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Summary: A theoretical study for initiation of high-frequency combustion oscillation in
the premixed gas rocket was conducted. A generalized wave equation which governs the
behavior of pressure disturbances in a chemically reacting flow field was derived through
the linearization of the fundamental equations. It was shown that the behavior of pres-
sure disturbances depends only on the variation in heat release rate, being independent of
the individual chemical reaction processes through which this variation is provided. It
was also shown that the equation can be used for the analysis of heat-driven oscillation
when the response of heat source to flow disturbances is known. The space conditon for
the occurrence of heat-driven oscillation was found to depend upon the way of response of
heat source to flow disturbances, while the time condition was found to be independent of
it. For the occurrence of high-frequency combustion oscillation in the premixed gas rocket,
a simplified analytical model of heat-driven oscillation with an insensitive time delay was
postulated on the basis of the previous experimental studies. The incipient amplification
rate of the oscillation was calculated as the function of propellant equivalence ratio and
combustion chamber length. The calculated oscillation boundary was found to correlate
very well with the experimentally observed boundary.

List oF SYMBOLS

Superscript * indicates that the quantity is dimensional
Superscript / indicates a small perturbation

Subscript ,

Subscript ,
Subscript ,
Subscript

indicates a quantity of stagnant combustion gas at a reference posi-
tion

indicates a quantity in region I

indicates a quantity in region II

indicates a chemical species i

over a quantity indicates steady state or mean value

interaction index between heat source and flow perturbations
thermal diffusivity

specific admittance ratio of injector

specific admittance ratio of exhaust nozzle

a constant in the frequency factor for kth reaction

sound velocity of stagnant combustion gas at a reference position
specific heat at constant pressure
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specific heat at constant volume

diffusion coefficient

specific internal energy of gas mixture

activation energy for kth reaction

specific enthalpy of species i

standard heat of formation per unit mass for species i at temperature
T°

representative length of analytical system
combustion chamber length

total number of chemical reactions occurring

zero or positive integer indicating number of oscillation periods con-
tained in critical time delay

total number of chemical species present

positive integer indicating oscillation mode
hydrostatic pressure

pressure tensor

heat release rate of gas mixture per unit volume
heat flux vector

gas constant of mixture

universal gas constant

position vector

complex frequency

acoustical resonant frequency of analytical system
temperature or period of oscillation

a fixed standard reference temperature

time

axial component of velocity

velocity vector

diffusion velocity vector of species i

average molecular weight of mixture

molecular weight of species i

rate of production of species i by chemical reaction
mole fraction of species i

axial distance

mass fraction of species i

real part of s or amplification rate of oscillation
exponent determining temperature dependence of the frequency fac-
tor for kth reaction

imaginary part of s or angular frequency of oscillation
specific heat ratio

bulk viscosity coefficient

thermal conductivity

coefficient of viscosity
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v kinematic viscosity

Vi k stoichiometric coefficient for species i appearing as a reactant in kth
reaction

v stoichiometric coefficient for species i appearing as a product in kth
reaction

& axial distance of plane heat source

o density

T response time delay

Te critical value of response time delay for neutral oscillation

® propellant equivalence ratio

w critical value of angular frequency for neutral oscillation

F(z) arbitrary function of arguement z defining downstream propagating
pressure waves

f(@) arbitrary function of arguement z defining upstream propagating pres-
sure waves

[0X0)) function of time defined by Eq. (4-1)

2(8) function of position of plane heat source defined by Eq. (4-19)

o(x) Dirac delta function

v(x) time independent part of u’

a(x) time independent part of p’

1. INTRODUCTION

An investigation on the high-frequency combustion oscillation of the longitudi-
nal mode has been conducted by the present author by using a rocket motor which
burns the premixed gas as the propellant. The objects of the investigation are to
make clear the essential natures and the initiating and driving mechanism of the
oscillation through experiments, and then to develop a theory which can explain
quantitatively the occurrence of the oscillation. The initial phase of the investiga-
tion [7]1,[2] has elucidated the phenomenological aspect of the oscillation. The ob-
served pressure oscillations of the fundamental, the second harmonic, and the third
harmonic mode were characterized by the presence of pressure waves of finite ampli-
tude propagating back and forth in the combustion chamber. The pressure waves
were sinusoidal-type waves of small amplitude near the instability boundary, but
they were always shock-type waves of large amplitude in the instability region. In
the experiments, the existence of an upper critical chamber length, as well as that of
a lower critical chamber length, was observed. Any given mode of oscillation
occurred only between these two critical chamber lengths. A detailed examination
of the data has led to a conclusion that the occurrence of the oscillation is governed
by a certain characteristic time.

The second phase of the investigation [3] has made clear that the shock-type pres-
sure oscillation excited in the chamber is essentially an acoustic standing pressure
oscillation of smooth sinusoidal waveform, although the observed pressure wave-
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form exhibited a peculiar shock-type waveform as if a substantial shock wave were
propagating in the chamber. It was found that a small pressure pulse is propa-
gating back and forth in the chamber being superimposed on the sinusoidal standing
wave oscillation, which gives rise to the peculiar pressure waveform. The propa-
gation of the pulse in the chamber was isentropic except at the flame zone concen-
trated near the injector end. The shock wave did not play so important role as was
expected from the observed pressure waveform.

The third phase of the investigation [4] has brought about the following conclu-
sions on the driving mechanism of the oscillation. The excited standing pressure
oscillation is a kind of heat-driven oscillation, in which the variation in heat release
rate at the flame zone drives the standing pressure oscillation in the chamber. The
increase in heat release rate is provided by the periodical spontaneous ignitions of
the unburnt propellant volumes. These volumes are thrown out in the hot combus-
tion gas stream from the turbulent multiflames stabilized near the injector end, on
account of the flame tip breaking. This breaking is caused as the result of the rapid
increase of the propellant injection velocity into the chamber. The latter, in turn,
is caused by the standing pressure oscillation in the chamber, and thus closes the
cycle of the self-excited oscillation. The characteristic time which governs the
occurrence of the oscillation is identified as the response time delay of the unburnt
propellant, the substance of which is the ignition time delay of the thrown out pro-
pellant in the hot turbulent combustion gas stream.

The object of the present study, which constitutes the fourth and final phase of
the investigation, is to develop on the basis of the so far obtained experimental find-
ings a theory which can explain quantitatively the occurrence of the oscillation. The
important results obtained through the whole investigation, as well as the significance
of the gas rocket, will also be discussed.

2. HISTORICAL SURVEY

Theoretical studies on the high-frequency combustion oscillation in the premixed
gas rocket have been performed by several investigators [6]~[8]. In those theories,
the driving mechanism of the oscillation depends upon the chemical kinetic factors.
The previous studies [4] of the present author, however, has made clear that it is the
complicated fluid dynamic influences, instead of the chemical kinetic factors, that
actually play an important role in the driving of the oscillation. It has been con-
cluded that the theories based on the chemical kinetics model are invalid for describ-
ing the oscillation in the gas rocket. The sensitive time lag theory [9] also, which
was developed for the high-frequency combustion oscillation in the liquid propellant
rocket, cannot be applied to the gas rocket. In the theory, the combustion process
is replaced by a mass source spouting out the combustion gas, and the driving force
of the oscillation is provided by the increased mass addition of the source in re-
sponse to the pressure perturbation. In a sense, the excited oscillation postulated
in the theory should be called “mass-driven oscillation”. In the gas rocket, on the
other hand, it is the energy or heat addition rather than the mass addition, which
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actually drives the oscillation. It should also be noticed that the response time delay
in the driving mechanism suggested in the previous studies [4] is insensitive to the
flow disturbances in each cycle of the oscillation. It can be concluded, therefore,
that none of the theories developed so far can correctly explain the occurrence of
the oscillation in the gas rocket. The correct theory, as was pointed out in the
previous studies [4], should be based on the driving mechanism which depends upon
the interaction between pressure waves and flames.

On the other hand, the heat-driven oscillation with a constant (insensitive) time
lag has been analyzed by Blackshear [10],[11], with the object of revealing the im-
portant parameters which control the ability of a flame to drive or damp an imposed
oscillation. The reflection, transmission, and amplification of pressure waves pass-
ing through a laminar flame region were determined by applying the continuity and
the momentum equations over the flame region. It was shown that a change in
flame area acts as a source of waves propagating simultaneously into the hot and
the cold gases on either side of the flame zone. Bailey [12] developed a theory for
the instability of a flat flame, in which the driving force of the oscillation is provided
by the variation of the burning velocity. Merk [13]}~[/7] has performed a series of
detailed analyses of the heat-driven oscillation. The general characteristic equation
governing the occurrence of the oscillation was derived from the energy and the
momentum equations applied across the heat source. In the equation, the transfer
function of the heat source is introduced, which describes the response of the source
to perturbations in the flow and thermodynamic variables in the gas flow.

In those theories of the heat-driven oscillation, the dynamic stability of the flow
system depends mainly upon the interaction between the heat source and the flow
disturbances. It is necessary, therefore, to examine this interaction problem, espe-
cially that of flame and pressure wave, before the analysis of the combustion oscil-
lation in the gas rocket. This problem has been studied by numbers of investigators,
and the extensive literatures have been reviewed by Markstein [18]. When a pres-
sure wave interacts with a flame, it creates a system of transmitted and reflected
waves while the initial shape of the flame is distorted. In general, the effective flame
front area is increased and the resulting increased heat release rate of combustion is
accompanied by emission of further pressure waves. While the initially reflected
and transmitted waves are almost instantaneously established, the waves that are
caused by the deformation of the flame area are emitted with some time delay. The
experimental observations show the complexity of the interaction phenomenon and
thereby illustrate the difficulties of the theoretical analysis.

Chu [19]~[21] studied theoretically the mechanism of generation of pressure
waves at the flame front. He showed that the pressure wave will be generated at
the flame front whenever there is a change in the rate of heat release. The change
may be caused as a result of changes in the burning velocity, density, or heating
value, and so forth. The strength of the generated pressure wave depends only upon
the change in heat release rate, being independent of how such change is produced.
Ruddinger [22] studied the interaction of shock or other pressure waves with a plane
flame front as part of a general nonsteady flow system by the wave diagram pro-
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cedures. He showed how the calculations can be carried out, if the effects of flow
perturbations on the burning velocity and the heating value are known.

The above survey suggests an idea that in the study of the interaction problem
between flame and flow field, we should distinguish between two aspects of the prob-
lem: first, the dynamic effects of heat release on flow field, and second, the response
of flame to flow disturbances. In the present study, these two aspects will be treated
separately. The first aspect of the problem is rather easy to solve, since the dynamic
effects of a given amount of heat release can be determined completely through the
theories of thermodynamics and gasdynamics without any knowledge of chemical
reaction. In the previous studies of heat-driven oscillation [10]~[17], only two of
three (mass, momentum, and energy) conservation equations were used. How-
ever, the accurate prediction of the dynamic effects can only be made by the simul-
taneous use of three conservation equations with equation of state, without any
unnecessary assumptions. The second aspect is very difficult to solve theoretically,
although it is more important from the point of view of basic combustion theory. In
order to obtain the accurate theoretical prediction of flame response to flow dis- ®
turbances, the internal structure of flame itself should be known, and hence the
detailed knowledges of chemical reaction process, as well as those of transport prop-
erties, are required. This is almost impossible even in the simplest case of the one
dimensional laminar flame. When the combustion proceeds through the turbulent
multiflames, as is the case of the present investigation, the accurate prediction by
theory seems out of question. The simplifying assumptions, which are necessary to
make the analysis possible, will inevitably make the model far from the actual phe-
nomenon, and thus the analysis will have no physical significances. Therefore, the
mathematical representation of the flame response is obliged to be an empirical one
based on the experimental findings.

In the present theoretical study, a generalized wave equation for the multicom-
ponent reacting gas mixtures will be derived first, so as to determine the dynamic
effect of chemical reaction on flow field. The derivation is somewhat similar to
those of Chu [20] and Culick [7], but is more general since the effect of chemical
reaction as well as of transport phenomena is considered. It will be shown that the
chemical reaction affects the flow field only through the variation in heat release
rate, being independent of the individual chemical reaction processes through which
the variation is provided. The wave equation is used to show how the pressure
oscillation is excited in the flow system when there is a variation in heat release rate
in the system. An empirical relation based on the experimental findings is intro-
duced for the response of flames, or heat source, to flow disturbances. The relation
is used for obtaining the characteristic equation which determines the incipient
stability of the postulated analytical system for the gas rocket.

3. DyNAMIC EFFECT OF CHEMICAL REACTION ON FrLow FIELD

3-1. Governing Equations
In order to analyze the dynamic effect of chemical reaction on flow field, the fol-
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lowing six assumptions are made.

1. The reacting gas mixture behaves like an ideal gas.

2. The transport coefficients such as the coefficient of viscosity, the thermal con-
ductivity, and the diffusion coefficient are the same for all chemical species and
constant.

3. The effect of pressure diffusion, as well as that of thermal diffusion, can be
neglected.

4. The specific heat at constant pressure is the same for all chemical species and
depends only on temperature.

5. The average molecular weight of the mixture does not change and remains
constant in the course of chemical reaction.

6. There are no external forces.

With these assumptions, the multicomponent reacting ideal gas mixtures are gov-
erned by the following equations [23].

Over all continuity equation:

00" 47+ (s*v%)=0 3.1
73—2*—+ ‘o7 )"“ . ( = )
Momentum equation :
x_Ov* *pk . Prpk— _[*. p*
14 —a‘t*—+P [ v =— - P*, (3'2)
Energy equation :
*k
p*i +p*v*,7*e*:_‘7*,q*_l)*: (V*U*)- (3_3)

or*

Continuity equation for each species:
P*%?,:— +o*v* VY, =wf—P*.(p*Y, V), i=1,2,..,N. (3-4)

Equation of state:

p*:p*R*T*’ (3_5)
where R*=R% /W* is the gas constant for the mixture. In Egs. (3-2) and (3-3),
P* is given by

Pr= {p*+ (-32— #*—K*) (V*-z)*)} U— i 7 o0+ T*o97],  (3-6)

and in Eq. (3-3) ¢* is given by
g* = —PV*T* 4 o* 3% hEY,V*, G-7)

i=1

In Egs. (3-1) through (3-7), vector notation is employed, /'* is the gradient opera-
tor, the tensor F*p* is a derivative operator, U is the unit tensor, two dots ( : )
imply that the tensors are to be contracted twice, and superscript 7 denotes the
transpose of the tensor.

The N+ 6 dependent variables in Eqs. (3-1) through (3-5) may be taken to be
p*, p*, T*, v* and Y, in which case the other variables may be related to these
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through the diffusion equation
Y,V¥=—D*r*y,, i=1,2,... N, (3-8)

the thermodynamic identity

N
e*=3] Y, —p*/p*, (3-9)
i=1
the carolic equation of state
T*
h;k—_:hg*+f ckdT*, i=1,2,...,N, (3-10)
To+

and the phenomenological chemical kinetic expression

M N
4 / —~ (E%X/RO*T*
WE=WE D Gl OBET s [

( X p* )u;'k
RO*T*
i=1,2,--.,N. (3-11)

The following Eqs. (3-12) through (3-15) comprise subsidiary relationships that are ’
required in the analysis.
S Y,=1. (3-12)
i=1
Fx ¥y .
X, =W* , i=1,2,... N, (3-13)
wt
N
LY. V¥=0. (3.14)
t=1
N .
>3 wF=0. (3-15)
=1

In order to elucidate the effect of chemical reaction, another form of the energy
equation will be used in the present analysis. In view of Egs. (3-9), ( 3-10) and
(3-12), the specific internal energy e* of the gas mixture may be written as

e* =5 Y h % 4 f " erdT*—p* o (3-16)
i=1
T0%

Substituting this expression and Eqgs. (3-4) and (3-7) into Eq. (3-3), we obtain

D T+ p* . 2
T0x P =

(3-17
since

N T* N
oL, =Y. Vi = —p* [epar+ 3 ¥, v E=0,

To*

according to Eq. (3-14). In Eq. (3-17), the substantial derivative —5%_ is defined
by

2]
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D a L,
= 0 px.px
Drv gk TV

From Eq. (3-5) it can be shown that

] UerdT* ¥ p* = | " cxdT* R | " dT* — R*T

Tox T08 T0s
T*
- f crdT*_ R*T*,
Tos

where ¢¥=c}—R* is the constant depending only on temperature. Substituting

the above relation into Eq. (3-17), we obtain

« D
Dr*

T+ N
(f c;,“dT*) = — > hP*wWF L XX T* — P*: (P*p*), (3-18)
i=1
T0%
for the energy equation.
For simplicity, we assume here that there exists the average value ¢* which is
independent of temperature. Then

0

Tt
f CFAT* = eX(T* — To%). (3-19)
TO*
Substituting this into Eq. (3-18), we finally obtain
Cro* 361: + cFo*v* P*T*= — f hP*w¥ 4 2*¥7**T* — p*: (P*p*). (3-20)
i=1

Equations (3-1), (3-2), and (3-20) may be taken to be the governing differential con-
servation equations. When the chemical reaction takes place in the flow field, w¥
may be considered as given and these equations together with the equation of state
(3-5) form a system of six equations which govern the six unknowns p*, p*, T*,
and v*.

For convenience, the governing equations are expressed in terms of the dimen-
sionless quantites. We select as the reference time ¢ the time required for a sound
wave to travel a distance L (representative length) under the conditions correspond-
ing to the stagnant combustion gas at a reference position. If the sound velocity in
the stagnant combustion gas is denoted as ¢¥, then tF=L/c¥. We express the
velocity p* as a fraction of ¢¥ and write vy=v*/cF. Likewise, the pressure, density,
and temperature of the combustion gas at the stagnant condition will be taken as
reference quantities. For the standard heat of formation A* and the production
rate w¥ of each species, &F and Wy defined by the following equations are taken as
reference quantities. Thus the dimensionless time, position, velocity, pressure,
density, temperature, and heat of formation and production rate of species i are
defined as:

* r* v* * *
t:*’ r:L’ v=—"" p:l-)-*’ pzp*’
Iy Co 0 Do (3-21)
S LT
= e - bl T T = 2
T¥ er W
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where
5% A% Tk Wk pl;k
ex=ctry, w =
(1}

Superscript ~ over a quantity indicates steady state value.
With these dimensionless quantities, the governing equations can be rewritten in
the following form.

__gf +7- (o) =0, (3-22)

ov 1
p——+pv-Vv=— =V-P, (3-23)

ot Y

oT N o 2 .
p——gt————i—pv-VT:—Z hw,+al*T—(G—1)(P: Pv), (3-24)
i=1

p=pT, (3-25)

where V is the dimensionless gradient operator and 7 is the specific heat ratio de-
fined by y=c§/c¥. The dimensionless pressure tensor P is defined by

P={p+(2v—k) @ -0} U— {0+ 07, (3-26)
while the dimensionless transport coefficients v, &, and a are defined by
v=7 #*/pak , k=7 £* /o5 , a— 2*/(c¥py) ) (3-27)
L*/tf L*/tf L/t

3-2. Generalized Wave Equation

For the analysis of small perturbations in the flow field, the unsteady gas flow will
be considered as consisting of a small perturbation superposed on the steady state or
mean flow. For any dependent variable f appearing in the governing equations, we
shall set f= f +f where fisa steady state value depending only on position r and
f is small. The expressions are substituted into Eqs. (3-22) through (3-25), and
the perturbations are assumed to be so small that the squares and the products of
these perturbations and their derivatives can be neglected as compared to terms
linear in these perturbations. In addition to this assumption, an important assump-
tion will be introduced here. The steady state flow velocity is assumed to be so
small as compared to the sound velocity of the stagnant combustion gas that p is
the same order with perturbations, and hence the products with perturbations and
their derivatives can be neglected.

The equations governing the steady state flow can easily be obtained from Egs.
(3-22) through (3-25).

V.(pp)=0, | (3-28)
V.P=0, (3-29)
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_ N _ —
po0-VT =—3 hw,+al*T —(y—1)(P: V), (3-30)
i=1

p=pT, (3-31)

where the steady state pressure tensor is defined as
P= {p+ (% »—x) (V-v)} U—v{FD)+ (D)7} . (3-32)

On the other hand, the following linearized equations are obtained for the non-
steady perturbations.

_Laf; +7-(p0) =0, (3-33)
52V e Ly p=o, (3-34)
ot

— aT/ — Al Oy 4y’ 2777 D- /

0 Py +ov VT =— Zhiwi-}—aVT—(r——l)(P. rv’), (3-35)
i=1
p'=0T+pT’, (3-36)
where the pressure tensor for the perturbation is defined as

P= { v (% y— x) - ,,f)} U—v{(70)+ )7} (3-37)

Equations (3-29), (3-32), (3-33) and (3-36) can be used to reduce the energy
equation (3-35) to

ap’ S
D=7V v/~ L Wit alT. (3-38)
i=1

We make use of this equation and Eq. (3-34) to obtain a single partial differential
equation for the pressure perturbation,
) +ap? (23”_) : (3-39)

o°p’ - (iV-P') % (h" ow;
ar o = AT ot

Equation (3-39) governs the behavior of the pressure perturbation in the multi-
component reacting gas mixtures. However, we should mention that even for sim-
ple one dimensional flow system, to solve the equation is a very complicated task.
In order to obtain a more simple form of equation, we shall proceed to make
additional assumption that the magnitudes of the dimensionless transport coefficients
v, &, and a are the same order with the perturbations. Although the assumption
limits the range of applicability of the equation, the resulting equation nevertheless
remain valid in a reasonable approximation for many problems of the combustion
oscillation. In fact, if we take the combustion chamber length as the representative
length L, these coefficients becomes less than 10 for a representative case. This
simply illustrates the fact that the transport phenomena occur so slowly as compared
to the sound wave propagation, that they are unimportant in the problem of the
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combustion oscillation.
According to the above assumption, Egs. (3-32) and (3-37) reduce to

P=pU=p, P=pU=p, (3-40)
and hence
V.P=Vp, V-P'=Vp'. (3-41)
From Eq. (3-29), we obtain
Vp=0,
and therefore
p=const.=1.0. (3-42)
Equation (3-31) reduces to
pT =1.0. (3-43)
Substituting Eqgs. (3-41) through (3-43) into Eq. (3-39), we finally obtain
Iy (Trpy+ 99 (3-44) .
ot ot

where the variation in heat release rate ¢’ due to chemical reaction is defined as
N

q'=—>, iwi. (3-45)
i=1

Equation (3-44) is a generalized wave equation in the sense that it includes the
term due to the variation in chemical reaction rate as well as the usual acoustic
terms. The equation will govern the behavior of pressure wave in the flow field
accompanied by the chemical reaction, and should be used as the fundamental
equation for the analysis of the combustion oscillation. It can be seen that when-
ever there is a change in chemical reaction rate there will be always pressure waves
generated. It should be noticed that the behavior of pressure waves depends only
on the variation in heat release rate. The individual chmical reaction processes,
through which this variation is provided, do not affect explicitly the pressure wave
but affect implicitly through the variation in total heat release rate.

4. ANALYSIS OF HEAT-DRIVEN OSCILLATION

4-1. One Dimensional Analytical Model

The generalized wave equation (3-44) can be used to determine the behavior of
pressure perturbations in any flow field accompanied by heat addition, so long as
the steady state flow velocity is small as compared with the sound velocity. Although
the perturbation in heat release rate g’ defined by Eq. (3-45) is the one due to
chemical reaction, it is not difficult to show that the same equation equally applies
to the case when ¢ is provided by any other means [5]. The equation, therefore,
can be used as the fundamental equation of the heat-driven oscillation. However,
for the analysis of the complicated nonsteady combustion phenomenon of the pres-
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ent investigation, some additional approximations are inevitably required. These
approximations made here may be valid only in the particular case of the present
investigation, but the general treatment of the analysis can be applied to any other
cases of heat-driven oscillation.

As has been made clear in the so far conducted experimental studies of the pres-
ent investigation, the observed pressure oscillation has definite one dimensional
characters. Therefore, the incipient instability of the gas rocket may be studied by
the one dimensional linear theory, if we can give a proper one dimensional repre-
sentation for the complex three dimensional interaction phenomenon between pres-
sure waves and flames. In usual one dimensional analyses of flame-driven oscilla-
tion [10]~[17], a flame zone of zero or finite thickness which separates the unburnt
gas region from that of the burnt gas is assumed to exist. However, when the com-
bustion proceeds through turbulent multiflames as is the case of the present investi-
gation, most of the combustion region is occupied by the recirculating hot combus-
tion gas [4]. The unburnt gas surrounded by the flames occupies only a small
portion of the combustion region. The reflection, transmission, and dispersion of
pressure waves at the flames will affect little the overall one dimensional character
of the propagating pressure waves. In the present analysis, therefore, the existence
of the flames, as well as that of the unburnt gases inside the flames, is assumed to
be neglected with regard to the one dimensional wave propagation. Everywhere in
the chamber is occupied by the hot combustion gas, which flows from the injector
toward the exhaust nozzle with a slow flow velocity. There is no steady state com-
bustion zone in the chamber and the flames manifest their effects only in the form
of the variation in heat release rate at a fixed one dimensional heat source zone,
which is assumed to exist at the position of multiflame tips.

As was described in the previous paper [3], there exists in the actual combustion
chamber a slight temperature gradient of the combustion gas along the flow direc-
tion. However, the gradient of steady state temperature has no important influence
upon the stability of the pressure wave in the chamber, although some correction of
the wave propagation time may be required. In the present analysis, therefore, T(x)
is assumed to be constant through the chamber and is taken as unity. Then the
steady state density 7(x) also becomes unity from Eq. (3-43). The propagation of
the pressure wave in the combustion chamber is isentropic [3] except at the heat
source zone, where the variation in heat release rate occurs. Some of the energy of
the pressure oscillation in the chamber may be lost at the injector end, as well as
at the exhaust nozzle end. The magnitude of the energy loss can be represented by
the specific admittance ratio B at these ends, which is defined byB=7u’/p’.

With these assumptions made above, the actual combustion chamber can be
replaced by the hypothetical chamber represented in Fig. 1. The representative
length L in this case is the chamber length. The hypothetical injector which admits
the steady state flow of hot combustion gas is located at x=0, while the hypothetical
exhaust nozzle for ejection of the steady state flow is located at x=1.0. The reflec-
tion of the pressure wave at the injector and the nozzle is specified by the respective
admittance ratio. The chamber may be divided conveniently into three zones,
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Fic. 1. Nondimensional analytical model of heat-driven oscillation.

namely into the zone I, the zone II, and the heat source zone. In the zones I and
II the propagation of the pressure wave is isentropic, while at the heat source zone
the variation of heat release rate occurs.

4-2. Forced Oscillation by Heat Relase

Before the analysis of the incipient stability, let us first examine the behavior of
the postulated hypothetical system when a periodic heat release rate is applied. To
obtain the solution of Eq. (3-44) for a heat release rate ¢’ of arbitrary form, we
first examine the case when ¢’ is concentrated at x=¢. In this case, ¢’ is given by

q'=Q.(1) 6(x—§), 4-1)
where Q,(?) is a reasonable known function of ¢, and §(x) is the Dirac delta func-
tion of x.

The wave equation (3-44) for the zones I and II is reduced to the usual acoustic

wave equation
aﬁpl aZPI
o oxt

4-2)

The velocity perturbation «’ is related to p’ through the following equation which is
obtained from the momentum equation (3-34),

ow 1 op _

0. 4-3
ot r 0x @-3)

The general solution of Eq. (4-2) is given by
p'=fx+1)+F(x—1), (4-4)

where f and F are arbitrary functions defining the upstream and the downstream

propagating pressure waves. The corresponding velocity perturbation can be ob-
tained by Eq. (4-3) as

o
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W= — _;. ({x+ 0 —F(x—1)}. (4-5)

These solutions apply equally well in the zones I and II. Let subscript ; denote
solutions in the zone I and subscript , denote solutions in the zone II.
The solutions in the zone I must satisfy the boundary condition at x=0,

r =B, (4-6)
D1

where B, is the complex specific admittance ratio of the injector. From this con-
dition, we get

1+ B,

F.(2)=
@=117

fi(—=2), 4-7)

where z is an arbitrary argument. Substituting this into Eqs. (4-4) and (4-5), we
obtain

Pi=fix+ D+ T T A~ x4 ), (4-8)
i1 _14B, . )
== — {0 R x o). -9

The solutions in the zone II must satisfy the boundary condition at x=1.0,

u,
r- —B, (4-10)
D
where B, is the complex specific admittance ratio of the nozzle. From this condi-
tion, we get

Fy2)= i*Bz

f.(2—2). 4-11)

2
Substituting this into Eqgs. (4-4) and (4-5), we get

o=+ 1)+ ﬁg f2—x+0), (4-12)

2

’ 1

u2=—”‘{f2(x+z)—— L+ 5
7 1

B f2—x+0)t. (4-13)

2

The above obtained two sets of solutions are to be matched at the heat source
zone, the width of which is assumed here to be zero. Since the governing differ-
ential equations in the zones I and II are second order, two matching conditions are
required at this heat source plane, in addition to the above two boundary conditions.
This plane is characterized by the finite evolution of heat and the dynamic effect of
which should be determined by Eq. (3-44). The latter, in the present case, reduces
to

azp/ . aZP/
o ox?

+ -2 0,02x—). (4-14)
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The first matching condition can be obtained by integrating the above equation over
the infinitesimal reaction zone width, and then making use of Eq. (4-3). The
second condition can be obtained by repeating twice the integration. The results
are

ru—u)=0.(), (4-15)

pi=p;. (4-16)
Equations (4-15) and (4-16) indicate that the finite evolution of heat at the plane
heat source will produce the velocity jump across the plane, while the pressure is
continuous at any instant across the plane. When Eqs. (4-8), (4-9), (4-12), and

(4-13) are substituted into the above two conditions, the following two equations
are obtained.

1

g E+HD+HA(—E+0—B.{f(€ +)—fi(—E+1)}] '

— e GO+ KR+ + By (L2 — 4 D— (& + D} 1=0, e
’ (4-17)

T D= £+ DBy {0+ (€4} ]

— e 4 D=2+ D= By{hE+ 0 4 K2 — £+ D= 0,00,

(4-18)
These equations will determine the forms of the function f, and f, when Q.(¥) is
given.
Let us now examine the case when Q.(?) is the periodic exponential function of
time, and put
Q:()=10(8) exp (s1), (4-19)

where 2(¢) is a complex function of the parameter £, and s is the complex frequ-
ency. Then both f, and f, should become the exponential function of time with the
same frequency s. Then we put . H .

fi=c, exp (s1)

fa=czexp (s1), “20

where ¢, and ¢, are complex constants. Substituting this into Egs. (4-17) and
(4-18), and solving for ¢, and c,, the solutions are found to be

_ 1—B, coshs(1—¢&)+ B, sinh s(1—¢&)
2 (1—B,B,) sinh s 4 (B,— B,) cosh s
_ 1-B, cosh s¢ — B, sinh s&
2 (1—B,B,) sinh s+ (B,— B,) cosh s

- 82(8), (4-21)

G

G,

et 0(8). (4-22)

Equation (4-20) with ¢, and c, given by the above equations is substituted into
Egs. (4-8), (4-9), (4-12), and (4-13), and we finally obtain '
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cosh s(1—¢§)+ B,sinh s(1 —¢)

(x, t18)= h
P )= g B Y sinhs 4 (B— B) coshs "
— B, sinh sx)Q(&)e*, (4-23)
’ _ 1 coshs(1—&)+ B,sinhs(1—&) .
I\ t -
s == s (B.—B)coshy s
— B, cosh sx)Q2(£)e’, (4-24)
, cosh s& — B, sinh s¢
i(x, t|&)= 1—
Pl 1]6) (1—B,B,) sinh s+ (B,— B,) cosh s {cosh s(1—x)
+ B, sinh s(1 —x)} 2(&)e*, (4-25)
, 1 cosh s¢ — B, sinh s& .
2\ t = —_—
40 = 5 B sinh s (B—B) coshs s
+ B, cosh s(1 —x)} 2(&)e*. (4-26)

The solutions given by Eqs. (4-23) through (4-26) represent the pressure oscil-
lation driven by the periodic heat release rate Q.(9) at the heat plane x=£&. The
oscillation may be considered as a kind of forced oscillation. The amplitude of the
excited oscillation is directly proportional to the magnitude of the applied heat
release rate. It is not difficult to show that the acoustical resonant frequency s, of
the system is given by

B,—B,

tanh So=— oo
- 1~2

(4-27)
When the frequency s of the applied heat release rate coincides with the resonant
frequency s,, the amplitude of the excited oscillation becomes infinitely large.

The solutions Eqgs. (4-23) through (4-26) for a concentrated heat release are the
Green’s functions. For the heat release Q(x)e® of arbitrary form distributed
along the chamber, the corresponding solutions can be obtained in the form of the
following integrals:

p'x, )= f Cpx, 18)de= f *pix, t]&)de + f “pix, 118)dz, (4-28)

w(x, f)= f"“u'(x, t8)de = f “uy(x, t]£)de + f U, 118)de. (4-29)

4-3. Initiation of Self-Excited Oscillation

Equations (4-28) and (4-29) represent the behavior of the system when a peri-
odic heat release is applied. The heat release rate was given as a known function
of time and position, and the solutions are not sufficient to examine the instability
of the system induced by combustion. In the latter case, the heat release rate can
not be given as the known function, but it may vary in response to any disturbances
in the system. The induced oscillation is a self-excited oscillation. In order to
analyze such an instability, it is necessary to know the way of response of heat
release rate g’ to disturbances in the flow field. In the present analysis, this descrip-
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tion of flame response to flow disturbances will be made empirically on the basis of
the experimental findings.

The previous experimental studies [4] have elucidated that the increase in the
heat release rate is provided as the result of spontaneous ignitions of the unburnt
propellant volumes thrown out in the hot combustion gas stream by flame tip break-
ing. The latter, after all, is caused by the pressure decrease at the injector end of
the chamber as the result of the standing pressure oscillation in the chamber. There-
fore, it can be said that the pressure decrease at the injector end will produce the
increase in heat release rate at the flame zone. The effect of the pressure decrease
is not instantaneous, but the heat release rate will increase only after some time
delay corresponding to the response time delay of the propellant.

The above suggested mechanism of the heat release rate variation is the one for
the fully developed oscillation, while the present analysis is concerned with the
incipient instability. As was already mentioned in the previous paper [4], how-
ever, the same mechanism may be considered to hold for the incipient state,
although the variation in heat release rate in the latter case will be the smooth sinu-
soidal one instead of the intermittent increase. The response time delay of the
propellant can be regarded as the time elapsed from the instant of the minimum
pressure at the injector end till the instant of the maximum heat release rate at the
flame zone. The time delay depends chiefly upon the chemical nature of the pro-
pellant and is independent of the frequency of the oscillation. It is also insensitive
to the flow disturbances. The width of the flame zone, where the variation in heat
release rate occurs, may be considered to be so small that it can be neglected as
compared to the length of the combustion chamber.

In the hypothetical system of the present analysis, the heat release rate g’ varies
sinusoidally against time at the plane heat source located at x=§, in response to
the sinusoidal pressure variation at x=0 with a constant time delay of z*. The
latter is made nondimensional by the reference time t¥ and is denoted as r. For
the small perturbation of heat release rate, the magnitude can be assumed to be
proportional to the magnitude of the pressure perturbation at x=0. With these
assumptions, g’ can be given as

q'= —Aagy(0) exp s(t—1)-6(x—¢&), (4-30)

where A is the proportional constant which may be called the interaction index.
The function ¢(x) is the time independent part of the pressure perturbation and is
defined by the following equation.

p'(x, t)=a(x) exp (st). (4-31)

Since the heat release rate, as well as the pressure, is the periodic exponential func-
tion of time, we can make use of the solution given by Eq. (4-23). Substituting

2(8) = —Aa,(0) exp (—s7) (4-32)

into the right hand side, and Eq. (4-31) into the left hand side of Eq. (4-23), we

obtain

This document is provided by JAXA.



A Theoretical Study of High-Frequency Combustion Oscillation 327

A {cosh s(1—§&) + B, sinh s(1—£)} +€* {(1— B,B,) sinh s+ (B,— B,)cosh s} =0.
(4-33)

Equation (4-33) is the characteristic equation which determines the complex fre-
quency s=a -+ as the function of the interaction index A, the plane heat source
position &, the response time delay ¢, and the specific admittance ratios B, and B..
Since the real part « represents the amplification rate of the perturbation, the
incipient stability of the system can be determined by solving this equation.

Although the characteristic equation (4-33) is sufficient for the purpose of the
present analysis, two other cases of the flame response to flow perturbations will be
examined as the additional examples of the present method. When the heat release
rate at the plane heat source increases with the increase of temperature, and hence
of pressure, at that position, as is the case of the Arrhenius type rate function, ¢’ is
given by

q'=Aa(§) exp s(t—1)-d(x—§). (4-34)
The characteristic equation in this case becomes
A(cosh s& — B, sinh s¢&) {cosh s(1 — &) + B, sinh s(1 — &)}
—e™ {(1—B,B,) sinh s+ (B,— B,) cosh s} =0. (4-35)

When the variation in heat release rate is caused by the change of flame front
area as the result of the velocity variation at the flame position, g’ is given by

q'=7Av(§) exp s(t—17)-5(x—$), (4-36)

where v(x) is the time independent part of the velocity perturbation and is defined
by the following equation.

u'(x, t)=v(x) exp(s?). 4-37)
The characteristic equation in this case becomes

A(sinh s& — B, cosh s&) {cosh s(1 — &) + B, sinh s(1 —¢§)}
+e* {(1 — B,B,) sinh s+ (B,— B;) cosh s} =0. (4-38)

If we put A=0 in the above three characteristic equations, they give the same
solution

(4-39)

s:tanh"‘[—- B,— B, }

1—B,B,

The obtained frequency is equal to the acoustical resonant frequency s, of the sys-
tem. For the reasonable complex values of B; and B, the real part « becomes
negative and the imaginary part 8 takes the value which is slightly less than the
acoustical resonant frequency in the organ pipe closed at both ends. The latter
equals, in the present nondimensional system, to nr where n is the positive integer
designating the order of successive higher harmonic modes of oscillation. Since
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there is no energy input in the system, the flow disturbances will damp exponential-
ly against time with the acoustical resonant frequency. Especially when B,=B,=0,
« and 8 become zero and nr, respectively, resulting in the acoustical neutral oscil-
lation with no energy input nor losses.

5. NUMERICAL CALCULATION

5-1. Instability Boundary

The incipient stability of the hypothetical system for the postulated flame response
can be examined by solving numerically the characteristic equation (4-33). In
often cases, the reflection of pressure waves at the injector can be considered to be
perfect, and hence we shall consider only the case when B;=0. The critical con-
dition for the instability of the system can be obtained by letting the real part & of
the complex frequency s equal zero in the characteristic equation. After separating
the real and the imaginary parts, the following two real equations are obtained.

A*— B3 =(1—B){A*sin’ o(1 —£) + sin*w}, (5-1)
tan wr, = B} cos @-sin w(1—¢&) —sin w-cos w(l —§&) , (5-2)
B, cos w¢

where o and z, are the critical values of the frequency 8 and the response time
delay z, respectively, corresponding to the neutral oscillation. We can make use
of these equations to obtain w and z, as the function of A4, B,, and &, and thus
determine the unstable ranges of the frequency 8 and the response time delay r.
Figure 2 presents the deviation of the critical frequency o from the acoustic organ
pipe frequency nz as the function of 4 for three representative values of B, when
§=0. The magnitude of deviation, in this case, is the same for the fundamental-
mode (n=1), the second harmonic-mode (n=2), the third harmonic-mode (n=3),

- 8:=0 B:=0
06 £=0 B:=0.1
B.=0.2
B2=0 \
04F  -B:=01
B =0.2
021
1S
~
3
0 : f : " : +
05 1.0 1.5 A 20 25 30
-0.2+
-04f-
-0.6}

Fic. 2. Unstable ranges of nondimensional frequency as the func-
tion of interaction index for B,=0, £=0.

- X
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and for any other higher harmonic-mode oscillations. As is seen in the figure, the
unstable range increases with the increase of A. When B,+0, the system becomes
unstable only when A is larger than B,. Figure 3 shows the corresponding unstable
region of the response time delay for the first three modes of oscillation. Although
for each mode of oscillation there appear repeatedly successive higher unstable re-
gions, only the lowest unstable region is shown in the figure. This selection is based
on the physical consideration that the response time delay which is longer than the
oscillation period will not play any important role in the excitation of the oscilla-
tion. The figure indicates that the unstable region expands with the increase of 4,
while it becomes smaller with the increase of B,. It should be noticed that there
exist the regions where several modes become unstable simultaneously.

2.4

o

oo0o
N_L

22

O w

T

20

1.8

1.6

1.4 - — n:2
T ——n=3
1.2+
1.0
0.8k

06

04}

0.2

0 L | !
0] 0.5 1.0 1.5 2.0 25 30

Fic. 3. Unstable ranges of nondimensional response time delay
as the function of interaction index for B;=0, £=0.

Figures 4~6 present the unstable range of the frequency as the function of & with
B, as a parameter for the first three modes of oscillation when 4=0.5. It can be
seen that the unstable range decreases with the increase of B,. The plane heat
source position with a larger unstable range may be considered to be more likely to
become unstable. As is seen in the figures the antinodal positions of the acoustic
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Fic. 5. Unstable ranges of nondimensional frequency as the func-
tion of nondimensional position of plane heat source for
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» <
standing pressure oscillation are, on the whole, most unstable while the nodal posi-
tions are always most stable. Figure 7 shows the corresponding unstable region of
the response time delay. The unstable region, just in the same way as that of the
frequency, becomes smaller with the increase of B,. The antinodal positions are
most unstable while the nodal positions are most stable.
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Fic. 7. Unstable ranges of nondimensional response time delay

as the function of nondimensional position of plane heat

source for 4=0.5.

’ } ﬂ;. The critical value z, of the response time delay depends upon the values of A4,
& and n as well as upon that of B,. The critical value of the frequency w, and
hence of the dimensionless oscillation period T,, also depends upon these para-
meters. However, when B,=0 it is not difficult to show with the use of Eq. (5-2)
that there exists a unique simple relation between ¢, and T,. The relation is given
by

4m 1 4dm+3
Tee= amyl T,, Too= am+3 T., (5-3)
4 4
where m is the zero or positive integer indicating the number of oscillation periods
that are contained in the critical time delay z,. Subscript , denotes the value for the
case when sin wr,=1, while subscript , denotes that for the case when sin wr,=
—1. As was mentioned before, only the case of m=0 is considered in the present
-

This document is provided by JAXA.



332 T. Takeno

analysis. Therefore, when the dimensional quantities are used the condition for
the system to become unstable is given as

Lrrcorc 37, (5-4)

4 4
This inequality states that each mode of oscillation is excited only when the response
time delay lies between a quarter and three quarters of the oscillation period.
Figure 8 shows the phase relation between the pressure and the heat release rate
variation at the critical condition.

p¥ q¥
T*
p¥
*’ *
g/ -~ q\, ,/"\
e \\\ / \ e /
0 vl V4 5 *
\\ / '\
~\ //
\\_,4 -’
*_ 1 %
Tee= i T
Tc?; = %‘ ™

Fic. 8. Phase relation between pressure and heat release rate
variation at critical conditions.

5-2. Amplification Rate and Frequency

The real part « of the complex frequency s gives the amplification rate or the
damping rate of the perturbation, while the imaginary part 8 gives the frequency of
the excited or the damped oscillation. In the present analysis, the characteristic
equation (4-33) was solved numerically for the case when 4=0.5, B,=0, and «
and B were calculated as the function of r and §. Figures 9~11 present the
examples of the calculated values of « [5] for the first three modes as the function
of & with z as a parameter. It can be seen that « is zero for any value of - when
the position of the plane heat source coincides with the nodal position of each mode
oscillation. As the plane heat source goes away from the nodal position and
approaches to the antinodal position, « increases or decreases gradually. However,
a is not always maximum or minimum at the antinodal position. The position of
the maximum amplification rate, as well as that of the maximum damping rate,
depends upon the value of response time delay. Figures 12~14 present the calcu-
lated values of g for the first three modes as the function of £ with = as a parameter.
When the position of plane heat source coincides with the nodal position, the fre-
quency of the oscillation becomes that of the acoustic organ pipe oscillation. As
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of plane heat source for 4=0.5, B;=0. heat source for 4=0.5, B,=0. Funda-
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the plane heat source goes away from the nodal position and approaches to the anti-
nodal position, the frequency deviates from that of the acoustic oscillation. How-
ever, the deviation is not always maximum at the antinodal position. The position
of maximum deviation depends upon the value of response time delay.

Figure 15 presents « as the function of r for the representative plane heat source
position of §=0. When 7 is increased from zero, « for each mode of oscillation
first increases until it gets the maximum, and then decreases monotonously. The
value of 7 for the maximum value of & corresponds approximately to one half of the
acoustic organ pipe oscillation period. The latter, in the present nondimensional
system, equals to 2/n, where n is the positive integer designating the mode number
of the oscillation. Reference to Fig. 8 .indicates that the system is most unstable
when the heat release variation is exactly in phase with the pressure variation, while
it is most stable when they are out of phase with each other. For each mode of
oscillation there exists one unstable range of «, where « becomes positive. The

0.8 n=1 A =05
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/ N £§=0
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04
0.2 =
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Fic. 15. Calculated nondimensional amplification rate and frequ-
ency vs nondimensional response time delay for 4=0.5,

B,=0, §=0.
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unstable range for each mode of oscillation overlaps one another, as was already
seen in Fig. 7. In those overlapped unstable ranges, there is a possibility of more
than one mode of oscillation being excited simultaneously. In the actual phenome-
non, however, it is the only one mode

of oscillation which can be excited for E 121
a given condition, and it is the prob- @ S=a+iB
lem which of the ovelrapped modes n=1 A=0.5
will be excited. In Fig. 15, the corre- EZ:OO
sponding deviation of the frequency

of the excited or damped oscillation
is also presented. It can be seen that
the frequency coincides with the
acoustic one when 7 is zero. With the
increase of 7, the deviation increases
and gets the positive maximum value,
and then B decreases monotonously.
It should be noticed that the devia-
tion becomes maximum for the value
of r where a becomes zero. On the —
other hand, the deviation becomes zero
when « is maximum. This situation
will become more clear by looking at
Fig. 16, in which the locus of the
complex frequency s in the Gauss
plane when ¢ is varied is shown for . n=1
the case when £=0. It can be seen

that the neutral oscillation frequency 0.8+
o is the maximum or the minimum Fic. 16. Calculated nondimensional complex

unstable oscillation frequency. (f)rgqlgncs(l) i? (gauss plane for A=
Dy P2=V, §=U.

0.5

5-3. Discussions of Calculated Results

In the above numerical calculations, the solutions were obtained for the value of
¢ from zero to unity. In view of the postulated driving mechanism the results will
have the physical meaning, corresponding to the actual phenomenon, only for the
value of & smaller than 0.3 or less. However, the whole result is interesting for the
examination of the characteristics of the heat-driven oscillation. Figures 4~6 pre-
sent the unstable ranges of the frequency as the function of the plane heat source
position. These figures may be considered to represent the space condition for the
excitation of the oscillation. The results shown in the figures agree generally with
the space condition postulated by Rayleigh [25], which was already described in the
previous paper [4]. However, the obtained results are those for the case of flame
response given by Eq. (4-30), and they may be modified for the other cases of the
flame response. In fact, this could be confirmed by solving the other two charac-
teristic equations (4-35) and (4-38) for the neutral oscillation. The calculated
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results for the flame response of Eq. (4-34) are quite similar to those shown in
Figs. 4~6, while those of Eq. (4-36) are strikingly different. In the latter case, the
antinodal position as well as the nodal position of each mode oscillation is always
most stable.

The above described dependency of the space condition on the way of flame re-
sponse to the flow disturbances may be interpreted as follows. In general, the space

condition should depend on two different factors. The first is the dynamic effect of.

the heat release to amplify or damp the pressure perturbation. This effect will
become more powerful as the position of heat release approaches to the antinodal
position, where the amplitude of the excited pressure oscillation is maximum. At
the nodal position, the pressure amplitude is zero and hence the heat release can
neither drive nor damp the oscillation. The other factor is the mechanism of flame
response to the flow perturbations, by which the heat release rate variation is pro-
vided. If the magnitude of heat release rate variation is proportional to the magni-
tude of pressure perturbation at that position, as is the case of Eq. (4-34), the pro-
vided heat release rate variation will become larger as the plane heat source
approaches to the antinodal position. On the other hand, if the magnitude of heat
release rate variation is proportional to the magnitude of velocity perturbation, as
is the case of Eq. (4-36), the provided heat release rate variation will become
smaller as the plane heat source approaches to the antinodal position of the pres-
sure oscillation which is the nodal position for the velocity oscillation. The space
condition will be determined by the combination of these two different effects. In
any way, it should be noticed that the space condition for the excitation of heat-
driven oscillation depends upon the way of response of heat source to the flow
perturbations, and hence will be different for each individual case studied.

The unstable ranges of the response time delay shown in Fig. 7 represent the time
condition for the excitation of the oscillation. As was pointed out before, when
there is no energy loss, that is when B;=B,=0, the time condition is given by the
simple inequality of (5-4). This inequality is essentially the same as the time cri-
terion stated by Rayleigh [25]. Putnam and Dennis [24] gave a mathematical
representation for the time criterion in the following form

Hp'dt>0, (5-5)

cycle

where ¥’ is the heat release rate, p’ is the oscillating component of the pressure, and
tis time. This inequality is exactly the same with that of (5-4), so long as p” and
I’ are the periodic exponential function of time. The inequality (5-5) holds also
for the other two cases of flame response. This can easily be shown by solving the
two characteristic equations for the neutral oscillation. It can be said, therefore,
that the time condition is, in contrast to the space condition, independent of the
mechanism of response of heat source.

The above described character of the time condition, as well as of the space con-
dition, originates, as it happens, in the matching conditions (4-15) and (4-16) at
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the plane heat source. We can make use of these conditions to show that the work
done to the system by heat source in a cycle of oscillation W is given by

W= f plldt — f pluldt

cycle cycle
= [ rui—wpar=1 [ po.ar. (5-6)
cycle T cycle

When there is no energy loss in the system, the work done to the system W equals
to the net energy input to the system. The whole of this energy input will be con-
verted into the oscillation energy. If W is positive, therefore, the energy of oscilla-
tion is supplied and the oscillation will be excited, while the oscillation will be
damped if W is negative. The excitation will be more powerful as the positive value
of W is larger. Thus the conditions for the excitation of heat-driven oscillation can
be proved with the use of the matching conditions at the plane heat source.

Figures 9~14 present the real part and the imaginary part of the complex fre-
quency as the function of r and £&. There are number of linear theories developed
so far for the occurrence of heat-driven oscillation. All of these theories are con-
cerned only with the instability boundary and hence the characteristic equation was
solved only for the neutral oscillation of «=0. However, in the analysis it is often
the case that the instability regions for several modes overlap one another. In
such a case those theories can say nothing about which of the overlapped modes will
be excited, and the problem has been considered to be outside the scope of the
linear theory. Th method developed in the present study has brought about the
relatively simple means of calculating the complex frequency of the excited or the
damped oscillation. Although there still remains some question about the physical
significance of the obtained amplification rate « and frequency g, the former will at
least give the measure for the ability of the system being excited or damped
dynamically.

The calculation of the frequency 8 of the excited or damped oscillation indicates
that the frequency will deviate from that of the acoustic oscillation. The magnitude
of the deviation depends upon the values of parameters 4, By, & and z. When the
coupling between the heat source and the flow field is not so strong and hence the
value of A is less than unity, the deviation is rather small and about 25% at most.
It should be noticed that the deviation is maximum when there is no amplification
or damping, while it is zero when the amplification or damping is most strong. This
behavior of the frequency change has been stated by Rayleigh [25], and its physical
interpretation was advanced by Wood [26].

6. COMPARISON WITH EXPERIMENT

6-1. Theoretical Oscillation Boundary

In order to confirm the validity of the present analysis, the instability boundary
calculated for the hypothetical analytical system was used to obtain the condition
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for occurrence of the oscillation in the actual combustion chamber. The theoretical
oscillation boundary in ¢ (propellant equivalence ratio) —L, (combustion chamber
length) plane was calculated with the use of amplification rate & calculated in the
preceding section for the case when 4=0.5 and B,=0, and the result was compared
with the oscillation boundary observed in the experimental studies of the present
investigation. The comparison was made for the standard experimental condition
of P, (mean combustion chamber pressure) =3.0 kg/cm? abs. and M, (propellant
injection Mach number)=0.29, and the corresponding experimental oscillation
boundary is that shown in Fig. 8 of reference [2].

The theoretical analysis in the preceding section was made in the nondimensional
system, and in order to apply the result to the actual dimensional system it is neces-
sary to fix the reference quantities. The representative length L in this case is, of
course, the combustion chamber length L,, while the injector end of the chamber,
where the temperature of the combustion gas is maximum, can be taken as the refer-
ence position. The reference time £ is now the time required for a sound wave to
travel the chamber length L, under the conditions corresponding to the stagnant
combustion gas at the injector end. The nondimensional amplification rate « is
already given as the function of &=&* /L. and r=z*/t¥, while the dimensional
amplification rate a*=a/t} should be known as the function of ¢ and L, so as to
determine the theoretical oscillation boundary. It is required, therefore, to know
£*, £* and t¥ as the function of o and L,.

The plane heat source position £* was assumed to correspond to the average
flame tip position of tubulent multiflames. The data of temperature distribution
shown in Fig. 16 of reference [4] was used to determine &* as the function of ©,
and the result is shown in Fig. 17. This may be thought somewhat too rough, the
value of £*, however, is not crucial in the present calculation. As to the response
time delay, an important assumption was introduced. The analysis in the preced-

i
¥
1.5
® Pe = 3.0 kg/cm? abs.
Mi=0.29
C

1.0

! [ )

|

a
0.5 500 1000 1500 3 5

T* (sec) £¥(em)

Fic. 17. Response time delay and plane heat source position vs
propellant equivalence ratio for P.=3.0kg/cm? abs., M,
=0.29.
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ing section has indicated that there exists the simple relation of Eq. (5-3) between
the response time delay and the oscillation period at the critical condition. It was
assumed, therefore, that the response time delay ¢* is equal to three quarters of
the lower critical oscillation period z., observed in the previous experimental stud-
ies [2]. Since z., depends only on ¢ for given values of P, and M,, ¢* is the func-
tion of ¢ only being independent of L,. According to this assumption, the observed
lower critical oscillation period for the fundamental-mode oscillation, shown in Fig.
9 of reference [2], was used to obtain z* and the result is shown in Fig. 17. The
reference time 1} =L,/c¥ is the function of ¢, as well as of L., since the combus-
tion gas temperature and hence the sound velocity depends on ¢. This dependency
was determined by using the experimental data shown in Fig. 18 of reference [4]
and the result is shown in Fig. 18. The figure also presents the ratio of the sound
velocity for any value of ¢ to that for ¢=1.0. The sound velocity for ¢=1.0 was
calculated by using the numerical values of T#=1,700°K, y=1.256 (for ¢=1.0,T
=1,700°K), and R*=30.63 kg-m/°K-kg (for ¢=1.0), and found as

¢¥ =(ygR*T#) =801 m/sec.

The sound velocity for any other value of ¢ was obtained by multiplying the above
ratio to this value. In this way, the dimensional a* was determined as the function
of ¢ and L,. As was pointed out before, there exists a slight temperature gradient
of the combustion gas along flow direction in the actual combustion chamber, while
the gas temperature was assumed to be constant in the analysis. In calculating the
theoretical oscillation boundary, therefore, the correction of the wave propagation
time for this temperature gradient was made [5].

|
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@ P.= 3.0 kg/cm? abs.
1 =0.29
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Fic. 18. Combustion gas temperature and ratio of sound velocity

vs propellant equivalence ratio for P,=3.0 kg/cm? abs.,
M;=0.29.
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Figures 19 ~22 present the calculated a* as the function of o with L, as a para-
meter. In Fig, 19 it can be seen that when L, is rather small o* is maximum in
the vicinity of ¢=1.0. When L, is increased the a* curve progresses steadily to-
ward positive larger value. When L, is smaller than 16 cm, a* is always negative
for any value of ¢, indicating that the disturbances will be damped dynamically and
no oscillation will occur. However, when L, is increased to 18 cm, a* becomes
positive for a certain range of ¢ around the stoichiometric, and the oscillation of
the fundamental mode will appear in this range. With the increase of L., the un-
stable range of ¢ expands extending its boundary both in the rich and the lean
sides. Figure 20 presents the case when L, is varied from 30 cm to 40cm. In this
case, with the increase of L,, a* for the fundamental mode decreases in the vicinity
of stoichiometric, while a* for the second mode appears in the left hand side and

[
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Fic. 19. Calculated amplification rate vs propellant equivalence
ratio. L,=16~30cm.
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Fie. 20. Calculated amplification rate vs propellant equivalence
ratio. L.=30~40cm.
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increases just in the same way as the fundamental mode a* in Fig. 19. When L,
is smaller than 32 cm, the second mode a* is negative for any value of ¢, indicating
that the second mode oscillation will not occur. However, when L, is increased to
34 cm, the second mode a* becomes positive for a certain range of ¢ in the vicinity
of stoichiometric. In this range of @, a* of the fundamental mode and the second
mode become positive simultaneously, and the oscillation of both mode may be ex-
cited. In such a case, it is assumed in the present study that the mode with larger
value of a* only will be excited. Therefore, only the fundamental-mode oscillation
will occur when L, is smaller than 40 cm.

When L, is increased further, the second mode a* increases further while the
fundamental mode a* decreases near the stoichiometric, and finally the former ex-
ceeds the latter. This situation is shown in Fig. 21 which presents the cases for L,
=50cm and 60 cm. In these chamber lengths, the second-mode oscillation will oc-
cur in the vicinity of stoichiometric and the fundamental-mode oscillation will occur
both in the richer and the leaner sides. The third mode a* appears in the left side

l Lc =50cm Lc=60cm
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/ -
—T —-‘___\¢<5 __‘_,-">\ﬁa'/
05 -02 0O 02 04 -02 0 02 04
a*x107(sec™) a*x107*(sec™)

Fic. 21. Calculated amplification rate vs propellant equivalence
ratio. L.=50 and 60cm.

but this mode oscillation does not occur in these chamber lengths. With the further
increase of L,, the unstable range of the second mode becomes larger extending its
boundary both in the rich and the lean sides, while the third mode a* increases
near the stoichiometric. At the chamber length of 70 cm, the third mode a* ex-
ceeds the second mode a* in the vicinity of stoichiometric, and the third-mode
oscillation occurs in this range of ¢. Figure 22 indicates that for the longer cham-
ber lengths the oscillation of the fundamental, the second, and the third mode will
occur for each respective range of ¢.

Figure 23 shows the dependency of a* on L, with ¢ as a parameter. It can be
seen that for a given value of ¢ there exists the upper critical chamber length, as
well as the lower critical chamber length, for each mode of oscillation. When the
chamber length is smaller than the lower critical chamber length of the fundamental
mode, a* for any mode of oscillation is negative indicating that any disturbance will
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Fic. 22. Calculated amplification rate vs propellant equivalence
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be damped dynamically and no oscillation will occur. With the increase of the
chamber length the fundamental-mode oscillation will first occur. With the further
increase of the chamber length, the oscillations of the higher successive modes will
occur one after another. It should be noticed that the increase of a* near the lower
critical chamber length for the fundamental mode is very rapid while its decrease
near the upper critical chamber length is gradual. The maximum value of a*
becomes smaller for the higher mode, which suggests that the higher mode oscilla-
tion is less likely to occur even when the effect of viscosity is not taken into account.
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The above obtained results were used to determine the theoretical oscillation
boundary for each mode of oscillation in ¢—L, plane. The result is shown in
Fig. 24, in which the theoretical boundaries are shown by solid curves. For the
purpose of comparison, the experimentally .observed boundaries are also shown by
circles. The correlation between the theory and the experiment is fine.

6-2. Discussions

It was shown that the result of the present analysis when applied to the calculation
of the theoretical oscillation boundary correlates very well with the experimental
result. In the course of the calculation several assumptions were made. The most
important assumption was that the response time delay of the propellant corresponds
to three quarters of the lower critical oscillation period. The simple analysis in the
hypothetical system of the present study can only predict the relation between the
dimensionless variables, such as Eq. (5-3), which they should satisfy at the critical
condition. The existence of the response time delay was assumed beforehand, and
as a matter of fact the analysis can give no information about the absolute value
itself .of the response time delay. Therefore, when the result of the analysis is
intended to apply to the actual dimensional system, the response time delay of the
system has to be given. In principle, the information should be provided by some
other experimental data or theories which are independent of the present analysis.
Owing to a lack of the appropriate data, in the present study the value of the re-
sponse time delay was determined by the aforementioned assumption, which is
based on the result of the present analysis. This assumption may be justified by
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the agreement of the theory with the experiment. As was pointed out in the previ-
ous paper [4], the response time delay is in substance the ignition time delay of the
propellant. The data on the ignition time delay of the gasoline vapor was obtained
by Zukoski and Marble [27] from the blow off experiment of the flame stabilized by
the hot recirculation zone. When their data are compared with those shown in
Fig. 17, it is found that two data correlate well in magnitude as well as in their
dependency on the equivalence ratio.

The calculated oscillation boundaries are found to agree well with those of the
experiment not only for the instability boundary of the fundamental-mode oscilla-
tion but also for the transitions from the fundamental-mode oscillation to the second-
mode oscillation and from the second- to the third-mode oscillation. In the calcu-
lation of these transition boundaries it was assumed that the mode with the largest
value of a* is preferred when several modes become unstable simultaneously. This
treatment may not be justified in the scope of the present linear theory. However,
it should be noticed that in Figs. 19~22, a* of each mode oscillation crosses one
another rather sharply near the point of intersection. This means that in the vicinity
of this point the amplification rate of one mode increases rapidly for the small
change of ¢ while that of the other mode decreases rapidly. In such a case, it is
clear that the transition of the oscillation mode should occur near the point of inter-
section. Therefore, there is a chance that even the linear theory can give the cor-
rect prediction. The agreement of the result with that of the experiment indicates
that this is, in fact, the case.

In the calculation the specific admittance ratio B, of the exhaust nozzle was
assumed to be zero, and hence the effect of the energy loss through the nozzle was
not considered. The experimental study [28] of determining the damping rate a*
due to the energy loss with the use of cold rocket motors has indicated that its
magnitude is about a tenth of the maximum value of a* calculated in the present
study. This value, when made nondimensional, corresponds approximately to the
value of 0.05 for B,. Therefore, it may be considered that the role played by the
energy loss in determining the incipient instability is not so important. Perhaps, the
choice of the value of the interaction index 4 will be more crucial. Another value
of A4, instead of 0.5, may bring about the better correlation with the experiment.
In other words, the value of 4 might have been determined so that the calculated
boundaries agree exactly with those of experiment. However, it is questionable if
it deserves to determine such a value of 4 so as to get a more close agreemnet with
the experiment.

The results shown in Fig. 23 offer an interesting suggestion. The amplification
rate a* of the fundamental-mode oscillation increases very rapidly near the lower
critical chamber length, whereas its decrease near the upper critical chamber length
is rather gradual. This means that there exists a very definite lower critical cham-
ber length, above which the fundamental-mode oscillation occurs. This prediction
of the present study well explains why in so many experiments in liquid or gaseous
propellant rocket motors the existence of the lower critical chamber length has
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always been observed while that of the upper critical chamber length has remained
rather obscure.

7. CONCLUDING REMARKS

The agreement between the theory and the experiment confirms the validity of
the initiating and driving mechanism postulated in the previous paper [4] for the
combustion oscillation in the premixed gas rocket. The excited oscillation is a kind
of heat-driven oscillation with a constant time delay. The interaction between the
pressure wave and the flames which actually drives the oscillation does not depend
on chemical kinetics but it depends on more complicated fluid mechanical influ-
ences, even in the relatively simple combustion system of premixed gas rocket. This
interaction is so complicated that its theoretical prediction seems almost impossible.
It is inevitable, therefore, that in the theoretical analysis of the combustion oscillation
of this sort the mathematical representation of the interaction should become an
empirical one based on the experimental finding.

In the experiments of the premixed gas rocket, the observed pressure oscillations
have always been the so-called shock type oscillation with the rapid pressure in-
crease. However, as was already pointed out repeatedly in the previous papers [3],
[4],[5], the shock wave does not play any important role in the driving as well as in
the characteristic of the oscillation. The excited oscillation is a linear instability in
the sense that it develops from the amplification of small sinusoidal disturbances
which can be suitably described by linear equations.

The present investigation has made clear the nature of the combustion oscillation
in the premixed gas rocket. However, there arises a question what can be the sig-
nificances of the above obtained results ip the instability of the liquid propellant
rocket. The combustion process in the liquid propellant rocket is more complicated
one, and the combustion is distributed in the whole chamber. No discrete position
of the combustion zone, such as the flame front position in case of the premixed gas
rocket, can be designated. In this point of view, the gas rocket appears to be more
representative of solid propellant rocket, rather than of liquid propellant rocket. In
the instability of the solid propellant rocket also, the interaction between the pres-
sure wave and the combustion process should be restricted to the reaction zone con-
centrated to the solid surface, and the propagation of the wave in the rest of the
chamber may be isentropic. Although the mechanism of the interaction itself may
be quite different from that of the premixed gas, if the response of heat evolution to
flow disturbances can be known the present analytical method can be applied for
predicting the occurrence of the oscillation.

On the other hand, the propagation of the pressure wave in the liquid propellant
rocket motor with the distributed combustion zone will not be isentropic. However,
the experimental observations [29]~[35] indicate that the observed frequency of the
oscillation corresponds approximately to that of the fundamental acoustic mode in
the combustion chamber with both ends closed, and that the finite amplitude pres-
sure waves originate in the zone near the injector end where the combustion is most
active. Therefore, it may be considered that even in the liquid propellant rocket the
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interaction of pressure waves and the combustion process is important only in the
restricted zone near the injector end, and the propagation of the wave in the rest of
the chamber is approximately isentropic. If it is s0, the similar theoretical treat-
ment will be possible for the study of the linear instability in the liquid propellant
rocket also. The details of the interaction, of course, will be different from that of
the premixed gas rocket. However, the existence of the definite lower critical
chamber length for the liquid propellant rocket suggests that the interaction should
be related to some phenomenon which presents a characteristic time. The general-
ized wave equation derived in the present study reveals the close correlation between
the pressure increase and the heat release. The finite pressure wave with a very
rapid pressure increase, which is observed in so many experiments of the liquid pro-
pellant rocket, must be accompanied by a powerful instantaneous heat release in the
reaction zone. Such an instantaneous heat input is only possible by the spontaneous
ignition of the unburnt combustible mixture, Although the details of the inter-
action phenomena in the liquid propellant rocket must be made clear through the
carefully organized experimental works, more attention may be directed to the
spontaneous ignition.

ACKNOWLEDGEMENT

The author would like to express his sincere thanks to Professor H. Tsuji for his
helpful guidance and counsel throughout the course of the present study.

Department of Jet Propulsion,

Institute of Space and Aeronautical Science,
University of Tokyo, Tokyo

September 25, 1968

REFERENCES

[1] Tsuji, H. and Takeno, T.: “Studies of High Frequency Combustion Oscillations in a
Gaseous Propellant Rocket Motor”, Aero. Res. Inst., Univ. of Tokyo, Report No. 391
(1964).

[2] Tsuji, H. and Takeno, T.: “An Experimental Investigation on High-Frequency Combus-
tion Oscillations”, Tenth Intern. Symp. on Combustion, Combustion Institute, Pittsburgh
(1965), p. 1327.

[3] Tsuji, H. and Takeno, T.: “Propagation of Pressure Wave in High-Frequency Combus-
tion Oscillation”, ATIAA Journal, vol. 6 (1968) p. 730.

[4] Takeno, T.: “Experimental Studies on Driving Mechanism of the High Frequency Com-
bustion Oscillation in a Premixed Gas Rocket”, ISAS Report No. 420 (1968).

[5] Takeno, T.: “An Investigation on High Frequency Combustion Oscillation in Premixed
Gas Rocket”, Doctor Thesis, Graduate School of Aero. Eng., Univ. of Tokyo (1967).

[6] Sirignano, W. A. and Crocco, L.:  “A Shock Wave Model of Unstable Rocket Combus-
tors”, AIAA Journal, vol. 2 (1964), p. 1285.

[7]1 Culick, F. E. C.: “Stability of High Frequency Pressure Oscillations in Rocket Com-
bustion Chambers”, AIAA Journal, vol. 1 (1963), p- 1097.

[8]1 Murthy, S. N. B. and Osborn, J. R.:  “Stability Criteria for Longitudinal Pressure Oscil-
lations in a Rocket Motor”, Journ. Acous. Soc. Anmerica, vol. 37 ( 1965), p. 872.

[9] Crocco, L and Cheng, S. I.: “High Frequency Combustion Instability in Liquid Propel-
lant Rocket Motors”, AGARDOGRAPH No. 8, Butterworths Scientific Publications, Lon-
don (1956).

[101 Blackshear, P. L., Jr.: “Driving Standing Waves by Heat Addition”, NACA TN 2772,
August 1952,

@

This document is provided by JAXA.




&

[11]
[12]
[13]

[74]

[15]

[16]

[17]

(18]

[19]
[20]
[21]
[22]

[23]
[24]

[25]
[26]
[27]

(28]

[29]
[301
311

[32]

[33]

[34]

[35]

A Theoretical Study of High-Frequency Combustion Oscillation 347

Blackshear, P. L., Jr.: “Driving Standing Waves by Heat Addition”, Fourth Intern.
Symp. on Combustion, Williams and Wilkins Co., Baltimore (1953), p. 553.

Bailey, J. J.: “A Study of Flame-Excited Oscillation in a Tube”, Journ. Appl. Mech.,
September 1957, p. 333.

Merk, H. J.: “Analysis of Heat-Driven Oscillations of Gas Flows, I. General Considera-
tions”, Appl. Sci. Res. A vol. 6 (1956-57), p. 317.

Merk, H. J.: “Analysis of Heat-Driven Oscillations of Gas Flows, III. Characteristic
Equation for Flame-Driven Oscillations of the Organ-Pipe Type”, Appl. Sci. Res. A vol. 7
(1957-58), p. 175.

Merk, H. J.:  “Analysis of Heat-Driven Oscillations of Gas Flows, IV. Discussion of the
Theoretical Results concerning Flame-Driven Oscillations”, Appl. Sci. Res. A Vol. 7
(1957-58), p. 192.

Merk, H. J.: “Analysis of Heat-Driven Oscillations of Gas Flows, V. Influence of Heat
Transfer in the Burner Ports on the Stability of Combustion of Premixed Gases”, Appl.
Sci. Res. A vol. 8 (1958-59), p. 1.

Merk, H. J.:  “An Analysis of Unstable Combustion of Premixed Gases”, Sixth Intern.
Symp. on Combustion, Reinhold Publishing Corp., New York (1957), p. 500.
Markstein, G. H.: “Perturbation Analysis of Stability and Response of Plane Flame
Fronts”, “Experimental Studies of Flame-Front Instability”, Nonsteady Flame Propaga-
tion, Pergamon Press, New York (1964), p. 15, p. 75.

Chu, B. T.: “On the Generation of Pressure Waves at a Plane Flame Front”, Fourth
Intern. Symp. on Combustion, Williams and Wilkins Co., Baltimore (1953), p. 603

Chu, B. T.: “Pressure Waves Generated by Addition of Heat in a Gaseous Medium”,
NACA TN 3411, June 1955.

Chu, B. T.: “Mechanism of the Generation of Pressure Waves at Flame Fronts”, NACA
TN 3683, October 1956.

Ruddinger, G.: “Shock Wave and Flame Interactions”, Combustion and Propulsion,
Pergamon Press, London (1958), p. 153.

Williams, F. A.: “Combustion Theory”, Addison-Wesley Publishing Co., London (1965).
Putnam, A. A. and Dennis, W. R.: “Burner Oscillations of the Gauze-Tone Type”,
Journ. Acous. Soc. America, vol. 26 (1954), p. 716.

Rayleigh, L.: “Theory of Sound”, vol. II, Dover Press, New York (1945), p. 226.
Wood, A.:  “Acoustics”, Interscience (1941), p. 93.

Zukoski, E. E. and Marble, F. E.: “Experiments concerning the Mechanism of Flame
Blowoff from Bluff Bodies”, Proceedings of the Gas Dynamics Symposium on Aero-
thermochemistry, Northwestern University, Evanston (1956), p. 205.

Buffum, F. G. Jr., Dehority, G. L., Slates, R. O. and Price, E. W.: “Acoustic Attenu-
ation Experiments on Subscale, Cold-Flow Rocket Motors”, AIAA Journal, vol. 5 ( 1967),
p. 272.

Berman, K. and Logan, S. E.: “Combustion Studies with a Rocket Motor Having a
Full-Length Observation Window”, Journ. American Rocket Soc., vol. 22 (1952), p. 78.
Berman, K. and Cheney, S. H. Jr.: “Combustion Studies in Rocket Motors”, Journ.
American Rocket Soc., vol. 23 (1953), p. 89.

Berman, K. and Cheney, S. H. Jr.: “Rocket Motor Instability Studies”, JET PROPUL-
SION, vol. 25 (1955), p. 513.

Ellis, H., Odgers, L., Stosick, A. J., Van de Verg, N. and Wick, R. S.: “Experimental
Investigation of Combustion Instability in Rocket Motors”, Fourth Intern. Symp. on Com.-
bustion, Williams and Wilkins Co., Baltimore (1953), p. 880.

Tischler, A. O., Massa, R. V. and Mantler, R. L.:  “An Investigation of High Frequency
Combustion Oscillations in Liquid-Propellant Rocket Engines”, NACA RM ES3B27, June
1953.

Ross, C. C. and Datner, P. P.: “Combustion Instability in Liquid Propellant Rocket
Motors—A Survey”, Selected Combustion Problems, Butterworths Scientific Publications,
London (1954), p. 352. '

Barrere, M.: “Combustion Instability in Liquid-Propellant Rocket Motors”, Rocket
Propulsion, Elsevier Publishing Co., Amsterdam (1960), p. 646.

This document is provided by JAXA.






