as
4 ’

I
it

-

RN o~
I

(3.3)

I

N "ﬁx
N T<| >

S

)

]
Il

Therefore, by use of the quasi-steady assumption, the time derivative can be trans-

formed into

99 .0 3 g

0
ot ot ay ot Er

Moreover, the following non-dimensional expressions are introduced for simplicity;

X ox_ B J (ox_ ) 25Rs g
Xo= x*ZR ’ =2 (y*= H] hy=—=—
P ) s ¥ 7* (y \/W*) "R, @'
Uu— fl , = :E s p_—:..é_ s T:——_Z—-'—— . H::—‘_—: =T ’ (3'4) |
w* u* ,53 Tst H* CpZTat
C" 23 £ Os p — p
C,=-—-2 N - y E=—=—, D= D » P=——
=T, T s Ps ps*

Before presenting the transformed equations, an additional discussion must be
made on Y-momentum equation. By use of Egs. (3.3) and (3.4), it can be

reduced to
E&:J;t = (-———_@—s—-—_——) %pu’ . (35)
ay Rb psu*Rb

Order estimation of the right-hand side of the above equation gives
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() ~ole) o2
*R, {Re R,
~0), u~o(_f_) ,
p~0( R
where  and Re denote thickness of boundary layer and Reynolds number referred
to free stream conditions and body radius of curvature, respectively. Consequently,
Eq. (3.5) results, from the assumption [2], in

» ol ta)<ollz)]
—— —_— = O — Py
ay Rb R}, < Rb
which clearly indicates that y-momentum equation is negligible within the accuracy

of the first-order perturbation approximation.
Thus, the boundary layer equations may be reduced to

3 3
Hotry) | X Aevre) o, (3.6)
0x y* oy
ou . X* ou ou a ( au)
UH———t — oV ——=— eue—e‘ —_— — 36b
P M P N (3.6b)
P _o, (3.6¢)
oy
oH | ¥ oH a[,l oH a*z( 1)1 auz]
ull 2 ppft = 9 B9 T (1)
o T Tyl P T TE T
3 [( 1 ) aK]
901 _\opr?K] 3.6d
+ 3y Le ay0 3y ( )
K  x* K a( aK)
U+ T v~ =~ _{pD— , 3.6e
o T Ty %y (3.6¢)

where

1 ,a*?
H=Cl+ S
(3.7

!

1

|

a'2:1—~

!

P2

4. DEVELOPMENT OF THE FIRST-ORDER PERTURBATION THEORY

Since the assumption of quasi-steady ablation is applicable within the accuracy of
the first-order perturbation scheme as has been already mentioned in section 2, the
analytical approach to boundary layer flow downstream of stagnation point can be
developed in such a way that the flow field is considered to consist of a basic field
corresponding to the stagnation point upon which is superimposed a perturbation
field due to body curvature.
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However, before presenting detailed development, the inviscid flow conditions at L4

outer edge of the boundary layer must be first specified near the stagnation point,
In the present approach it is assumed that they are given by the constant density
solutions of hypersonic flow past a sphere [/7]. It must be noted that numerical
solutions proposed by Van Dyke [12] may be available if a more rigorous specifi-
cation of the inviscid flow conditions is required.

Therefore, velocity along surface is given by the equation

=i, §£ sin x ,

which may be reduced, within the accuracy of the first-order perturbation, to

Q. 3
a*,:a,o\/& 1 (x—.’i)+0(x°), 4.1)
3 1+24 6 ‘
where
o =DM 42 i
(r+ DM,
4.2
—t 4.2)
1 o€ _
+ 3¢
Density and viscosity at outer edge of the boundary layer and cylindrical radius
of body contour may be expressed, respectively, as
pe=1. .
pe=1+4+mx*+O0(x*) , (4.3)
fO 1 3 5
ry=——=x—_-x34+0(x% .
=R et (x%)
where the body contour has been assumed to be hemi-sphereical and
f=— 711—3"§W : (4.4) )
where W will be expressed in Eq. (4.17)
Introducing Lees-Dorodnitsyn transformation
§= fxpeﬂerﬁdx ; p=-Leo fy—’i—dy ) (4.5)
sm Oe
0 0
then, gives a relation between x and s near the stagnation point such as
x=3¥3_3 (,,1 - i) s+0(sh . (4.6)
5 3
Therefore, by use of Eq. (4.6), Eq. (4.1) may be reexpressed as
’
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5 /8 1

30, 0 ] ot
: 1+xo[s Q-+ 1] +0GY) .

U,=1.,3

It will be found convenient for subsequent manipulations to choose @*, which is
used for normalization of velocity components, as

a*:3%J%iﬁ. 4.7)

Thus, velocity, density and viscosity at outer edge of the boundary layer can be
rewritten, respectively, as

i 38 g
U,=s ———16(2;11+1)s+0(s3) ,

oy (4.8)

te=1+3%ust + 0(sH)

Continuity equation, Eq. (3.6a), may be accounted for by introducing a stream
function defined as
x*
¢m=“‘}?pvr‘,, &, =pur, . (4.9

If the stream function is assumed to have a form

G=5""*f(9) + qs™ () + .-, (4.10)
where ¢, , ..., etc. are constants, then, velocity component u in the boundary
layer can be expressed as

u=sfi(p)) +qs** i+ -+ - . (4.11)

Therefore, by comparing Eq. (4.11) with Eq. (4.8), it will be found that the
power indices k and » must be, respectively,

k=Ll a2 (4.12)

3 3
and, consequently,

u=sfi(n) +asfilon+ -+ - . (4.13)

In quite the same way, detailed examinations reveal that perturbation forms of
total enthalpy function and concentration consistent with a set of equations given
by Egs. (3.6b) to (3.6e) must have forms

H:go(7)+s§g1(77)+0(5§) s } (4.14)

K =2,(p)+s%2,(7) + 0(s)

where a power index m consistent with the set of equations has been found to be
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From Eq. (3.7), temperature may be expressed by

H——-l-u2 a_*z
T 2 H*
T, 1, %\
¢ (—ak (Hr-u:T)
( (24 ) ) I+

which is further reduced, by use of Eqs. (4.13) and (4.14), to
T

€

=T+ st + 06, (4.16)

where . ‘

FD‘“_' o s
1 —a,z, 9
_ 1 1 2] 1 a'221
I'= 91— Wi+ g\ =W+ —2—) 1, 4.17)
1_'“22:0 2 2 1——0(220
8e M2 —1 -1
w388 M. (1 r Mﬁ,) —1).
3 AT i) +- (r—1

Here it must be noted that total enthalpy at outer edge of the boundary layer is
given by

H=1-T—1.~1,
r+1

and is considered approximately to be unity for hypersonic flow.
An expression of density may be obtained from the equation of state in a form

T
—&:(l—alk) T B

o e 'l ‘

where

a=1-12%, (4.18)
1

and is also reduced, within the accuracy of the first-order perturbation, to

Lo — fy+ 458+ 0(sY), (4.19)
p
where
Ay=T'(1—ayzy) , } (4.20)
A1= Fl(l -_— aIZQ) —_ alrozl .
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Estimation of the transport coefficients involved in Egs. (3.6b) to (3.6e) is an-
other point of interest. The evaluation can be made by use of the atomic kinetic
theory of gases and each transport coefficient is obtained as a function of total
enthalpy and concentration, which may be further reduced to a first-order pertur-
bation form as well. Detailed procedure for evaluation of transport coefficients is
shown in Appendices A and B.

Substitution of Egs. (4.13), (4.14), (4.16) and (4.19) together with transport coef-
ficients developed in the appendices into Egs. (3.6b) to (3.6e) and equating like
power of s yields, as leading terms, the following simultaneous equations with re-
spect to fo, 90 and zo;

CyY + 2 ff+ - [-1:_‘1‘.159_%_ f;ﬂ] ~0,
3 3L1—ayz,
Co ’ ! 2 y) Y
—29;) + =fug0+ ($e20) =0, (4.21)
, P, 3
C r2
(ﬁza) + 2 1%=0.

where

Fo= a9, (S,—PyC,
l—az, PS,

(4.22)

and Co, Py and S, denote the leading terms of the perturbation expression of
Chapman-Rubesin number, Prandtl number and Schmidt number, respectively, and
may be obtained as a function of g, and z,. This set of equations, Eq. (4.21),
predicts the basic field corresponding to the stagnation point flow and is quite the
same one as has been already developed in reference [8].

Equations which predict the first-order perturbation field may be obtained in the
: . following forms;

Y 1 ny L 2 //_i 147 i//
(CfY + —(CfeY + 3 = fofit 3 ok

q;

.3%
L L {AI_EE__(zﬂlJr 1)A0} =0,
3q, 5

(Sogt) + {1 (e le e+ wi(c- If:)fsf:,'}' (4.23)

/ ’ 2 / 4 4
+ 1 — %fﬂgl+ ?fogl“F '3—Q1f19'o:0 »

’ 1 C A2, 2, 4
(—Q—Z{) + {—— (Cl— §l)zo} +'—3-foz1"‘—§fozl+ ECI;LZS:O ’
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11 , 1 ,
dr=aCy (E—’S}_) {F°Zl+ (Fl—_?._WF") Z°}
1 cP\ 1 C,S ,
1 c—_u>—~(c— 1)}Fz, 4.24
+a2{PO ( 1 Po So 1 So 041 ( )

where C,, P, and S, indicate perturbation coefficients of Chapman-Rubesin num-
ber, Prandtl number and Schmidt number, respectively, and are obtained as a
function of f,, 9,, 91, %, and z,. Eq. (4.23) denotes linear simultaneous equations
with respect to f,, 9, and z; and the main purpose of the present study consists in
finding out solutions to Eq. (4.23) under the given boundary conditions.

5. BOUNDARY CONDITIONS

It is clear that each of Eqs. (4.21) and (4.23) requires seven boundary conditions
in order to settle a boundary value problem in a closed form. However, there seem
to exist only four explicit conditions such as non-slip condition and other three con-
ditions to make boundary layer flow compatible with outer inviscid flow. They are

u=u,, FI:H&: K=0 at y=y.,
which can be readily reduced, by use of the perturbation scheme, to
f,=0 at =0, .
for basic field (5.2a)
=1, gi=1, z,=0 at pp=o0

and

fi=0 at 5=0

} for perturbation field, (5.2b)
ﬁ:ls 91:0, leo at N=oc0

where ¢, in Eq. (4.11) has been chosen as
gi= _éi(z +1) (5.3)
1 10 251 .

The other three boundary conditions required for each of Egs. (4.21) and (4.23)
may be derived from physical conditions at the ablative surface. The one is a rela-
tion between total enthalpy and temperature at the ablative surface. With the non-
slip condition this relation can be directly obtained from Eq. (3.2) as

H,=(C,T)y=C(1— k)T, . (5.4)

In quite the same way, a physical condition that there is no net mass transfer of air
into the wall may provide a relation

6

‘0
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_n 0K .
- (pD«,) =(1—K,)(70), . (5.5)
ay w

The final condition may be given by the heat transfer balance at the ablative surface
such as

“81_") o } (87)’ (67)”
gL =L 9 el . 5.6
(,c 8}7 F=+0 (pv)W+xb\/ 6)7 g=_0+ ox /g=-0 ( )

In order to reduce Eq. (5.6), the heat flow conducting inside the body must be
first clarified. For this purpose it is assumed that diffusion of heat in X-direction is
negligible inside the body compared with that in y-direction. In the range of free
stream stagnation temperature beyond 1000°C, this assumption is found to be
reasonable near the region of stagnation point for hemi-sphere models made of
teflon with nose radius of curvature of order of 1 cm. The brief argument on
validity of this assumption is made in Appendix C in detail. Thus, the heat con-
duction equation may be expressed by

—mc, T 5.7

where M= —p,0,= (), . (5.8)

Under the boundary conditions

T= Tw(f) at y=0, } (5.9)
T=T,=const at j=—oo,
the solution to Eq. (5.7) can be obtained as
T=T\+ (T~ T} exp [ 7D 5] (5.10)

b

On the other hand, the distribution of wall temperature consistent with the pres-
ent development must have a form

Ty=T+ Ty + O(x) , (5.11)

where T, and T,, are constants and are unknown a priori. Thus, by use of
Egs. (5.10) and (5.11), three physical conditions, Egs. (5.4), (5.5) and (5.6), can
be reduced to the following two sets of boundary conditions;

for basic flow

Jow= (1 _'azZOw)Two )

G\ 2

(?:“z“) = —3-(1 — Zow)fow » (5.12a)
Fy(z,,) ( 1 )%( 9o )'=_EP {Q_T —T)+1}

l_alzow Two 1___alz0 v 3 szw épz( wo b ’
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for perturbation flow

glw: 3%(] “a'zzow)Tw,"‘ _ﬁz“zlig‘—g()w ’
1—a,z,,
CO) <, Z{,Zl) 4 {1( COS)
0 21+ - — w]___zw____C—-————l—}Z,w,
<So o\ T—2, ) 3Q1f1( ow) S, 0 S, o
% 3
(F;w—' 3 Tw1F6w> F()wgﬂw . “FawFlw
Two 'JI_aZZOw
1 C C 3Nk, T, \?
~PTw[1— Zoy [_{2.35 Cop,o 4 Cn ( : w)}
oo (1 =enton)| 3 Cp " @1y \ Pt
+ {l+ * (T, Tb)} ('}- Wiew + i qlflw)]
Cp
=2 ot {1+ - Tu=T0} )
3 e sz /
(5.12b)
where
I GET ’ [{2er —(7—1)}*{(r—-1)M= +2}%] II%’ ., (5.13)
pat st 35\/ ( +1)2M3 e

and F(z,,), Fy(90ws 91> Zow» Z1,) and P, are given in Appendices 4 and B.

6. ABLATION RATE

Since ablation rate, which is one of the most characteristic quantities for predict-
ing the ablation phenomenon, is a kind of chemical reaction rates, it can be con-
sidered, in principle, to be expressed in terms of two thermodynamic variables of
state in a form

_:F(Tuu p)s (61)

where a functional form F may be determined from chemical kinetics. However,
in applying this relation to the problem under consideration, Eq. (6.1) is not sufﬁ-
cient to predict the ablative field in a closed form, since surface temperature T, i
not known a priori. As has been already pointed out in reference [8], the ablatlve
field can be uniquely determined under the given perimetric conditions by matching
of the static relation, Eq. (6.1), with the dynamic one derived aerodynamically
through heat transfer balance at the ablative surface. Thus, the expression of
aerodynamic relation for ablation rate becomes a point of interest.

Since ablation rate is defined as the mass loss rate of surface material per unit
surface area and unit time, it is expressed as the mass flow rate of surface injection
of coolant gas species due to ablation, that is

)
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fh = (p'l—))w: psa*(Pv)w 5

and this may be reduced by use of Egs. (4.9) and (4.10) to a perturbation form

. T |
= ——“su*y—._» 2w
e x* r, (¢=)

=iy + M,x* + O(x%)
=ity + 33t + Ot , (6.2)
where
N 26 1 _
= — J3 TM.) e BuiBsfr » (6.3)
. 2J6 1 (1 2
my= — J3 J(M..) JRe pstast{ 10 (8#1_1)f0w+—§?q1f1w . (6.4)

Ps. and a,, indicate density and speed of sound at stagnation in free stream, repec-
tively, and Re is a Reynolds number defined by free stream conditions and radius
of body curvature at stagnation point, that is
Re: M .
/joo

6.5)

J(M..) denotes a function of free stream Mach number expressed by the equation

,(Mm):( g 1 )% MM — (r— D 66
3 1+}\0 {(r——l)Mi-{-—z}%(l'*-%—l—Mi)?:i

where ¢ and 2, are given by Eq. (4.2).

Since f,, and f,  involved in Eqs. (6.3) and (6.4) can be obtained as solutions
of boundary layer equations, wall temperature T, defined by Eq. (5.11) is included
implicitly in them. Therefore, Eq. (6.2) may be considered as a dynamic relation
between ablation rate and wall temperature expressed in a perturbation form of
the first-order. Thus, the ablative field can be determined uniquely by solving
simultaneous equations, Eqs. (6.1) and (6.2), with respect to # and T,,.

7. SOLUTIONS FOR Basic FIeLD

The boundary value problem appropriate to the basic field—stagnation point—
consists of a set of fundamental equations given by Eq. (4.21) and boundary con-
ditions expressed by Eqgs. (5.2a) and (5.12a). Here an emphasis must be laid on
the fact that both fundamental equations and boundary conditions do not involve
any perimetric condition except for T,, and T,, since Ty=1 for any hypersonic
stagnation flow. This clearly indicates that the solutions to Eq. (4.21) have a simi-
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lar form irrespective of the perimetric conditions associated with the outer inviscid
hypersonic flow.

The solutions to Eq. (4.21) have already been obtained numerically by Karashima
and Kubota [8] for teflon ablator with the assumption that the boundary layer flow
consists mainly of a binary gas mixture of air and C.F,-gas. This assumption has
been confirmed quantitatively by Madorsky [/3]. The static relation, Eq. (6.1), for
teflon ablator has already been proposed by Rashis and Hopko [14], and the respec-
tive substantial properties for air, CsF4-gas and solid teflon used in the calculation
are

air:
M,=29
C,,=0.28 cal-gr~*.deg™
3,=3.62A
0,29*=0.79 ,

C,F -gas:
M,=100
C,;=0.32cal-gr*-deg™
3,=5.00A
2,%2*=0.90,

solid teflon :
C,=0.22cal-gr*-deg™
p»=2.19 gr-cm™?
£,=6.00x10"*cal-cm™-sec!-deg™
L=35kcal-mol~!.

In this section are presented several numerical results associated with the basic
field, which are cited directly from reference [8], since they will become significant
in the subsequent development concerning the first-order perturbation field. Fig.3
shows an example of the solutions to Eq. (4.21) for T,,=0.633. In Fig. 4 are pre-
sented variations of f,,, ., and Z,, with T, which are the most important results
for the basic field. Fig. 5 shows variation of ablation rate at stagnation point with
stagnation temperature in free stream and Fig.6 presents wall temperature at stag-
nation point. The last two figures are consistent with one another, since they are
obtained as solutions of the simultaneous equations consisting of the static relation
shown in Fig. 7 and the aerodynamic relation given by Eq. (6.3).

8. SOLUTIONS FOR THE FIRST-ORDER PERTURBATION FIELD

The boundary value problem appropriate to the first-order perturbation field con-
sists of a set of fundamental equations expressed by Eq. (4.23) and boundary con-
ditions given by Egs. (5.2b) and (5.12b), in which all quantities subscribed by O
have already been known from the solutions for the basic field. It must be noted
that, in contrast with the basic field, the perturbation field does no longer be similar

‘0

(@
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Fic. 7. Static relation between 7 and T, for teflon (ref. 14).

with respect to the given perimetric conditions, since free stream Mach number and
Reynolds number are involved, as parameters, in both the fundamental equations
and boundary conditions. Therefore, the solutions to Eq. (4.23) must be obtained
case by case for given perimetric conditions.

Although Eq. (4.23) may denote linear simultaneous equations with respect to
f1, 91 and z;, it seems that only a numerical method of integration is available.
Furthermore, it is clear that the direct integration of Eq. (4.23) cannot be made
readily starting at »=0, since a mathematical difficulty arises from the fact of a two-
point boundary value problem having its boundary conditions both at »=0 and
y»=oco. This characteristic is quite the same as is seen in the boundary value prob-
lem appropriate to the basic field.

In order to avoid this difficulty the same mathematical manipulations as were
made in reference [8] for basic field are introduced for starting of the numerical
integrations outwards from the body surface, which may be done by the following
procedure. First, three explicit conditions at 5= oo are to be excluded from the
boundary conditions. These are

f;.:]-s glzos ZI:O at 77:00 . (8.1)

On the other hand, for the purpose of making up for shortage of the boundary
conditions just excluded, other three alternate boundary values such as f,,,, fi,, and
Z;,, are then assumed at »=0. These assumed values, in turn, turn out three
appropriate boundary values of g,,, z{,, and g7,, for the fixed perimetric conditions
by use of Egs. (5.12a) and (5.12b). Therefore, these six boundary values together
with the non-slip condition, fi,,=0, give a set of boundary values sufficient for

l w .
2

¢ 0
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starting of the numerical integration of Eq. (4.23) from »=0.

It must be noticed here that the coefficient of perturbed wall temperature T,
(see Eq. (5.11)) involved in the condition of heat flow balance, Eq. (5.12b), is still
unknown a priori. Although this fact may, at a glance, seem to result in shortage
of a boundary value necessary for evaluating g7, it will be easily found that T,
can be, in principle, determined uniquely by matching of a dynamic relation of the
ablation rate given by Eq. (6.2) with the static one, Eq. (6.1). However, in the
first-order perturbation field, it will be found more convenient to introduce this
matching process in estimation of the boundary values given by Eq. (5.12b), since
T, cannot be independent of frw

The facts that the basic field has already been determined for given perimetric
conditions and the wall temperature distribution has been assumed in such a form
as is given by Eq. (5.11) enable to expand Eq. (6.1) in a Taylor’s series in the form

=F(T )+ F' (T )T w3+ O(x*)
=F(T,)+34F(T,)T.,s% +0G?) , (8.2)
where
- dF
F(T,)=|—2_|_ _ 8.3
( 0) [ dTw }Tszwo ’ ( )

Therefore, by comparing Eq. (8.2) with Eq. (6.2), T,, may be expressed as

_ 26 1 Dol 1 2
Tw,—-“ 3 J(M.,) 1Re Ts;/(Two) [ﬁ(gﬂl—l)fow"*'—g?QIflw] (8.4)
Now that a complemental relation T,, and f,, is obtained, the three boundary
values (¢, 214, 91,) can be uniquely determined from a set of assumed boundary
values (f,,,, fi, Ziw)-

The excluded conditions shown in Eq. (8.1) may be used as conditions for
convergency of the solutions to Eq. (4.23) together with additional conditions

{=f=gi=g/=Z=2'=0 at p=oco . 8.5)

It must be noted that these additional conditions may seem to result in over-determi-
nation of the solutions to Eq. (4.23). However, this difficulty might be found to be
avoided reasonably for the reason that the solutions have an exponential, asymptotic
behaviour when 7 tends to infinity and, therefore, Eq. (8.5) must be satisfied auto-
matically by the solutions required. This characteristic is quite the same as is seen
in solutions appropriate to the basic field (see ref. [8]). Thus, the additional con-
ditions shown in Eq. (8.5) should be, therefore, considered as conditions for more
rigorous justification of convergency of the solutions.

The numerical calculation was carried out for teflon ablator by use of a HITAC
5020 high speed electronic computer. Integration of Eq. (4.23) was made step by
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step outwards starting from the body surface by assuming a proper set of boundary
values (f,,, fi., Z). If the solutions thus obtained did not satisfy Eq. (8.1) for
large value of 7, then, these assumed values were slightly adjusted and the integra-
tion was carried out again. This trial and error calculation was continued to repeat
again and again until the solutions converged sufficiently to satisfy both Egs. (8.1)
and (8.5). The static relation between 7 and T',, which is necessary for evaluating

Eq. (8.3) has already been shown in Fig. 7 for teflon ablator.

Figs. 8a to 8d show several examples of the solutions to Eq. (4.23) for respec-
tive perimetric conditions. By comparing Fig. 8¢ with Fig. 3, it will be easily found
that the solutions for perturbation field converge more quickly than those for the
basic field. The same is true for solutions obtained under the other perimetric con-
ditions. This characteristic clearly indicates a physical meaning that the solution
to Eq. (4.23) corresponds to a correction term relative to the respective solutions
for the basic field. In Figs. 9 to 11 are presented the variations of respective results
of f,, fi, and z,, with stagnation temperature in free stream, in which radius of
body curvature at stagnation point is included as a parameter. As is seen in Fig. 9,
the absolute value of f,,, increase with increase of radius of body curvature, indicat-
ing a physical fact that the local mass flow rate of coolant gas injection due to
ablation must be decreased as radius of body curvature grows. This characteristic
is quite reasonable from the result of conventional boundary layer theory that the
local heat transfer rate decreases with increase of the radius of body curvature. In
quite the same sense, the result of perturbation of concentration, Z,,, shown in
Fig. 11 is found to be consistent with the behaviour of f,,. Thus, by use of the
results shown in Fig. 9, perturbation coefficient of local ablation rate and wall tem-

perature can be calculated from Egs. (6.4) and (8.4), respectively, and the respec-
tive results are shown in Figs. 12 and 13.

In Fig. 14 is presented the variation of perturbation coefficient of local ablation
rate defined by #,/, with stagnation temperature in free stream, in which the
effect of radius of body curvature is indicated as a parameter. The corresponding
result of perturbation coefficient of the local wall temperature defined by T, /T,
is shown in Fig. 15. Since the perturbation coefficient of local ablation rate has
negative sign, it will be easily found that the local ablation rate decreases mono-
tonously onto downstream. The fact that the absolute value of 7, |/, increases as
radius of body curvature grows is quite reasonable and is consistent with the de-
pendency of surface heat transfer rate upon Reynolds number referred to the radius
of body curvature. Moreover, it is interesting to see in the figure that |, /m, |
decreases with increase of stagnation temperature in free stream. This, in turn, can
be interpreted into a statement that the ratio of local ablation rate to that at the
stagnation point tends to increase with increase of flow enthalpy outside the bound-
ary layer. Although this fact may, at a glance, seem to be curious because of
| i,/ M, | being non-dimensional, it is clearly due to the non-similar characteristics
of the perturbation field downstream of stagnation point, as has been already men-
tioned in previous paragraph. In quite the same physical reasoning, the result

cili ‘
g
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shown in Fig. 15 may be reasonably consistent with the characteristics of the abla-
tive field downstream of stagnation point. Figs. 16 and 17 show alternate results
concerning local ablation rate and the associated surface temperature, respectively,
for the purpose of clarifying the effect of body curvature.

A comparison of the theoretical results with experimental data is of a point of
interest in order to confirm the validity of the present development. In Figs. 18a to
18d are plotted the experimental data [10] on the ratio of local ablation to that at
stagnation point obtained under various perimetric conditions together with respec-
tive theoretical results for comparison. In each figure the ratio of local polar angle
¢, to the maximum one, 6,,, defined at the shoulder of the model is used as repre-
sentation of the location downstream of stagnation point. For T,,>1000°C, the
present theory is found to agree fairly well with experiment in the range of 6/4,,
below 0.6, beyond which the agreement fails. However, this clarly arises from the
inaccuracy of the first-order perturbation approach for large values of 6/6,, and,
consequently, the theory will be reasonably improved to obtain a wider range of
applicability if higher-order perturbation is taken into consideration.

As is seen in Fig. 18a, the present approach seems to have a little poor agreement
with experiment for comparatively low stagnation temperature in free stream.
Because of relatively small ablation rate at stagnation point in such temperature
range, the disagreement may be due to the invalidity of the present assumption made
in evaluation of the first-order temperature distribution inside the body.
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9. CONCLUSION

An analytical approach has been presented to aerodynamic study of ablation
downstream of stagnation point of blunt-nosed bodies of revolution at hypersonic
speeds. The development of the theory was made based upon the first-order pertur-
bation scheme, indicating that all physical quantities concerning the ablative field
can be uniquely determined under the given perimetric conditions by matching of
an aerodynamic relation with a static one obtained from chemical kinetics.

It was shown that the first-order perturbation field is no longer similar with
respect to given perimetric conditions, while the basic field corresponding to the
stagnation point solutions remains similar.

Numerical calculation carried out for teflon ablator revealed that the perturbation
coefficient of local ablation rate, i, is negative, so that local ablation rate tends to
decrease onto the downstream from stagnation point. This trend is reasonably con-
sistent with the distribution of local heat transfer rate obtained from conventional
boundary layer theory.

Moreover, it was shown that the local ablation rate and the associated surface
temperature have the same trend of dependency on radius of body curvature as
those at the stagnation point. These characteristics together with a remarkable
result that the local wall temperature does not rise so much as the stagnation tem-
perature in free stream increases clearly indicate a quantitative evidence on the
effect of shielding the aerodynamic heating by vaporization.

Comparison of the theoretical results with experimental data made for teflon
ablator revealed that the present approach agrees fairly well with experiment near
the region of stagnation point, thus giving an experimental evidence to the validity
of the present development. Disagreement between theory and experiment in the
region far away from the stagnation point may be due to the inaccuracy of the first-
order perturbation approximation developed in the present approach.
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APPENDIX A TRANSPORT COEFFICIENTS

A-1. Coefficient of Viscosity

For a binary gas mixture the mean coefficient of viscosity across boundary layer
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0
has been found, with an assumption that each species occupying the same space has
the same temperature, to have the form (see ref. [8], Appendix A-1).
12 :[ 2K + 1-K ](_1;)% A.1.1
e LaG+(1—pGK  14+MmG—-DK I\T, ]’ (A.1.D)
where
. M
l]:._.._l_, m:——z—,
Ha M,
3 Al1.2
R e
G= gl m
23(1 4+ m)t
’ . Therefore, Taylor expansion of Eq. (A.1.1) by use of Egs. (4.14) and (4.16)
leads to
]
;‘ =Ey(2)9% + Ei(fo, 8o, 91, 20, 2053+ O(st) s (A.1.3)
where
1 %4 1—z )
E(z.)= l: H<q 0 ] ,
o(2) I—az,l gG4(1—G)z, + 14+ (MG —1)z,
?Gz mGz
E s ) s Zg5 & :F%[ £ ! - ! :]
1(Fos 905 915 205 21) 0 (26T (1—G)p 1+ MG — Dz Y (A.1.4)
_{_ Fl [ ﬂZO 1~—Z0 ] .
22l pG+(1—pBPz, 1+ G — 1)z,

A-2. Coefficient of Thermal Conductivity

The mean thermal conductivity for a binary gas mixture can be evaluated across
the boundary layer as (see ref. [8], Appendix A-2).

, : !
.. troerse (5], a2
v LaG+U-pGHK | 14 mG—DKI\T,

where
s O 115R+0.354M,C,,

0.115R+0.354M,C,, ’ (A.2.2)
G'=1.065G .

Thus, Taylor expansion of Eq. (A.2.1) yields

k _ Fyz)
Ke \Jl—azzo

92+ Fifos 0o, 94, 2o, 2S5+ O(s8) (A.2.3)

where
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3 1—z
F.(z :[ £Z 0 ]9
o(%0) G’ +(1— 3Gz, + 14 (MG’ — 1)z,
~ ~fY/ ~ /4
F , , ,Z,Z :F%[ ﬂ#GZl - mGZl ]
1(fos 905 915 2o, 2) =1 GG+ (=G {1+ G — Dz (A2.4)
FI [ EZO 1_‘10 ]
2rtl pG' +(1—pGz, 14 (G — 1)z,

APPENDIX B NON-DIMENSIONAL CHARACTERISTIC NUMBERS

B-1. Chapman-Rubesin Number

Chapman-Rubesin number is defined by the equation

Cc=_Pt_ (B.1.1) ‘
Delle
Substitution of Eqs. (4.19) and (A.1.3) into Eq. (B.1.1) leads to 4
C=C,+Cys5+0(st) , (B.1.2)
where
C :JI—azzo[ AZ, 1—z, ]L
=z L pG+(1—pG)z, | 1+ G —1)z, I4g,’ (B.1.3)

1
Clz—Az_(Ele——Eo/llgé) i

0
B-2. Prandtl Number
Prandtl number is defined by the equation

épﬁ

P= , (B.2.1)
[
. ¢
and is expressed as

7

P=P,C,t | (B.2.2)
K
Ke

where P, denotes Prandtl number for pure air, since it is defined by conditions only
at outer edge of the boundary layer where concentration of foreign gas species
vanishes. Substitution of Egs. (A.1.3) and (A.2.3) into Eq. (B.2.2) gives

P=P,+P;s? L O(sh) , (B.2.3)

where
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774 1—z
P,(1 —a,z,) [ % n 0 ]
p—_ " LaG+(—pG)z  1+@mG—1),

£Z, n 1—-2,
G’ +(1—pG)z,  14(MG'—1)z,

(B.2.4)

P,=P, .“]_1___.9‘%_251[(1 — a2, (El——il—:ﬁii’_EoFl) ﬁaongézl] ,
Fog5 F,

and where mean specific heat for a binary gas mixture, C,, has been found to have
form

Co=1—aK . (B.2.5)

B-3. Schmidt Number
Schmidt number has been found to have form (see ref. [8], Appendix B-3)
S=8,(1—a,K) 2 (._T._)* , (B.3.1)
pe\ T

where S» denotes Schmidt number for pure air. Taylor expansion of Eq. (B.3.1)
gives

S=8,+Ss8+0(s%) , (B.3.2)
where
Z 1—z
So=5,(1—ayz [ £ 0 }
e T e TS W T 7 5o
Slzsz?—;[(l”’alzo)E1"'a1EogoZ1 - ( alzzo},o oo 1] .

0
B-4. Lewis Number
‘Lewis number is defined by the equation

Le=L (B.4.1)

S

Taylor expansion of Eq. (B.4.1)leads to
Le=TLo | PSa—PoSi 3 | oty | (B.4.2)
So S0
where P;, P,, S, and S, are given by Eqs. (B.2.4) and (B.3.3), respectively.

APPENDIX C APPROXIMATE SOLUTION OF HEAT
CoNDUCTION EQUATION

In order to estimate the heat flow conducting inside the body, diffusion of heat in
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X-direction must be taken into consideration near the region of stagnation point of
blunt-nosed bodies of revolution. Therefore, the heat conduction equation may be
written as

0:Co——=Fp|—=—+

= oT *T . 8T
ot (a?z aX*)’ €1

which can be reexpressed by use of transformation of variables, Eq. (3.3) as

=m0l _ .= oT T | o'T
—ps0sCo s =Ty ot = e, (T N c2
0sVs ba)_} baJ_) b 5 + e (C.2)
The appropriate boundary conditions may be given by
T=T,% at y=0,
T=T, at J=—o0 . } (€.3)

However, it seems to be very difficult to get an exact analytical solution to Eq. (C.2)
consistent with the given boundary conditions, Eq. (C.3), so that an approximate
solution is to be obtained by use of a conventional method in the present approach.
The procedure of obtaining the solution to Eq. (C.2) is as follows.

First, the diffusion term in X-direction is assumed to be small compared with the
others as a zeroth-order approximation. Therefore, the heat conduction equation
may be reduced to

0T _ 5.7 9T

5 %5=0 (C.4)

Kp

The solution to Eq. (C.4) consistent with the given boundary condition, Eq. (C.3),
may be given by

T=Tyt(To—To exp (C75)

y (C.5)

Ky
where both T,, and # are functions of X and have been assumed, within the
accuracy of the first-order perturbation, to have respective forms

reetun=rostol ) o[ 2])
esmsn (2] 0 [£]) |

b

(C.6)

where T, T,,, M, and 7, are constants.

Consequently, substitution of Eq. (C.5) into the diffusion term in X-direction
of Eq. (C.2) then yields an ordinary differential equation of the second-order with
respect to y, which may be written in a form

6« 3

0
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2——‘ - . . X T T C . T J— T
Ky T “"Cb (mo-{-fﬁl_x.z_.) ,8_1.:. = —Fgp [2 1:_"”1 + {zcbml(Tiuo Tb)

oy R:/ oy R} £y R}
i (T _ 7T C, i

, 10C,T it #5+ 4CY(T o, T,,)X,y,] exp (C2%5) C.7)
£sR: £3R; Ko

where the terms of order less than (%)3 have been neglected. Eq. (C.7) may

b
be considered as the first-order approximation form of the heat conduction equa-
tion. Thus, the solution to Eq. (C.7) can be obtained under the boundary con-
ditions given by Eq. (C.3) as

T =T+ (Ty—Ts) exp (C;”—’y) +(ap*+ b+ ) exp (C;"’y) . (C.8)
b b

where

4 (T, —T)% \

> koot m—%) Rt
y 4T 0~ TR _Ryin(Ty,—To) + STy 1
(7, R} + i, X%)? (77,R} + i1, X*) R}
26T w, 26o{i(T wy— T5)RE + S,T, X%
C,(, R} + in,X*) C (M R} + 1, %)
8yl (T o, — TH)R3E
Co(, Ry + i3

’

» (C.9)

/

Now that the first-order approximate solution of temperature distribution near
the region of stagnation point is clarified, each term in square root of Eq. (5.6) may
be evaluated within the accuracy of the first-order perturbation as

T % 3
(Q_T,) —2T, %,
0X | §=-0 R?
(aT) _[ Como(Tu,—Ts)  264{T w,— (T —T,,)}]
3y im0 RS
e e ) (C.10)
+ [ Cb{ml(Two’“Tb) +moTw1}
Ep
+ 12,ebrﬁ1{fnoTwl—ﬁ11(Two—T,,)}] X
C,i3R} R’

On the other hand, if the temperature distribution is assumed to be given by
Eq. (5.10), the corresponding temperature gradient in each direction will be given
by the equations
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y=-0

% “*R3
_ e e e e _ (C.11)
(aT> N Cymy(T,—T) Co{m,T,,+ m(T,,—Tp)} x*
o) = + - .
ay li=-o E» Ep R?

Therefore, it will be easily found by comparing Eq. (C.11) with Eq. (C.10) that the
temperature gradient in X-direction is quite the same, while that in p-direction is
slightly different from one another. However, this discrepancy clearly arises from
the fact that the diffusion term in X-direction involved in the heat conduction equa-
tion, Eq. (C.2), contributes to result in the second term in each square bracket in
Eq. (C.10).

Here an attention must be paid to the fact that 7, must be of the same order of
magnitude as #, but has opposite sign to #,. Furthermore, T,, must also be of
the same order of magnitude as (T',,—7,) but has opposite sign to (T, —T).
These facts clearly indicate possibility that the second term in each square bracket
in Eq. (C.10) may become very small compared with the first term. If this is true,
Eq. (C.10) will be reasonably reduced to Eq. (C.11) and, consequently, the assump-
tion of negligible diffusion of heat in X-direction near the region of stagnation point
may be applicable within the accuracy of the first-order perturbation approximation.
Thus, the validity of the assumption just mentioned above depends mainly upon the
order of magnitude of the second term in each square bracket in Eq. (C.10).

In order to examine this circumstance in quantitative detail, consider the ratio of
the second term to the first one in the first square bracket in Eq. (C.10). Thadt is

[zﬁb{ﬁon%-—ﬁ‘q(T%—-T,,)}] /[C—?bmo(Two—T,,)]N 0 {( Es )2}

Cbﬁ”luR—% Ky Cy ’;_%Rb

From the experiment [9] made for hemi-sphere models of teflon with nose radius
of curvature of order of 1cm, it has been found that , is of the order of
10~3%gr-cm~%.sec™! in the range of stagnation temperature in free stream above
1000°C. Therefore

Ep _ -2
0 [ (m) } =0(10-), (C.12)
which is very small compared with unity. The same is true for terms in the second
square bracket in Eq. (C.10), indicating that the second term in the bracket is negli-
gibly small compared with the first. Thus, it has been confirmed that Eq. (5.7)
may be reasonably applicable near the region of stagnation point and, consequently,
Eq. (5.10) may be used to estimate Eq. (5.6) within the accuracy of the first-order
perturbation approximation.
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