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Summary: A proposition of a new shell form, which is cylindrical in a macroscopic sense
and is concave polyhedral in a microscopic sense, is the purpose of this paper. It is
shown that the inextensional post-buckling configurations of general cylindrical shells
subjected to axial loading have peculiar geometrical characteristics, and that these con-
figurations compose a general group of surfaces which may be designated as the pseudo-
cylindrical concave polyhedral surface. Then the fixed idea that these surfaces are essen-
tially failed forms is abandoned and is replaced by the idea that these are the basic forms
of a new shell which could function superbly as the structure under some loading condi-
tions. Tt is shown that the new shell, which may be called for convenience, the pseudo-
cylindrical concave polyhedral shell and the PCCP shell for its abbreviation, has many
useful characteristics as follows; inclusion of an arbitrary curvature distribution, develop-
ability of its midsurface, intrinsically high circumferential bending rigidity, and simplicity
of elementary faces. The application of PCCP shells to large span shell structures, re-
servoirs, expansion joints, and others is suggested.

1. INTRODUCTION

There is no doubt that the cylindrical shell form is one of the most important
structural forms both in nature and in artificial creations. The cylindrical vault
in architecture is probably one of the oldest cylindrical shell forms, if not thin
shell, in the history of artificial creations. The invention of it is usually credited
to Democritus, but there is the evidence that it had been used many hundreds of
years earlier. The splendid accomplishments both in technical and in aesthetic
sense is the medieval, Romanesque church roofs. There we can see the cylindrical
vault made of thick bricks is spanning between the parallel walls. The vault may
be considered as a succession of arches assembled together, and thus the structural
principle is in essence the arch action. By this reason the shape of the vault is
in general chosen to be the caternary curve; but it is inevitable that additional
loads due to wind or snow produce a certain amount of bending in the vault.
The tradition of cylindrical vault has been succeeded to our times, such as
cylindrical hangars and halls. At the same time, the brick as the structural
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142 K. Miura

material has been replaced by better materials, such as the reinforced concrete,
thus the characteristics as the thin shell is becoming clear.

Due to Salvadori [/], the thin shells are form-resistant structure thin enough
not to develop appreciable bending stress, but thick enough to carry loads
by compression, shear and tension. This condition, however, is not always
satisfied, thus the occurrence of a certain amount of bending moment is usually
unavoidable. If we consider the case of short shells in which the ratio of axial
length to free span length is not large, such bending moment is principally in the
circumferential direction. Therefore, it is usual to devise some means to increase
the bending stiffness in that direction. Either the circumferentially stiffened rib
structure or the axially corrugated structure is the representative answer in case
of thin concrete shells. It goes without saying that the similar examples can be
found not only in the architectural field but also in machine structures, aircraft
structures, and others. Conclusively, the contemporary engineering technique to
increase the circumferential bending rigidity of thin cylindrical shells depends
primarily on the circumferentially stiffened structure or the axially corrugated
structure.

If, however, we could find a shell form having following characteristics; the
form is cylindrical at least macroscopically; the circumferential bending rigidity is
essentially very large; the midsurface is, if possible, developable: then this
engineering problem can be solved rather casily. This is the very purpose of
the present paper, and the new shell form having such characteristics as mentioned
above is presented herein. The new form was discovered accidentally by the
present author in an effort to study the inextensional buckling deformation of
general cylindrical shells. As the study has been advanced, it is becoming clear
that the shell has many extraordinary characteristics, some of which are beyond
our expectations. These additional features of the shell will also be described
in the paper. In short, the author proposes herein a new shell form in answer
to various engineering problemes.

2. INTRODUCTION OF PSEUDO-CYLINDRICAL CONCAVE
POLYHEDRAL SURFACES

Before getting at the kernel of the subject of this paper, we must have the
recollections of the studies on the classical problem of axial buckling of thin
cylindrical shells. Because the subject owes its origin to the forms of deformations
encountered in the buckling process. That problem has been a target of many
researchers for almost half a century and yet it has not been conclusively explored.
Fortunately, such situation does by no means bother our discussion here, since
the chief concern about the subject is not buckling criterion but the geometrical
forms of deformations.

Now let us consider the post-buckling deformation of axially compressed circular
cylindrical shells. As Karmén and Tsien [2] assumed a buckled shape based on
the observation, it consists of three trigonometric terms (Fig. 1):
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FiG. 1. Geometrical definitions of buckling deformation of
circular cylindrical shell.

w=Ay+ A, cos (£x/r) cos &s/r)
+ Ay cos (2&x/r) + A, cos (2¢s/r) (1)

Here w is the radial inward displacement, r the radius of the midsurface of the
shell, x and s the axial and circumferential coordinates, & and ¢ numbers, and
A’s unknown coefficients. [t goes without saying that the three trigonometric
terms expression is not accurate enough to represent the buckle. Therefore, as
the high speed digital computer became available, the computation which can
include more terms representing the shape of the buckle has been tried by, for
example, Almroth [3], Hoff and his collaborators [4]; though the computation
essentially follows the Karman-Tsien procedure. In the latter’s paper, it was
shown that such a procedure results in displacement patterns that approach a
kind of concave polyhedral surface more and more closely as the number of
terms representing the shape of the buckle is increased. Since that polyhedral
surface had been predicted by Yoshimura [5] in 1951, it is called Yoshimura-
pattern (Fig. 2). Indeed a typical experimental result as shown in Fig. 3 certainly
resembles the Yoshimura-pattern. Moreover, it has been shown by the present
author [6] that through a certain modification of Yoshimura-pattern, the so-called
local buckling pattern appeared in Fig. 3 can be explained by Yoshimura-like
inextensional deformation as shown in Fig. 4. It appears, therefore, very likely
that an infinite number of terms would yield the exact Yoshimura-pattern if a
means could be found to include an infinite numbers of terms in the calculation.

It should be noted that this pattern can be obtained from the original circular
cylindrical shape through an inextensional process. In other words, any line
element of midsurface of the circular cylindrical shell does not change its length
after deformation. In exact geometrical terms, these two configurations are
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Fic. 2. Yoshimura-pattern.

isometric. The significance of this fact
with regard to the elastic stability can
easily be understood through energy con-
sideration, but their consideration is out-
side the scope of the present paper.
In short, the purely geometrical feature
of the polyhedral surface representing
the Yoshimura-pattern is the exactly
isometric, axially and uniformly shortened
surface that exists indefinitely close to an
arbitrary circular cylindrical surface.
Now, as a natural extension of the
above discussion, the existence of such
isometric surfaces for general cylindrical
surface is asked. This question was
answered by the present author in his
recent paper [6]. On purpose of reveal-
ing the important features of such iso-
metric surfaces, the essential part of that
paper is presented in the following.

Fic. 3. Buckling pattern of a circular
cylindrical shell subjected to axial
loading.

Fic. 4. Modified Yoshimura-pattern
for local buckling.

Let us prove the presence of a surface which has the following characteristics:
it is isometric with a given arbitrary cylindrical surface S; it has a uniform axial
shortening; and it is indefinitely close to S. S can be either the closed or open

cylindrical surface.
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FOLDED_L~70NE (PLANE FIGURF)

A-B SECTION.

Fig. 5. Construction of a polyhedral surface from a plane.

As shown in Fig. 5, the parallel lines I, m,1, m, ... with a constant interval Az
and the parallel zones L, M, L, M, ... constructed by the former are considered
on a plane. The arbitrary points on the lines ! and m are designated by
s(j=--+, k—2,k, k+2,...) and S;.1, respectively, with the condition 83841
The orthogonal projections of these points on the other group of the lines are
distinguished by the superscript of dash. Connecting those points as shown, the
rows of many triangles with an identical height are formed. Let us fold along the
oblique side of those triangles, for example on the L zone, so that every triangular
plane may be inclined to the x axis by an angle of 4. 1In order to add clarity to
the matter, the solid and dashed lines refer to the folding lines which are convex
and concave to the reader’s side, respectively. A part of the L zone formed by
such a process is seen in Fig. 5 as su%s;,,5.,,. If the line segment s.8, ., is
assumed to be on the plane #* normal to the x axis, the line segment s%s, ., must be
on the plane m* parallel to /* and as much as 2, cos § distant from I, This rela-
tion holds everywherc between corresponding line segments on / and m. Thus the
broken lines ! and m are formed on the parallel planes I* and m*, respectively;
and these planes, apart as much as 1, cos ¢, are evidently normal to the x axis.
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By the same process troughout the M’s and L’s zones, each zone constructs a
polyhedral surface that is symmetrical with the adjacencies about the planes
[* and m*.

In order to study the characteristics of this cylinder-like polyhedral surface, the
quantity which in a broad sense may be called “curvature” is the best conceivable
means at present. In a general sense, the mean curvature is defined as the ratio
of the angle between the tangents at the edges of a curve to the length of it. By
the same token, it may be possible to define the “quasi-curvature” {r,» of the cir-
cumference - - - S, _1SiSp.q c - as

<ﬁ1>7c = (7[ - L S;;—lslcsgc + 1) / (‘51—-1‘{k + :S';;S;Hl) ( 2 )

It is, however, more convenient for the following analysis to use the angular
variation between the line segments $;_;8%8; .1 and 88,152 though these are in
different parallel planes. Thus ’

(e =Bl 5= Bl Ay (3)

Evidently, when the broken lines converge to a curve through an infinitesimal
division, these quasi-curvatures represent exactly the curvature in a general sense.
By the help of Fig. 5, the following relation can casily be obtainced:

By =2 tan"'(2, sin 0/2,,) (4)
Thus, the quasi-curvature {x,y is written as
ede=1(2]2,) tan~*(2, sin 0/2,,) (5)

Also, the unit shortening in the x axis direction e, and the amplitude of the wave
e are given as follows:

e=1-—cos@ (6)
a=2A,sin0 (7)

Next, let us consider the limiting case where the line segments of | and m arc
infinitesimally small while s; and s;,, arc following a given arbitrary smooth con-
tinuous function, and at the same time the amplitude of the wave is infinitesimally
small such as a/4,, < 1. In this case, the quasi-curvature {k,», and therefore {x,,
almost coincide with the curvature in a general sense and it is given by

k(s) = 22,(26)2/ [A,() ) =2 [ [2 ()} (8)

Simultancously, the broken lines I’s and m’s converge to a curve; as an inevitable
consequence, the zones M’s and L’s and then the whole surface converge indefi-
nitely close to a cylindrical surface S, whose curvature is given by x(s). The limit-
ing case of this polyhedral surface is now denoted as S,.

One distinction between the polyhedral surface S, and the corresponding cylin-
drical surface S with an identical curvature distribution is that the former has a
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uniform axial shortening ¢ everywhere.
Also it is evident that the surface S, is
developable as it is constructed by folding
a plane. Therefore, it can be said that the
surface S and S, are isometric, or S is
developable on S,,.

In conclusion, the presence of a develop-
able surface S, is verified in connection
with an arbitrary cylindrical surface S with
the following characteristics: S and S, are
isometric, S, has a uniform axial shortening
e, and §, is indefinitely close to S. The
surface S, is the concave polyhedral surface
and the basic geometrical parameters are
governed by Eq. (8). Fig. 6 shows an
exaggerated (since the real surface is con-
structed by the infinite number of infinitesi-

FiG. 6. Exaggerated view of an
isometric, axially shortened sur- mal waves) view of such a surface corre-

face corresponding to an elliptic sponding to an elliptical cylindrical surface.

cylindrical  surface  (major-to-

; 3 ) It appears also well established that if the
minor axis ratio=2).

transfer from a surface S to the correspond-
ing surface S, is taken place, it should be done in the inextensional process. If the
surface § is referred to the midplane of a thin arbitary general cylindrical shell, then
it is found that the surface S, satisfies probable conditions for a surface being an
inextensional buckling deformation.

In common parlance, this transfer means
‘‘the folding of cylindrical surface in the
axial direction’’. In addition, it is indeed
infinite in number of the combination of
axial and circumferential wave numbers and
thus resulting axial shortenings. It is inter-
esting to note that any cylindrical surface
can be shortened by an arbitrary amount
through such a folding.

There is certainly something in common
between this fact and the geometrical para-
dox that the surface area of a circular
cylinder can not be obtained as the simple
upper bound of the surface area of the
concave polyhedron inscribing the cylinder
[7]. Let us consider a two-dimensional
Euclidean complex K(p, q) inscribing a complex K(p,q) inscribing a
circular cylinder and denote F(p, q) as the circular cylinder.

Fi6. 7. Two-dimensional Euclidean

This document is provided by JAXA.



148 K. Miura

sum of area of two-dimensional Euclidean simplexes (Fig. 7). Converging p and
g to zero, we will have K(p, q) indefinitely close to the cylindrical surface. On the
other hand, however, the limiting value of F(p, q) depends on a process of con-
vergence of p and g to zero and the value can take from the finite to the infinite.

But to return to the point to our subject, we assumed in the preceding analysis
the uniformity of the axial shortening ¢ with regard to both circumferential and
axial coordinates. It is, however, possible to relaxe the latter assumption and give
a wide definition of polyhedral surface S,. Then Eq. (8) is valid for x-dependent
2, and ¢, provided that the amplitude of the wave a=2,(2¢)"* is kept constant;
thus

£(8) = 22,272 [A,() ] }

la=2,,2¢)"*: constant]

(9)

where the subscript i indicates the i-th zone in the axial direction. This enables
us to make a pattern that resembles the local buckling pattern of the axially
compressed circular cylinder shown in Fig. 4.

Furthermore the triangular division appeared in the preceding analysis is not
mandatory, and instead, the trapezoidal division yields the similar conclusion.
Denoting the bisections of the upper and the lower bases of a trapezoid as 2* and
2,, respectively (Fig. 8a), the correspondents to Egs. (5) and (8) can be written
as follows:

> =2/ + )] tan~'[2, sin 6/ (2,— 2] (10)
K(8) =22,,(2¢)"2 [ 12,(5)’ — 2°(5)*] }

[a=2,,(2¢,)"*: constant]

(1D

r——?—ﬁ+5—ﬂ

(a) (b)
Fic. 8. Hexagonal pattern.
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The resulting “hexagonal-pattern” can be seen in a typical example (Fig. 8b).
Indeed one will sometimes observe the hexagonal-pattern instead of the Yoshimura-
pattern in the collapsing shapes of circular cylindrical shells. In Figs. 9 and 10,
the general case of diamond and hexagonal type polyhedral surfaces S, corre-
sponding to Eqs. (9) and (11), respectively, are shown. It is also possible to
furnish a sign change in curvature of polyhedral surface S, as shown in Fig. 11.

The above argument raises a new question whether a surface with another kind
of pattern might exist that also belongs to the category of the polyhedral surface
S,. In this respect, the author will not attempt to prove in an exact manner the
existence or nonexistence of such a surface, but he simply points out in the follow-
ing the analogous characteristics between this problem and the classical problem
of regular tessellation.

Fi16. 9. Diamond type polyhedral surface FiG. 10. Hexagonal type polyhedral sur-
Sp [general case; see Eq. (9)]. face S, [general case; see Eq. (1D].

F1c. 11. Sign change in curvature of polyhedral surface S,,.
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Fig. 12. Coordinate transfer of patterns to regular tessellation.

The concave polyhedral surface S, with either the diamond or the hexagonal
pattern can be developed into the plane, as it is the fundamental premise. If
the edges of these patterns were “printed” on the surface, while a edge insides
of each pattern is excluded, the planes printed with either the diamond or the
hexagonal patterns will be obtained after the deployment (Figs. 12a and 12b).
Then, it is always possible to find the appropriate coordinate transfer as to x and
s, by which the pattern is “regularized”, that is, each pattern is transferred to the
same-sized regular polygon. Such coordinate transfer can be expressed formally

as follows:
X =f(x), §'=g(s) (12)

The resulting regular patterns are shown in Figs. 12¢ and 12d.

These patterns remind us the classical problem of regular tessellation studied
first by Kepler [8]. For a formal definition, we may say that a tessellation is
regular if it has regular faces and a regular vertex figure at each vertex. It has
been proved that the triangular, diamond, and hexagonal regular tessellations
are possible, and these are the only regular tessellations. Since the diamond and
hexagonal tessellations have their counterparts in the patterns of the polyhedral
surfaces S,, the possibility of triangular pattern of S, is asked now. At present,
however, we are unable to find a mechanism by which a cylindrical surface with
triangular pattern can be transferred to a polyhedral surface S,. Therefore, it is
most likely that the group of polyhedral surface S, is characterized by either the
diamond or the hexagonal pattern. The mixture of these patterns is possible, but
it is not the fundamental pattern.
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Since the group of these surfaces has the distinct characteristics, it will be
convenient to give them an appropriatc designation. The author suggests the
word “pseudo-cylindrical concave polyhedral surface”, and PCCP surface as an
abbreviation, because this surface is not only macroscopically cylindrical but also
it has a cylindrical surface as its limit. It is also assumed that this designation of
PCCP surface includes the case where the fundamental parameters, 2, 4,, 2, and
«, are finite. We can say, there is two kinds of PCCP surfaces, one is the PCCP
surface with diamond pattern and the other is the PCCP surface with hexagonal

pattern. The geometrical characteristics of PCCP surfaces are summarized in the
following.

PCCP surface (diamond pattern)

(1) The developable concave polyhedral surface composed of triangular faces.
(2) The relation between an arbitrary triangular face 1-2-3 and the three
adjacent triangular faces (Fig. 13):

a) The one particular sides of every triangle are on the mutually parallel planes.
Let us call them the bases of triangles. A line which is vertical to these
planes is denoted as x.

b) The two triangular faces, which own a side jointly, make the identical angle
to x.

¢) The two triangles, which own a base jointly, have the identical orthogonal
projection to a plane vertical to x. This orthogonal projection is also a
triangle with the same base. The height of it is denoted as the amplitude
«. 'The amplitude « characterizes the depth of the wavy concave poly-
hedral surface and is constant throughout the whole surface.

d) The x-coordinate of the base, jointly owned by two triangles, is in-between
the x-coordinates of vertexes facing to the base.

~ N //\
/ " .Ll/\w ) )
e

. (/’/\
o

a
} 2,3,4 f
<3
N, b Dy g e 2/
" LI VATION SIDE_ELEVATION.
3 1 2
2\ 4 )
1I
PLANE FIGURE

FiG. 13. Geometrical relation between elementary faces of
PCCP surface (diamond pattern).

This document is provided by JAXA.



152 K. Miura

(3) The macroscopical configuration composed by this surface is cylindrical,
thus the quasi-curvature of the surface is approximately given by

£(8) =2a/2(s)*

PCCP surface (hexagonal pattern)

(1) The developable concave polyhedral surface composed of non-rectangular
trapezoidal faces.

(2) The relation between an arbitrary trapezoidal face 1-2-3-4 and the four
adjacent trapezoidal faces (Fig. 14):

a) The bases of every trapezoidal face are on the mutually parallel planes.
A line which is vertical to these planes is denoted by x.

b) The two trapezoidal faces, which own a side jointly, make the identical
angle to x.

c) The two trapezoidal faces, which own a base jointly, have the identical
orthogonal projection to a plane vertical to x. This orthogonal projeciton is
also a trapezoid and the height of it is denoted as the amplitude «. The
amplitude « characterizes the depth of the wavy concave polyhedral surface
and is constant throughout the whole surface.

d) The x-coordinate of the base, jointly owned by two trapezoids, is in-between
the x-coordinates of the other two bases.

(3) The macroscopic configuration composed by this surface is cylindrical, thus
the quasi-curvature of the surface is approximately given by

1(8) =2a [ [A(8)* — A°(s)°]

—13
-.—)\S_k

PLANE FIGURE DEPLOYMENT

FiG. 14. Geometrical relation between elementary faces of PCCP surface
(hexagonal pattern).
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3. PROPOSITION OF PSEUDO-CYLINDRICAL CONCAVE POLYHEDRAL SHELLS

A new idea is not necessarily conceived as a logical conclusion by a certain
rational mathematical analysis, but rather it is frequently obtained by chance by a
process transcending a logical way. This is exactly the process by which the new
form of shell structure is introduced from the PCCP surface discussed in the
preceding chapter. ~

For the purpose of illustration of PCCP surface, the author has made a model
using 0.25 mm thick Kent paper. This is the one shown in Fig. 6, and is
representing an elliptic PCCP surface with diamond pattern.  Playing uncon-
sciously with the model, the author has noticed the considerable supporting
capability of it in the axial direction. This phenomenon may be explained in
an approximate manner as follows. The form of this model represents indeed
a stable post-buckling equilibrium of a very thin cylindrical shell subjected to an
axial load, that is, in other words, a failure configuration under such loading. But
the typical load-shortening curves as shown in Fig. 15 indicate the positive gradient
in the post-buckling region for a fixed combination of axial and circumferential
wave numbers. So it is obvious that the model should be capable of supporting
substantial loads though it is not as stiff as the original cylindrical form. There-
fore, if a thin structure is designed from the first in a form of the PCCP surface,
the elastically stable region will be assured until the next form of failure, possibly
either the material yield or the local instability, will occur. The author believes
that there is indeed a great potentiality of such structures in practice.

The conversion of thought from the failed form of a structure to the potential
new form of a structure is really a drastic turn. But an even more drastic turn
has been done by the turn, in its literal meaning, as much as ninety degrees of the
loading direction. The author has noticad immediately that the model exhibits
quite a large rigidity against the load normal to the surface, in macroscopic sense,

o7 T

T 7=0676_
OB v g

FiG. 15. Reduced compression stress or/Ef against unit end shortening
er/t for ¢=1.00 and different number of waves in circumferential
direction (Kirméan-Tsien).
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of it. In spite of the minute thickness of the paper, the model can actually support
a substantial load without indicating a sign of collapsing. On the contrary, an
elliptic cylindrical model made of the same paper collapses by its own weight.
In short, the former has much larger circumferential bending rigidity than the
latter.

This odd experience and the consideration of the intrinsic geometrical charac-
teristics of this developable surface, both has convinced the author of that the
thin structure in the form of the PCCP surface should have great possibilities for
engineering applications [9].  This kind of structure has more characteristics of
the shell than those of the so-called folded plate structure, because it has more
than anything else the curvature in a macroscopic sense and indeed it can be
converged into the cylindrical shell as has already mentioned. Therefore, it should
be allowed to call such a category of structures as the pseudo-cylindrical concave
polyhedral shell and use the PCCP shell (or CP shell) for its abbreviation.

As a matter of fact, a folded plate structure which certainly belongs to the
family of PCCP shells has been appeared before. Salvadori discussed such a
structure in his excellent book entitled “Structure in Architecture” [1]. The
example shown in the book is certainly a circular PCCP shell roof with diamond
pattern, though its rather deep folding does not immediately indicate the charac-
teristics of shells.

The author insists in this paper that the PCCP shell should be recognized as
the shell and that it has a great versatility not known before in its forms, charac-
teristics, and accordingly applications. As for its forms, as has already mentioned,
it can be designed for an arbitrary curvature distribution with either the diamond
or the hexagonal pattern. Moreover, a rather wide selection of independent
parameters, which define the form both macroscopically and microscopically, is
possible. As for its characteristics and applications, the following two chapters
are devoted to their description, respectively.

4. PRINCIPAL CHARACTERISTICS OF PCCP SHELLS

In this chapter we discuss in details the characteristics inherent in PCCP shells.
These can be conveniently divided into the following six principal items, though
these are closely connected with each other.

1. Versatility in forms

It goes without saying that the cylindrical shell form is the most versatile and
thereby the widely used shell form. Since the PCCP shell is also in the cylindrical
form at least macroscopically, the merit of the cylindrical form over other types
of the shell is retained in this case.

The independent form parameters which define the form of PCCP surface are
as follows;

a, A(8), A.(x) (diamond pattern)
a, 2A8), (), 2,(x) (hexagonal pattern)
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Proposition of Pseudo-Cylindrical Concave Polyhedral Shells 155

where the amplitude @ of the wave is constant throughout the surface, while the
wave-length parameters can vary stepwise with the coordinates indicated in
parentheses.

The sole quantity which determines the macroscopic form of the shell is the
curvature. The quasi-curvature of the PCCP surface is given approximately as
follows;

k() =2a/A(s)? (diamond pattern)
k() =2 /[2,(s)*— 2°(s)°] (hexagonal pattern)

As the amplitude « is constant throughout the surface, the arbitrary curvature
distribution can be gained by i, and 2°* variations along the circumferential coordi-
nate s. '

If both « and 2,(5)?, or 2,(s)*— 2%(s)?, are infinitesimal numbers of the same order,
that is, by Landau’s symbol

a=0[2,(s)*] (13)
or
a=0[2,(s)*— 2°(s)*] (14)

a PCCP surface converges to a cylindrical surface. At the same time, the quasi-
curvature represents exactly the curvature in general sense. In regard to the
convergence of surface area, however, the above condition is not sufficient; the
reason has been mentioned before in chapter 1. Then, the following condition
must be satisfied simultaneously.

a2y — 0 (15)

Generally speaking, when the quantity /4, is small, the PCCP shell has almost
an identical surface area with the corresponding cylindrical shell; this fact might
have technical as well as economical meanings.

Excluding an aesthetic problem of design, considerable differences in technical
meaning will be encountered by selecting either of two patterns of PCCP shells.
For instance, let us consider the case of designing a PCCP shell when the curva-
ture distribution and the quantity «, on which the circumferential bending
rigidity primarily depends, are given in advance. Since the two conditions are
given in advance, the rest of free parameters are one in case of the diamond
pattern, and two in case of the hexagonal pattern; thus the latter provides more
freedom in designing the shell.

2. Circumferential bending rigidity

Now the comparison is made between a circumferential strip of a circular
PCCP shell with the diamond pattern and that of a circular cylindrical shell as
shown in Fig. 16. The width of both®strips is as much as 21,, that is, a single
pattern width. It is also assumed that both have the identical uniform thickness.
The moment of inertia of a cylindrical shell strip is
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I=(1/6)2,F (16)

The moment of inertia of a PCCP
shell strip, I,, is variable along the
circumferential coordinate s. It takes
the maximum value at nodal position
and the minimum at the middle of
nodal position. That is

(1/24)2%¢ sin® <1, <(1/6) At sin* 0
p
17

The similar relation holds also in
the case of the hexagonal pattern.
Therefore, the relative magnitude of
the moment of inertia can be written
as follows;

I/ I>(cj20  (18)

This comparison on the moment of
inertia can not directly be transferred
to that of the circumferential bending  Fic. 16. Comparison of moment of inertia
rigidity of two shells, because the between cylindrical shell and PCCP shell.
section of the PCCP shell changes periodically along the circumferential direction.
The period of its variation is apparently 2, or 1+ 2° depending on patterns. Also an
important fact we should know is that there is a completely different type of the
large deformation not familiar with us. If the face angles are changeable, the
large deformation is possible even without the elastic deformation of clementary
faces. This somewhat peculiar characteristic is in fact essential for a new deploy-
able structure, which will be discussed in the later part of this chapter. In the
context of discussion developed here, the face angles are assumed to be constant.
Under these circumstances, and as far as the rough qualitative comparison is
concerned, the comparison of bending rigidities of two shells by using Egs. (16),
(17), and (18) should be justified.

Eq. (18) clearly shows that the potential of having greater circumferential
bending rigidity is almost essential in case of PCCP shells. For example, if the
amplitude is taken as much as several times of the thickness of the shell, the
bending rigidity of a PCCP shell could be approximately 10 times of a regular
cylindrical shell. Due to the definition of the shell in general, the amplitude
several times of the thickness is still a small amount comparing with other
dimensions. Therefore, the PCCP shell, being cylindrical in macroscopic sense,
can be designed for a structure with greater circumferential bending rigidity by
a relatively small amount of the amplitude.
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3. Being developable surface

One of the most important characteristics of PCCP shells is that the midsurface
is developable. This feature is inherent in the shell with zero Gaussian curvature.
Whether the shell is developable or not has a vital influence on the production
process of it. Because the manufacturing of an undevelopable shell from the
sheet material involves the process entails the extensional deformation of the
material, while a developable shell does not. The similar circumstance will occur
also in case of the concrete shell, for the manufacturing of the mould involves
the same problem.

4. Elements are in simple form

The whole structure of PCCP shell can be constructed by simple triangular or
trapezoidal faces. This feature as well as the possibility of including a large
number of same-sized elements will contribute to rationalize the production
process. One typical example is the case of concrete shells, as the mould can
be very simple form and especially the pre-cast concrete can make the most use
of this feature.

5. Characteristic as deployable structures

The geometrical fundamental of the deployable surface structure is the inexten-
sional transfer between two surfaces, the two occupying the different expanses
in space. Among other things, the deployable surface structure with rigid plane
element has important applications; those structures such as accordion type or
fan type structures are examples. It is quite interesting to note that a new
mechanism of deployment is possible by using a characteristic of the PCCP
surface. This mechanism is most clearly exhibited by using a paper model as
shown in Fig. 17. Fig. 17a shows a flat plane where the subsequent edge lines
of diamond patterns are marked. In other words, the quantities 2, and A, are
fixed and « is left unfixed. Give each triangular element a small angle 6 to x axis;
this is equivalent with giving a small amount of the amplitude «. This process
results in the surface shown in Fig. 17b. Increasing 6, or «, we have in sequence
the surfaces shown in Figs. 17c, 17d, and 17e.

From a theoretical point of view, this mechanism is quite different from those
of accordion type or fan type deployment, because this is the deployment in
two-dimensional while the latter two are one-dimensional deployments. Through
two-dimensional deployment mechanism, it is theoretically possible to contract a
plane to a point. Then, by patterns with infinitesimal wave lengths, the follow-
ing conditions are perfectly realizable, that is

e— 1 (19)
K — 00 (20)

Viewing the models in Fig. 17, we could imagine the ultimate result of these
conditions as an infinitesimal coil with the axial length of zero.
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(2) (b)

(c) (d)

LIMIT (IDEALIZED)

// Ve '

(e) (f)

FiG. 17. Two-dimensional deployment mechanism by PCCP shell.

6. Characteristic as bellows or expansion joints

Another distinct characteristic of PCCP shell will be found, if we view the
classical problem of axial buckling of cylindrical shells from a different stand-
point. Now let us observe Fig. 15 again. In this figure the reduced compressive
stress or/Et against unit end shortening er/t for 4=1.00 and different number
of waves in circumferential direction is plotted. Where n=n?t/r represents the
non-dimensional circumferential wave number. What in particular catches our
interest is not the domains of buckling and post-buckling as usual, but the region
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Fic. 18. Bellows-like PCCP shell.

following the post-buckling. In this region, the gradient of the curves are much
smaller than in the pre-buckling region. In other words, the elastic spring constant
of the shell in the axial direction is comparatively small. This tendency becomes
more pronounced as the circumferential wave number decreases. Based on this
fact, we may deduce that a shell designed at first in the form of post-buckling
configuration should have a small spring constant in the axial direction. Indeed
it can be likened to a bellows. Since the PCCP shell is in a sense the idealization
of post-buckling configuration of cylindrical shells, it seems probable that this
characteristic as bellows is also inheritted to the PCCP shell. Especially, the
PCCP shell with large angle of inclination exhibits clearly a spring-like behavior
against the axial force (Fig. 18). A noticeable feature of this bellows-like
structure is that its midsurface is developable. It is also interesting to note that
the bellows in usual form represents something like the axisymmetrical buckling
deformation of circular cylindrical shells.

5. APPLICATIONS OF PCCP SHELLS

As for the application of the PCCP shell, some obvious uses of its features can
easily be found. But, since the shell is versatile in its form as well as its charac-
teristics, and since the practical application may involve their own particular
conditions not known to us, it is difficult to sum up these applications systematically
at this stage. So only a few typical examples of applications, whose merits are
quite obvious, are shown in this paper.

1. Large span shell structure in architecture

The large span shell structure in architecture is in general used for the case
where a large space without pillars is required. Large markets, stadiums,
gymnasiums, and hangars are such examples. In Fig. 19 and Fig. 20, the catenary
PCCP shells for that purpose are illustrated. There are two principal contrivances
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Fic. 19. Catenary PCCP shell as a large span structure (diamond pattern).

Fic. 20. Catenary PCCP shell as a large span structure (hexagonal pattern).

of designing these structures. First, the bending moments due to local disturbances,
snow and wind loads can be coped with the superior circumferential bending
rigidity of PCCP shells. Second, as the element of the shell is in the simplest
form of all, either triangular or trapezoidal plane, the producibility of the shell
is quite high. Depending on the design requirements, it is possible to design a
PCCP shell with an arbitrary curvature distribution.

2. Reservoir

We can consider the model of Fig. 8b as illustrating an example of the circular
cylindrical type reservoir by the PCCP shell with hexagonal pattern. It may
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possibly be made of either steel or reinforced concrete and may be used for a
reservoir of powder or grain materials. The superior circumferential bending
rigidity will show higher resistance to the bending moment due to local load
normal to the shell surface; while the sufficient stiffness against axial loadings
can be obtained by an appropriate selection of form parameters. It is, therefore,
possible to design a reservoir without using the stringers. The simplicity of the
elementary faces of the shell will largely contribute to the ease of its construction.

3. Sandwitch structure

A double layered shell made by overlapping of a cylindrical shell with a PCCP
shell, both have an identical curvature distribution and are bonded together, is
one possible application of PCCP shell concept.

4. Bellows or expansion joints

As shown in the chapter 4, the PCCP shell with large angle of inclination # has
a property as a bellows or a expansion joint. An important feature for the
manufacturing process is that it can be formed from a flat sheet material through
inextensional processes, while the usual type of bellows is made through quite a
large amount of extensional deformation.

5. Deployable structure
It is clearly shown in section 5 of chapter 4.

6. CONCLUSION

It is shown that the inextensional post-buckling configurations of general
cylindrical shells subjected to axial loading have peculiar geometrical characteris-
tics, and that these configurations compose a general group of surfaces which
may be designated as the pseudo-cylindrical concave polyhedral surface. Then
the fixed idea that these surfaces are essentially failed forms is abandoned and
is replaced by the idea that these are the basic forms of a new shell which could
function superbly as the structure under some loading conditions. It is shown
that the new shell, which may be called for convenience, the pseudo-cylindrical
concave polyhedral shell and the PCCP shell for its abbreviation, has many
useful characteristics as follows; inclusion of an arbitrary curvature distribution,
developability of its midsurface, intrinsically high circumferential bending rigidity,
and simplicity of elementary faces. The application of PCCP shells to large span
structures, reservoirs, expansion joints, and others seems to be promising.

Department of Aerodynamics and Structures
Institute of Space and Aeronautical Science
University of Tokyo, Tokyo

September 18, 1969
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SYMBOLS

I, m=nparallel lines
I*, m* =parallel planes
n=circumferential wave number
p, g=base and height of two-dimensional Euclidean simplex, respectively
r=radius of circular cylindrical shell
s=circumferential coordinate
s’ = g(s) =coordinate transfer
t =thickness of shell
w=radial inward displacement
x=axial coordinate
x’=f(x) =coordinate transfer
Ay App, Ayy Agy=coeflicients
E=Young’s modulus
F(p, g) =sum of arca of two-dimensional Euclidean simplexcs
I=moment of inertia of cylindrical shell in circumferential dircction
I,=moment of inertia of PCCP shell in circumferential direction
K(p, qg) =two-dimensional Euclidean complex
L, M =parallel zones
S=general cylindrical surface
S, = pseudo-cylindrical concave polyhedral surface or PCCP surface
«=radial amplitude of concave polyhedral surface
B=angle
e=unit shortening in axial direction
¢, E=numbers
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n=circumferential wave number parameter
0=angle of inclination of elementary face to x axis
k=curvature
{x,»=quasi-curvature of circumference, Eq. (2)
{,)=quasi-curvature of circumference, Eq. (3)
A, =half wave-length of buckle in axial direction
A,=half wave-length of buckle in circumferential direction
4s, *=Dbisections of the upper and the lower bases of trapezoids composing
a hexagonal pattern, respectively
p=aspect ratio of wave

p=radius
g=average compressive stress in axial direction
S;y 8 (= -+, k—2,k, k+2, .. .)=circumferential coordinate of nodes of
concave polyhedral surface
1,2,3, ... =nodes and semi-nodes of PCCP surface
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