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The Measurement of the Flexural Wave Propagation
Velocity by Correlation Techniques

By

Nobuharu AOSHIMA and Juichi IGARASHI

Summary: The group delay time is defined for the dispersive wave propagation system.
It is the time which is required for the envelope of the narrow band input signal to travel
f’w . through the system. Three methods of detecting the group delay time by correlation tech-
4 niques were developed and the experiments were performed in flexural wave propagation
i system.

1. INTRODUCTION

In considering signal flow problem, it would be desirable that the response of the
system can be predicted for the arbitrary input signal. In the case of linear system,
the superposition principle assures that by decomposing the input signal into the
sum of elementary signals, the response can be calculated as the sum of the responses
for each elementary signal. So if the responses of the system for the elementary
signals are known, the response for the arbitrary signal can be predicted. Sinusoidal
signals are usually adopted as elementary signals.

For sinusoidal signals the responses of the linear system are characterized by two
quantities, those are amplitude ratio and the time delay, and in general frequency
dependent. If they are constant in the frequency range of the input signal, the
response for the arbitrary signal is the same form as the input signal except some
multiple constant and time delay.

More generally, even the delay time of the sinusoidal signal depends upon the
frequency, the group delay time can be defined for suitably narrow band arbitrary
signal. The group delay time is the time required for the signal envelope to pass
through the linear system and is connected with the energy or information transport
problem. In this paper three ways of detecting the group delay time by correlation
techniques are developed and experimental results are illustrated.

2. ENVELOPES AND PRE-ENVELOPES [/]

We denote the input signal of the linear system G(s) as f,(®) and the output signal
as f,(f). The pre-envelopes of f,(z) and f,(f) are defined as,

(D=1 +if,(®) (1)
[37]
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38 N. Aoshima and J. Igarashi

2,0 =£,(0) + if(0) (2)

Where fl(t), f,(t) are the Hilbert transforms of f,(¢) and f,(f). The envelope of the

signal is an absolute value of the pre-envelope. So z,(f) and z,(¢) are written as
follows.

2,()=R,(1) - €@ (3)
Zz(t) '-‘—"Rz(t) . et0200) ( 4 )

R,(t) and R,(¢) are the absolute values respectively. Generally, f,(®) can be written
in the form

H(O= 3, Co 08w, t—0) (5)
and £,(¢) is |
f(D= IZZ:I C, | G(iw,) | cos{wnt — @, + £ Gliv,)} (6)

Where w,’s are selected suitably in the signal frequency range to represent the wave
form. /G(iw) is the angle of the transfer function and when G(s) represents the
real physical system, it is supposed to be differentiable function of w. Then in
some narrow range of w, the next approximation can be obtained.

£ Gliwy)— / Gliwn) = (@, —-wm){a{w(z‘wn e (7)

Where ,, is the center angular frequency of f,(f). The phase delay z,, and the
group delay ¢, at the angular frequency w,, are defined as [2]

Tmz___l_(;ﬁ‘i’zt_l (8)
fg= = { LG} a-ue (9)

Then for f,(¢) and f,(t), we have

N N
f,()=cos wut 3 C, 08 {(wn— o)t —@,} —sin oyt 3 C, sin {(0n —0n)t— @}
n=1 n=1

(10)
f()=cos {wn(t—7,)} i}l C, | Gliw,) | cos {(w, —@n)(t—174) —@a}
N
—sin {w,(t— )} "Z=}1 C,|Gliw,) |sin{(w, — @)t —14) —@n} (11)
Since the Hilbert transform of cos x is sin x, ?,(t) and ;‘,(t) are
Fo= %1 C,, Sin(@nl— ) =COS Wyt ,?i C., sin {(0n — 0m)t— @u)
4+ sin oyt n}’i C, €08 {(@n—wn)t —ga} (12)
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The Measurement of the Flexural Wave Propagation 39

te
f0= 33 CalGliw)[sin {nt—pu+ £ G}
=c0s {on(t—} 33 Cal Glin)[sin (@0 — 0t 7)) —gn}
+sin {on(t— )} % C. | Gliw) | cos {(wp—wn)t—t)—@a}  (13)
Then the pre-envelopes of f,(¢) and f,(f) are represented as follows.
zl(t)=[ 32 Cacos (0 —wn)t—pn} +i z C, sin {(wn—a)m)t—cpn}]exp )
(14)
50=] % C.1Gl0n) | cos {w, —0n)t—)— g1}
+i 51 €l Glio) [ sin (@, —0a)(t—5) =g} Jexplivalt—7,)}  15)
v

When the signal frequency range is sufficiently narrow, G(s) can be considered as
|G(s)|=k (constant). In such a case, the envelopes R,, R, and the phasing func-
tions 4,, 6, are represented as

R() = H ﬁl C, cos {(o, ——wm)t—gon}}z
N . 2t
+ {El C, sin {(wn——wm)t—gon}} ] _ (16)

R0 =k{ | & €. cos {@n—wmi—zp—gnlf’
N . ‘ 23
+{ 3 Cusin{@a—omt—) —nl} | 17)

f—~q

N

}j C,, sin {(w, — o)t — .}

6,(t)=tan"}| = +wnt (18)

zu

a, . | 2, Cr cos {(0n—wn)t—gn}

g : _ N
3 C, sin {(0, — @)t —1,) —@n}

02(0 =tan™! ﬂ;l

| 23 Cucos {(o, — o) (t—1,) —@n}

Compairing (16) with (17), (18) withv(19) next relations are obtained.
R,()=kR,(t—z,) (20)
6,(1) =0,(t—t4) + Wnlty—17n) ey

These results represent that the envelope travels at the velocity which is equal to the
group velocity defined by the Eq. (9). In the following sections the measuring
methods of z, by correlation techniques are described.
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‘s

3. MEASUREMENT OF 7, BY ORDINARY CORRELATION METHOD [3]

By computing the cross-correlation functions of the input signal f,(t) and the
output signal f,(£), the group delay z, of the linear system G(s) can be obtained,
assuming that the signal band width is so narrow that

(1) £G(iw) can be considered as the linear function of and

(2) |Gliw)] is constant in the frequency range considered.

Now from the Eq. (20) and Eq. (21), the cross-correlation function of the pre-
envelope functions is expressed as follows.

T
¢21z2(1) — 1im i*f Z;k(t)Zz(t'{' z.)dt:Rl(t)e-'iﬁl(l) Rz(t + ,c)ei02($+‘r)
-T

T— 2T
— le(t)Rl(t + T — Tg)ei01(5+r—rg) —-103(t) eium(rq—-tm,) (22)

Where the asterisk means the complex conjugate and the upper bar means to take .
average with respect to . Since the autocorrelation function of z,(f) is !

4,(0)= lim _21_T j T Dzt +0)di=RDe O RGF e (23)

T —+c0

i -

(22) is written as

1 ¢Z1zz(f) = k¢21(r - Ta)ewm(ta ) (24)
l Now we use next relation. \
‘ ‘ barex(T)=2{d7.1.(0) + iﬁgf:fz(f)} (25)
(proof) '
bere (0 = (O — LN+ D) + il + )}
- ¢f1f2(1'.) + ¢f1f2(t) - i{¢}"1!2(r) - ¢f1f2(r)} (26)
. sn 1) 1 (49
Since fio=- I w O =~ f e de @7

assuming interchangeability of the order of integration and limit,

= tim L (Tl [THOED g L (7Rt
$p7.(0) = im dt,rf —F den L dy

N e :

;‘ :lfmj‘m ¢f1f2(7+7]"’8) d&-dn:}_.fm ¢f1f2(1'—§) d& i

ntJd J &y md —&

= — () =07.1(2) (28) 1?,3

i The last equality is a general property. In the same way :

| D U (P U G (Gt

=1 ﬂ__f dt'"_f DTS de oAt

ﬁ $1.1i(0) = lim — ) 2] e £ fu(t+ 1)

! = _}_ ‘fwjlﬁl_f_z(_’f_:i)— dé= -~§£ PG (29)

| wd —&
i C{gq,' l
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Low pass filter

| 51 (t)

hH®) Squarer
G (s)
£, () Squarer

Low pass filter

— ¥2(1)

FiG. 1. Measuring system by squared signal correlation method.

RICRE “i’ﬂ—f{%’—’z’—dvzﬁhfz(r) (30)
From (26), (28), (29) and (30) )
310 (1) =2{b 1,1a(0) + 1 1,1, (D)} Q.E.D.
When f,=f,
$:(2) =2{,(2) + i ()} (31)
Then from equations (24), (25) and (31) the next relation is obtained.
6.0 + 18 1) =i (e — 1) + i (e — T }erem o (32)

The envelopes S,(z), Sy(z) and phasing angles P,(z), P,(r) of the autocorrelation
function ¢,.(c) and the cross-correlation function ¢, 7.(2) are,

(32) is written as

which means

6,,(2) + i 1, () =S,(D)e (33)
G100+ i, 1, () = Sy(r)et P+ (34)
Sz(T)eiPz(t) _— kSl(‘c — ‘L'q)e‘ipl(""fl) +iom (rg—rm)} (35)
S,(0) =kSy(r—1,) (36)
Pa(r):Pl(T_Tg) +wm(rg"—7m) (37)

Equations (36), (37) are the same forms as (20), (21).

In other words, the relations of envelopes and phasing angles between the cross-
correlation and autocorrelation function in = domain are the same form as the rela-
tions of envelopes and phasing angles between the real input and the output signals
in ¢ domain. This is the basic relation for measuring the group delay 7, by the

envelope of the cross-correlation function.

4. MEASUREMENT OF 7, BY SQUARED SIGNAL CORRELATION

The measuring system is shown in Fig. 1. y,(8), y,(2) are the outputs of the low
pass filters. f,(t) and f,(t) are written in analogous to (5) as
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42 N. Aoshima and J. Igarashi

N
ft)= 3 C, cos (w,t—¢,)=1.cos ot —1I, Sin @yt (38)
n=1
L= % C, % {(w,—wn)t (39)
s &2 "sin {@n—om)t—¢u}

Then f3(¢) is written as
() =I2 cos? wpt + I? sin® @t —21 1, COS 0t Sin w,t

- _;_(m D+ %(15—13) c08 20,1 — 11, sin 20nt (40)
On the other hand the envelope of f(z) is expressed as follows.

A N N
R@)=|fO)+if(|= Zl C., cos (wpt—@n) +1 Z}1 C, sin (0t —@n)
=|(I, cos wpt —I, sin wyt) + (I, COS Wpt+ 1, sin w,1)|
= |+ il et = (4 1) (41)

Then by combining (40) and (41),
(5= —;—Rz(t) + %(13—13) c08 20,,¢ — LI, sin 20t 42)
There is another property in regard to envelope function [I], that is, if the fre-

quency spectrum of f(¢) is confined in the band wm—-lg—<|wl< wm—}-%/-, then the

square of the envelope is frequency limited to |w|£W. So, if the cutoff frequency
. of the low pass filter is selected as W< w,< w,, the output of the low pass filter is,

Y= 2 R0 43)
On the asumption (1), (2) in the article 3, there is the relation as

Ry()=kR,(t—1,) (20)

Then the cross-correlation of y,() and y,(?) is calculated as follows.

1 ©) = VOV D) =5 ORI ) — RORGT =)

=-’§¢Rg(r—rg) (44)

Where ¢ Ri(t) is the autocorrelation function of the square of the envelope of fi(f).
(44) is the basic relation in measuring z, by squared signal correlation method.

5. MEASUREMENT OF 7, BY M-SEQUENCE CORRELATION [4],[5]

The product of the M-sequence signal and the band noise is the input signal to
G(s) in Fig. 1. The cross-correlation function of y,(#) and the M-sequence signal
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The Measurement of the Flexural Wave Propagation 43

M -sequence is calculated. That is identical with
generator the M-sequence correlation method
m (t) proposed by the authors before [4],
- [5]. The measuring system is shown
I::r:és::ator r (1) Relay ix} Fig. 2.‘ The M-sequence [6]
7.Q) signal m(?) is the two-valued pseudo-
random artificial signal whose two
G (s) values are assumed to be +1 and
—1. The random signal r(z) is in-
f2(2) termitted by the relay according to
the sign of the M-sequence signal.
Squarer Then f,(¢) in Fig. 2 is written as
0 = 5 i@ + 1O =m Or()
Low pass (45)
filter 1
m’(t):-i{m(t)—f— 1}
) m {t) r(f) is expressed as Eq. (5) or Eq.
(38)
Correlator

H)= 3 C., cos(wlt—’)
n=1

Fic. 2. Measuring system by M-sequence

correlation method. =1’ cos w,t—1I,sin w,t (46)
’ Y, 1 COS( ’
Ii= Z Ca {(0),,, —wm)t"‘%} (47)
3 nol sim

Then [ =m'(O)I, cos w,t—m (NI, sin @t (48)

On the other hand f,(¢) is written as

N
()= 3 C, cos(wyt—¢,)=I,C0S w,t—I, Sin wyt 49)
n=1
Ig: C, (S:.Els{(a)n — 0 )t— 0.} (50)

From equating (48) and (49) next relations are obtained.
I,.=m'(OI, I,=m'(t)I, ¢n
Then the envelope of f,(¢) is written as
R, =3+ D =m/ U+ 1) =m' (DR, () (52)

Where R,(?) is the envelope of the signal r(z).
On the assumption (1), (2) in the article 3, there is a next relation between the
envelopes of f,(¢) and f,(9).

Ry =kR(1—1,) (20)
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44 N. Aoshima and ]. Igarashi
Then considering (20), (43) and (52), y,(t) is expressed as follows.
1 2 1 2R2 k2 ’2 2
()= —2—R2(t) = 7k Ri(t—17,)= 7m (t—z )Rt —1,)

:l‘zim/(t_fg)Rz(t—fg) (53)

The last equality holds because the value of m’ (¢) takes only +1 or 0. Now the
cross-correlation function of y,(¢) and m(z) is calculated as

Gy () =m(DYy(t+7) =—kz—m(t)M’(t Fr—TRUt—7,+7)

:szim(t)—:lz—{m(t-!— r—z)+ IRMt+7—1,) (54)

r(?) is independent with m(f). So m(f) and R,(z) are mutually independent,

ans =) T 15—+ 1) R e =)= K Rpule—cd 59

On the above derivation r(¢) is assumed to be stationary and the time average of
m(?) is considered to be approximately zero. (55) is the basic relation in measuring
, by M-sequence correlation method.

6. EXPERIMENTS

To examine preceding considerations the experiments of flexural wave propaga-
tion measurements were performed. Flexural waves in solid body propagate with
the velocity v,=(EI/A p)%w% which is the phase velocity and the group velocity is
known as two times of the phase velocity, that is

v,=2EI| Ap)tw? (56)

where E is Young’s modulous, I is moment of inertia of a section, A4 is a cross sec-
tion and p is the density of the material [7].

The distance from the vibration excitor to the vibration pick-up is fixed as L, and
it is assumed that the frequency response of the excitor and the pick-up are flat and
there is no boundary nearby which reflects or disturbs the wave. Then the transfer
function from the input of the excitor to the output of the pick-up can be written
neglecting the multiple constant,

Gls)=e-vy° (57)

From (8), (9) and (57),

. — OnL(EI JAp) ot —L(EI| Ap) Yo} (58)

m
Om
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The Measurement of the Flexural Wave Propagation 45

‘e
2= L (WL(El/ Ap) do Wy = L LEI Ap) Hoit =T (59)
dw 2 2
which confirms that the group velocity is two times of the phase velocity.
(1) Ordinary cross-correlation method [3]

The measuring system is shown in Fig. 3. The wave propagates in the steel strip
whose cross section is 1™®X 32™= and length is 9.5™, which is suspended by the
strings horizontally. The flexural wave is excited by an electromagnet and is de-
tected by an accelerometer. The cross-correlation function of f1(f) and f.(f) is
calculated by an electronic digital correlator [8].

White noise
. generator
‘ Correlator
Band pass _
filter A () fo(t)
Amplifier Amplifier
Excitor Pick-up

Steel Strip

Fic. 3. Flexural wave propagation measurement by ordinary
correlation method.

The measured cross-correlation functions are illustrated in Fig. 4, varying the
distance from the excitor to the pick-up. In this example f,(¢) is chosen as 1/3
octave band noise whose center frequency is 500 Hz. The sampling values of the
correlation functions are represented by the length of the vertical bars. Since the
sampling frequency is chosen as one half of the center frequency of f,(?), the detec-
tion of the correlation envelope is rather easy. As the distance increases the
envelope pattern shifts to the right without serious distortion, which means from the
discussion in article 3 that the envelope of the flexural wave propagates without
serious distortion in this range of distance. That is, in considering the flexural wave
propagation problem in a few meters, 500 Hz 1/3 octave band noise is narrow
enough to assure the assumptions (1), (2) of the article 3.

The amount of shifts of correlation envelopes are illustrated as the function of
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" ms distance in Fig 5. From the slope of

30r this result, the propagation velocity of

. flexural wave envelope can be calcu-

* lated as 1.33X10°m/s. On the other

20 / hand the theoretical value of the group

‘ velocity of the flexural wave propaga-

Lol / tion in this steel strip is calculated from
o the Eq. (56) as 1.36X10*m/s.

/ (2) Squared signal correlation

1 Il 1 1

0 I 2 R 4 m method
Fic. 5. Deley time vs, distance. Measured

by ordinary correlation method.

The measuring system is shown in
Fig. 6. As a squaring device, the
nonlinear semiconductor resister called silister or thyrite is used [5]. The measured
correlation functions are shown in Fig. 7. In this example the thickness of the steel
strip is 0.7 mm, the signal f,(#) is SO0 Hz 1/3 octave band noise and the cutoff
frequency of the low pass filters is 150 Hz. As discussed in article 4, the cross-
correlation pattern obtained in Fig. 7 is the same form as the autocorrelation func-
tion of the square of the envelope of f,(f) with some shift in r axis. The amount
of shift which corresponds to z, is plotted as the function of the distance in Fig. 8.
From the slope, the propagation velocity is obtained as 1.14X10*m/s, on the
other hand the theoretical value is 1.12X 10 m/s. In this method the shift of the
correlation function itself (not the envelope of the correlation function) represents
4, SO it is easier to detect it.

- - t -
White noise J1(t) Squarer ng Pass
generator Filter
Y1 (t)
| Correlator
Band pass Low Pass |y2(t)
filter Squarer Filter
f )
Amplifier Amplifier
S (1)
Excitor Pick-up
Steel Strip

FiG. 6. Flexural wave propagation measurement by squared signal correlation method.

(3) M-sequence correlation method [4],[5]

The measuring system is shown in Fig. 2. M-sequence signal generator is made
by transister logic circuit and can produce the M-sequence signal whose maximum
order is tenth and minimum time unit is approximately 3 ms. G(s) is the flexural
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Fic. 7. Measured cross-correlation function by squared signal correlation method.
f1(r) is 1/3 octave band noise whose center frequency is 500 Hz.
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wave propagation system as before.

ms ./ Measured correlation functions are
30r / illustrated in Fig. 9. In this example
. the thickness of the steel strip is 1 mm,

the signal r(¢) is 800 Hz 1/3 octave

20r band noise and the time unit of the
* M-sequence signal m(f) is 5ms. The

10l / shift of the correlation function repre-
sents r,, as mentioned in the Eq. (55).

From the slope of z, vs. distance, the

, propagation velocity of the envelope

7 I 2 % y
Fcr. 8. Delay time vs. distance. Measured
by squared signal correlation method.

of the flexural wave is measured. By
varying the center frequency of the 1/3
octave band noise, wave velocities are
plotted as the function of the center frequencies in Fig. 10. The relation between
the wave velocity v and the frequency f can be obtained as v=6.0{ f . In this
case the theoretical relation of (56) is v=6.14 f .

7. COMPARISON OF THREE METHODS AND GENERAL PROPERTIES

In the preceding articles three methods of measuring the group delay time z,
were mentioned. The measurements are based on the next three equations.

(A) Ordinary correlation method

S()=kS\(z—,) (36)

(B) Squared signal correlation method
kZ
¢?I1’!/2(T) = —4‘¢Rf(7"" ‘L’g) (44)
(C) M-sequence signal correlation method
K =5
Pmya(T) = TRiqsm(r —1,) (55)

It is necessary to discuss the points of these methods.

(1) Method (A) requires the envelopes of the correlation functions, but the
envelopes of the arbitrary functions are in general not easy to detect. On the other
hand the equations of (B), (C) are the relations of the correlation functions
themselves.

(2) The shapes of the correlation functions of (A) and (B) depend on the
statistical properties of the input signal f,(f), but the correlation shape of (C) is
identical with the shape of autocorrelation function of the M-sequence signal, which
is triangular in form and it is very easy to detect the time delay.
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&9

; K10 Mg (3) In measuring the group velocity
1 as a function of frequency, the test signal
f 3r < f,(r) should vary as wide as possible in
o frequency. Then the method (A) requires
2 / wide range operation for frequency char-
/’ acteristics of the correlator. On the other
ot hand in (B) and (C), input signals to the

| e , ;
-¢ correlator are the output of the low pass
L : ( : filters, and the correlator handles with

0.25 0.5, 1 2 KH, .
_ low frequency signals whose upper cutoff
Fig. 10. :/IVave vzl‘l’)c‘% vs- frequ"jncyi frequencies are some definite values.
casure -8€ nce signa .. . .
correlation ilnethso g.ue © S8 This is favorabls: for the digital type cor-
relator. Especially by (C), one of the
*' correlator inputs is the two-valued signal, and the procedure of the calculation can
be simplified.

@ (4) As the measuring signal, method (C) requires a special source which gene-

rates the intermitted random signal.

(5) By (B) and (C), the squaring devise is needed, and an accurate high speed
squarer is not easy to construct.

The following properties are common to these methods because of the correlation
techniques.

(6) The influence of the external noise which is incoherent with the input sig-
nal f1(¢) can be eliminated.

(7) If there are wave reflecting boundaries, wave rays can be detected sepa-
rately unless the pass differences are too small. In this case because of the random-
ness of the signal f,(¢), wave rays do not interfere each other in computing cross-
correlation functions. The example of the multiple wave paths is illustrated in
Fig. 11. These are the measurements of the flexural wave in steel strip whose width
is 0.7 mm with the signal 500 Hz, 1/3 octave band noise. . The first peak repre-
sents the direct wave, the second peak is the reflection at the left end and the third
peak is the reflection at the right end. From these peaks not only the delay times
but the relative intensities of the rays can be measured.

8. CONCLUSION

In this paper the group delay time is defined for general physical systems and
three measuring methods of the group delay time by correlation techniques were
developed. The M-sequence correlation method which was proposed by the authors
before can be used in the case when the dispersive waves are considered.

The experiments of the velocity measurement of the flexural wave propagation in
the steel strips are performed, and the results are shown to be good agreement with
the theoretical values.

We owed much to Dr. Yasushi IsHi of our institute, who designed the electronic
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Lk f i

Fig. 11. Measurement of multiple wave paths by (A) ordinary correlation
method, (B) squared signal correlation method and (C) M-sequence

signal correlation method.

digital correlator. The authors express great thanks for his valuable advises and
suggestions.

Department of Instrument and Electronics
Institute of Space and Aeronautical Science
University of Tokyo, Tokyo

January 18, 1969
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