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Summary: Correlation techniques are used to measure the characterizing parameters of
the wave propagation system. The traveling wave representation of a vibrating system is
discussed. Delay times and amplitude coefficients are considered to be the characterizing
parameters, not only in the nondispersive wave propagation system but also in the disper-
sive case, if group delay time is defined. Three kinds of correlation method, such as, the
correlation envelope method, the squared signal correlation method and the M-sequence
correlation method are proposed to measure the group delay time and wave intensity. The
acoustic wave propagation as an example of nondispersive case and the flexural wave
propagation as a dispersive case are described and typical measured correlation functions
are illustrated.

1. INTRODUCTION

In considering wave propagation problem, the transfer function between two
separate points will be a characteristic quantity of a linear system. For example,
an exciting point of the vibration system is fixed and the space coordinate of the
detecting point is assumed to be a variable parameter in the expression of the
transfer function. From such transfer function, the response of the system for the
arbitrary input signal can be obtained. But in many cases the expression of the
transfer function would be complex form and the physical meaning is not clear
or it is sometimes impossible to obtain the exact transfer function. In such a case
it is desirable to get an approximate expression characterized by a few parameters
whose physical meanings are clear, even if its validity is restricted in some narrow
range of input signal.

The traveling wave representation of the transfer function is one of such approxi-
mate expressions. The input signal is assumed to travel as a few number of wave
rays and the system characteristics are expressed by the delay times and amplitude
coefficients of these wave rays. The correlation techniques are useful in measuring
such parameters and some experiments have already been reported [1][2][3].

The delay time is defined when the signal waveform is not distorted, in other
words, at the nondispersive wave propagation case. If the group delay time is
defined, the same system characterization is possible for more general case, and
correlation techniques are also applicable to measure the characterizing parameters.

[53]
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54 N. Aoshima

These were reported by the author before [4]. The more general and detailed dis-
cussion of this topic will be made in this paper.

2. PHASE VELOCITY AND GROUP VELOCITY

The signal flow problem as Fig. 1 is considered. G(s) is the transfer function of
the linear system and the input and the output signal f,(f) and f,(f) are assumed to
be bounded in amplitude and continuous and differentiable up to necessary order,
and they can be represented as follows by choosing w,’s suitably in the signal
frequency range.

linear system

£, (1) —— G (s)

>/, 0)

Fi1G. 1. Linear system.
N
filt)= 2, Cy cos(@at—pu) (1)
N
f.() = Z_]IC,L | G(iw,) | cos {wt— @, + £ Gliw,)} (2)
When G(s) has the form as
M
G(@s)= )} ke™*i (3)
i=1
then £,(¢) is calculated as
M
fz(t): _):lkjf)(t‘“fj) (4)
iz

This means that if the system transfer function can be expressed in the form as (3),
the output signal f,(f) is represented as the superposition of input signal with some
time delays and amplitude coefficients. If the expression of (3) is valid only for
some particular input signal range, then the system characterization by time delays
and amplitude coefficients is restricted in that range.

More generally, if G(s) can be represented in some narrow frequency range,
whose center angular frequency is w,,,

G)= 3 G5, |G (iw) | =k,
= ) (5)
_ LGliw) _ — L /G i)} =1,
dow

— tmjs
w

then, for the arbitrary input signal whose frequency spectrum is confined in that
frequency range, the relation of input and output signal is derived as

zZ,(t) = il: k;z,(t—17,;)-exp {ion(ty;—Tmj)} (6)
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where z(?) is the pre-envelope of f(¢), and defined as
2(0) =1(5) + if(?) (7)
fo=1 f &) S ds - (wilbert transiorm of 1) (8)

The envelope of the signal is given as the absolute value of the pre-envelope. Then
(6) is considered that the envelope of the output signal is represented as the sum of
the envelope of the input signal with time delay z,;, and amplitude coefficients k;.
In the case of wave propagation, the group velocity and phase velocity are calcu-
lated from z, and r,, respectively. The main purpose of this paper is the determi-
nation of parameters z,; and k; in the equation (5) by theory and experiment.

3. TRAVELING WAVE REPRESENTATION OF THE RESPONSE
OF A CONTINUOUS SYSTEM

One of the popular analyzing methods of vibration system is the modal analysis,
in which the solution is obtained as the superposition of the eigenfunctions. Integral
transform method such as Fourier or Laplace transforms is also used. There is the
third method, which assumes the solution as the superposition of some traveling
waves and adjust the coefficients of them to satisfy the initial and the boundary
conditions. To make clear the meaning of such traveling wave representation, it
will be shown that such solution can be derived analytically from the basic wave
equation. Three examples are presented.

(1) Longitudinal wave of finite bar
Longitudinal motion of an uniform bar as Fig. 2 is considered. The wave
equation is written as

FuCx, ) _ 1 du(x,1) J EA JE (9)

ox? c2 e

and the initial and the boundary conditions are assumed as

u(x, 0):_@‘.‘.%’.‘;_’)_ =0 (10)
u(0, =0, EA a“(a’; f) =0 (11)
/1
=
? ——>p (t)
% L -~
-~

=0
FiG. 2. Uniform bar in longitudinal motion.
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where u(x, ) is the longitudinal displacement, A4 is the cross section, E is the modu-
lous of elasticity, p is the mass density and p(#) is the force applied at the free end.
p(?) is regarded as the input signal and u(x, ?) is as the output signal and the
transfer function is

Gz, 5) =259 (12)
p(s)

where #(x, s) and p(s) are the Laplace transform of u(x, 7) and p(t) with respect to ¢.
To obtain the expression of (12), the Laplace transform of (9) with respect to ¢
is derived taking into account the initial condition of (10) [5].

da(x,s) s 2 _ 13
dx® (c) #(x, 5)=0 (13)

The transformed boundary conditions are ’

#(0, s)=0, EAM
dx

L

X =

The solution of (13) and (14) is obtained as

2 ) € B(s) | et g= (o
u(x,s)= EA ) P e\L/0s | o= (/)3 (s

From this equation, G(x, s) can be obtained at once as

K e(z/c)s__ e—(r/c)s c
G(x) S) TR e )
Ky e'L/os + e (L/c)s EA

(16)

Now the problem is solved, but the physical meaning of the expression (16) is not
clear, so it is rewritten as

e(.::/c)s — e (/o

Gx, ) =K g-wmn .

s 1+e—(9L/c)s (17)

Since Res>=0, and Res=0 is the limiting case, expanding the denominator of
(17), it is written as

G(x, S):_I_C__e—(L/c)s(e(x/c)s__e—(:c/c)s)(l __e—(zL/c)s+e—(4L/c)S___ .. )
A

:_IS_(e-(L—x)s/c__e~(L+x)s/c_e-—(sL—:c)s/c_l_ e—(3L+x)a/c+ .. ) (18)

s

This is the form of G= } G, and the first term is
7

G,(x, s):isie—w—w/c (19)
‘gd" (£G i)} =L=% (20)
)]
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1Gy(x, i) | =K Q1)
w

If the input frequency range is restricted in narrow frequency band, (21) can be
considered as constant, and the group delay time is given by (20), then it is clear
that the first term represents the direct wave whose group velocity is ¢. The
dependence of (21) on frequency is not intrinsic, for if instead of u(x, ¢), its time
derivative (d/df)u(x, t) is adopted as the output signal, » vanishes from (21). In that
case not only the group delay time but also the phase delay time is independent of
frequency.
The second term of (18) is

G,(x,5)= — —If-e‘ L+ z)s/e (22)
G, iy =B 23)
dw c
|Gy(x, iw)| =K 4)
w

As (23) shows, (22) represents the wave reflected at x=0 and travels to positive x
direction.
In the same way the third term represents the twice reflected wave and so on.

Thus the traveling wave representation (18) is derived analytically from the
wave equation.

(2) Bending motion of semi-infinite bar
If the shear deformation and the rotatory inertia effects are neglected, the differ-
ential equation of bending motion of the uniform bar is
a‘y(J&_tl +_1_ *y(x, 1) _ EI

0 =0, &= (25)
axt a ot m

and the initial and the boundary conditions are assumed as

_ oy(x, 1)
y(x,0)= T

=0 (26)

t=0

=0 27

z=0

30, 0=, DED
0x

The displacement at x=0 is thought to be input signal and that at the point x>0 is
output signal. Considering that y(x, s) must remain finite value for all positive x,
the transfer function is obtained as

G(x, S):_l';'ie(s/2a)1/z(—l+i)x+ 1“2+‘ie_(s/2a)1m(1+,;)x (28)
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The first term is

G](x, l‘a)):_l_é——_ie—(w/a)uzx -
; ‘ 30
_%{LGI(X, l(!))}:O ( )
lGl(x; i(l)) I :V_%:e"(a/a)llﬂx (31)

From (30), the wave propagates with no delay time but as (31) shows, its magnitude
decreases exponentially and restricted to the immediate neighbors of the exciting
point. This is known as the evanescent wave and its appearance is typical to the
bending wave problem.

The second term is

G,(x, iw):—lgle"‘“/“"’”” (32)

—i{LG(x i)} =—* (33)
do B 2(aw)'

|Glx, ia) | :717_ (34)

When the signal frequency is confined in the narrow range, (33) can be considered
as constant, and this term represents the traveling wave with the group velocity
2(aw)"2.
On the other hand, phase delay time of (32) is calculated as
_ ZLGyx,iw) _ =w x 35
) T 4w + (aw)? (35)
The second term is the intrinsic part to the wave propagation, and the phase
velocity is given as (aw)?, which is half of the group velocity.

(3) Bending motion of finite bar

A finite bar with length L is examined. The differential equation is (25) and the
boundary conditions are in addition to (27)

Py _ x| (36)
ax®  lz=r 0x°  lz=L

These are the free end conditions at x=L. The initial conditions are the same as
(26). Then the transfer function is calculated as _

MO & 4y
Glx,5)=1""2271— edi 37
®=1401~ A M0 @7

where
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eAlz eAz:c eAga: eA‘x
A A A A
M — 1 2 3 4
O=| grens gremt szt gren (38)
Alefil Aletil  AleAst  Aledi
A= \/ie(t/4)(2f—1)i’ j=1~4 (39)
a
and 4,,’s are the (1, j) cofactors of M.
The first term of (37) is
G(x,5)= mi”_.e"lz = (A —De™PE+ (1 + e 4 2er= (40)

|M(())l 2e—ZiBL_+_2e2iBL+ze—2BL+2eZBL+8

Since Res>0, B=(s/2a)* must be in the
hatched area of Fig. 3, and e?3” is larger than

Im
the sum of the other terms in denominator in
absolute value, when L is large enough. In such
case, expanding the denominator, G,(x,s) is
/ written as
/ re Gi(x,5)=et=2BL 1+~1—:~l~e‘”“+ ie""ﬂ}
2 2
X {1 — @~YBL-2BL _ p%BL-2BL__ p—4BL
____4e—-ZBL_+_ .. .}
:‘eA,r—2BL+ l—l eA|x~2BL—2iBL
Fio. 3. The range of B=(s/2a)'". _ 1= i*eAlz—4BL—4iBL+ .. (41)
2
The first term of (41) is
Gu(x, l(l)) :e(m/a)llﬁxi—-(a/a)lﬂL(1+i) (42)
d . L—x
——A/G(xy i)} =—F— (43)
dp (£ Onl® 1)} 2(aw)"?
| G, (x, iw) | =g~ W/an/L (44)

When |e**| is large, it means «"?L is large and as (44) shows this term is almost
zero. The second term of (41) is

G,(x, iw)= .L;_—ie‘”/“)”’(x—nﬁ (45)
d : 2L—x
I o 46)
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| Gyo(x, iw) | = 47

«/“
As (46) shows, this term represents the traveling wave reflected at x=L and propa-
gates to the negative x direction with the group velocity 2(aw)'?. As the same way
the third term of (41) is shown to represent the twice reflected wave at x=L. When
the exponent of each term of (41) is written as —aBL—iBBL, it stands generally
that «=p8. When a>p the corresponding terms vanish and when a=§g they
remain and represent the wave traveling negative x direction.
The second term of (37) is

G(x,s)=etz-2Ly ~—1 1 eA2x+ lgle‘” 2BL-3BL |, (48)

The first term of (48) is
G, (x, iw)=e @) Pz-(w/a)1 2L+ (49)
| G2l(x, iw) | — e~ (w/a)1/2(z+ L) (SO)

' (50) shows this term is almost zero. The second term is

Gzz(x, l(l)) :_!_-_2_"_?_6-— (w/a)1/?x (51)
d . ,

_ _J(;{ £ Gy(x, iw)}=0 52)

| G, i) | _\/%e (w/a)1/2x (53)

These are the same form as (29)—(31), and represent the evanescent wave generated
at x=0. The third term of (48) is

Gylx, iw) = _lziie~ (w/@)172(x +2L3) (54) .
2L
_——{AGza(x la))} e 2( )1/2 (55)
‘ | st(x, iw) I = 7}—2m—e“(“/a)‘/’z 56)

This is the evanescent wave at x=0, which is generated, as (55) shows, by the
wave that propagates to the far end and reflected back to x=0. In the same way the
evanescent waves generated by multiply reflected traveling waves are introduced
and other terms of (48) vanish.

The third term G,(x,s) and fourth term G,(x,s) of (37) are shown in the same
way as above to represent respectively the traveling waves to the positive x direc-
tion and the evanescent waves generated at x=L.
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4. CORRELATION TECHNIQUES FOR THE WAVE
PROPAGATION MEASUREMENT

Correlation techniques are useful in measuring signal delay times and intensities.
Auto- and cross-correlation function are defined as follows

¢z(f) '-_-.X(t) ¢ X(t +T)a ¢J:y(r) :.X(t) ’ J’(t 'i'—"—') (57)

where upper bar means to take average with respect to ¢.
If the system transfer function is written as (3), the output signal f,(¢) is expressed
as (4), and the cross-correlation function of input and output signal is derived as

¢f1fa(r) = j;ul k.f¢f1(r - Tj) (58)

From (58), if the autocorrelation function ¢, (z) is known, the delay time t; and
the amplitude coefficient k; can be measured. Especially if ¢, (z) is nearly zero
when || >T, then for |z,—<;| >T (i+#]), each term of (58) does not superpose
and 7, and k; can be detected easily.

When G(s) has more general form as (5), correlation methods are also applicable
and as the delay time, the group delay is measured. This was discussed in a
previous paper [4], and three methods of correlation measurement were proposed.
They will be explained in the following in more general form.

(1) Correlation envelope method

When the system transfer function has the form as (5), the pre-envelope of the
output signal is written as (6), and the cross-correlation function of the complex
values z,(¢) and z,(¢) is calculated as

&2, () =2F (1) - 2,(t + 1) |
= 3% kat—12,) €XP {itom(ty; — 7)) (59)
j=1

where the asterisk means to take complex conjugate.
There are another relations [4].

602 =2{6,.(2) i (D} = 25, (2)etPr (60)
Beren(D) =20, 1,(0) + i, (D)) =28, ()i P2 (61)

where S(z) is the envelope and P(z) is the phasing function of ¢(z).
From (59), (60) and (61)

S,(c)etPr® = Jﬁ:l k;S\(r—1z,;) exp {iP(t— 1)) + iw,(t,;—Tmjs)} (62)

If $,(z)=0 when |z| >T, and |7,;—7,;| >T (i#]), then each term of (62) does
not superpose, and by taking absolute value
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S0 = 37 k,Si(c—1,) (63)

When random signal is used as the input signal, S,(z) is almost zero when |z| is
large, so (63) means that from the envelope of the cross-correlation function, the
group delay times z,, and the amplitude coefficients k; can be measured.

(2) Squared signal correlation method

Measuring system is shown in Fig. 4. The output of the low pass filter is given
as [4]

L) Squarer Low Pass Filter
y, ()
G (s) Correlator
y,{t)
5, (&) Squarer Low Pass Filter

Fi1G. 4. Measuring system by squared signal correlation method.
1 2
y(t)=~2— |z()] (64)

When the system transfer function is written as (5), the pre-envelope of the output
signal is expressed as (6), and y,(f) is obtained as

yz(t):% 5 3 kkat— ) 2t —,0)
J
X exp {iwn (7, ;— Tny) —iwy(r, — Tmi)} (65)

Then ¢,,,,(z) is written as

Bupa(T) = % ; 2 kkiz(t e —z,) 2ttt —17,)- %—lzl(t) P
X exp {iwm(fuj - ij) — w7y — Tmi)} (66)

When f,(r) is random signal whose mean value is zero, then z,(¢) is also zero mean
random signal and it is considered that

Z,(Z—{—z’—-——r”)-zik(t—}—z'——tql) . |Zx(t) lz

is almost zero when |z, ;j—7q| islarge. Then the terms of j#! in (66) vanish, and

bl = 2 B )FE0 = £ Kgue—c,p (@D

i=1

where ¢rs(7) is the autocorrelation function of the square of the envelope of f,(7).
(67) means that by computing the cross-correlation function of () and y, (1), 7,
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M-sequence and kj can be measured.
generator
m (1) (3) M-sequence signal correlation
oo method
generator r(t) Relay Measuring system is shown in
f(®) Fig. 5. As an input signal f,(z),
band noise r(¢) intermitted by an
G (s) M-sequence signal m(f) is used. It is
£, () expressed as
Squarer f(D)= %{m(t) + 1) = m' () - 1(0),
(68)
Low Pass m()=+1 or —1
Filter m’(t)-_—%{m(t)-{-l}
Fi1G. 5. M-sequence y, (1) m (1)
signal correlation M-sequence (Maximum period null
method. Correlator

sequence) signal is a two-valued
pseudo-random artificial signal whose
2" 1k autocorrelation is given as Fig. 6.
h is the time unit and n is the order
of the M-sequence.

\ l T When the system transfer function
1 . i ; )
L= ,_%___j is written as (5), y, (1) is written as
FiG. 6. Autocorrelation function of (65), and the cross-correlation of

M-sequence signal. m(t) and y,(?) is expressed as

¢myz(f):‘;“ ; /_? kikiz(t+t—1,;)-2F(t+7—1,) -m(2)

X €xP {iwm(tyj—Tm ) —l0om(tg— Tmd)} (69)

Since r(¢) is a random singnal, it is considered that when |z,;—z,| is large,
z(t+1t—17,,) 2F(t+7-—-1,,)-m(t) is almost zero. Then

b= LK T 7=, ) mD (10)
It is derived that [4]
|z2() | =m'())-R,() (71)

where R, (1) is the envelope of r(f). Then

M
Gy = é- £ K Rt =z, w7z, -m()

M
—_:_;- .Zl Ky RUt+7—1y,) - m'(t+ 1 —1,,) - m(1)
o

(.. m*(@)=m'(r), since m’(¢) is O or 1)
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(a) M-sequence Correlation Method with and without Reflection

h =5ms

]

(c¢) Ordinary Correlation Method.

Fic. 7. Three methods of correlation
Measurement. | kHz 1/3 octave band
noise.

i
SN, S U

4t {lms

1kHz, Yoct,

Speaker (PAN-A25:

V3

reflector
1kHz 3.35m
1/:<Iﬂct.
Noise
2.65m
/ 3.75m
[s]

Microphone (B & K 1/, inch)
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- ;f —’g}- 6,(0)-dnlz—1,) 72)

In the above derivation the average of m(¢) is considered as zero. From (72), Tgj
and k% can be measured.

The power spectrum of f,(¢) is almost equal to the power spectrum of (), if the
time unit & of the M-sequence signal is sufficiently large, so the M-sequence corre-
lation method is very useful in measuring the propagation properties of waves by
varying the signal frequency band.

5. EXPERIMENTS

The acoustic wave propagation is an example of nondispersive wave propagation,
in which the group velocity is equal to the phase velocity. The results of three
methods of correlation measurements, those are (a) M-sequence method, (b) squared
signal method and (c) ordinary correlation method are shown in Fig. 7. The
speaker, the microphone and the reflecting board are placed in the anechoic room
and the propagation of 1/3 octave band noise whose center frequency is 1 kHz is
measured. As a squarer, Burr-Brown’s squaring module 9875/19 is used. The
sampling values of the computed cross-correlation functions are recorded on the
chart of a pen-writing recorder [6][7]. The sampling interval is 1 millisecond in
the cases of (a) and (b), but 0.4 ms in (c), because of the sampling theorem, it is
impossible to represent the ordinary correlation function of 1 kHz signal by 1 ms
sampling interval. The measurement of 5 kHz 1/3 octave band noise is shown in
Fig. 8. In this case the ordinary correlation method can not be applied, for the
minimum sampling interval of the correlator which is used in this study is 0.2 ms.
The results when the reflecting board is removed are shown in the left of each
measurement. As the figure shows, the cross-correlation functions by the M-
sequence method are triangular form and do not depend on the signal frequency
and it is easier to detect the delay time and the peak height compaired with other
methods.

In Fig. 9, the cross-correlation functions obtained by M-sequence method are
shown as a function of the distance from the speaker to the microphone. In these
measurements the input signal to the speaker is added to the output of the micro-
phone as shown in the figure. The correlation peak at r=0 corresponds to this
signal and serves as the reference height to the correlation peaks. By this technique,
the fluctuation of the signal source does not affect the results and the integrating
number of the correlator can be changed arbitrary. The measurement is made by
5 kHz 1/3 octave band noise modulated by the M-sequence signal whose time unit
is 1 ms, and the sampling interval of the correlator is 0.2 ms. The amplifier gain
of the microphone output is increased 10 dB in the case (e)-(i). The measured
delay times and intensities are plotted in Fig. 10. From Fig. 10(a) the sound
velocity is obtained as 341 m/s. The temperature when the measurement was
performed was in the range of 19°C-20°C, so the theoretical value is calculated as
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i s . e v v 4 e A T : 044m5

{a) M-sequence Signal Correlation Method.

: ;(6) Squared Signal Correlation Method.

Speaker (PAX-A25!

5kHz V

Y30ct. 3.35m
Fi1G. 8. M-sequence method and squared
signal method. 5kHz 1/3 oct. band. 2.65m
{Ordinary correlation method can not
be applied in this case) 3.75m
S

Microphone (B & K !/,inch)

343 m/s. From Fig. 10(b) it is seen that the intensity of sound decreases 5.9 dB
for doubling the distance, which is almost equal to 6.0 dB. These results assure
the M-sequence correlation method is accurate enough in acoustic measurements.

Some applications are reported in [3].
As an example of dispersive wave, the flexural wave in solid body is measured.

Its phase velocity is given as
v,=(EI|/Ap)"'w'"? (73)
and the group velocity is

v, =2(El | Ap)"'w*=2v, (74)
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dB

ms 0

12} P / . \
. 341lm/s -8 I \

5 16}

T

0 : Il 1 ! 1 N o\
0 1 2 3 4m 05 075 1 15 2 3 4m
al \b)

FiG. 10. (a) Time delay and (b) Intensity of sound. 5kHz 1/3 oct.

where E is Young’s modulous, I is moment of inertia of a section, 4 is a cross
section and p is the density of the material. A long thin steel strip whose cross
section is 0.75X38.2 mm is suspended by the strings horizontally, and the flexural
wave is excited by an electromagnet. The wave is detected by a piezoelectric
vibration pick-up whose weight is 1 gram and frequency response is from 2 Hz to
20 kHz within 1 dB. The measuring setup and obtained correlation functions are
shown in Fig. 11.  The steel strip is bended in the middle and both ends are sup-
pressed by oil-treated cray. The reflected waves do not appear in the correlation
records, for they are out of the range of delay time. The test signal is 1/3 octave
band noise centered at 8 kHz, which is narrow enough to travel a few meters with-
out serious distortion. The delay time versus distance is plotted in Fig. 12, from
which the group velocity is obtained as 455 m/s. The same measurements are
performed varying the signal frequency from 0.5 to 10 kHz and the results are
plotted in Fig. 13. From this figure the relation v=5.2+/ f is obtained when v is
measured by m/s and f is by Hz. The theoretical relation calculated from the
thickness, Young’s modulous and density of steel is v=5.28+/ 1.

In the above measurement the results are independent of the wave strength. To
measure the wave strength, two pick-ups are used, one as a standard. The setup
and one of the results are shown in Fig. 14. To separate two correlation peaks
when the distance of the pick-ups is small, the output of pick-up 1 is transformed
to sound ray in the anechoic room and dummy time delay of about 15 ms is
introduced. This technique is useful to compare the wave intensities at the points
nearby. From theoretical consideration of end excited flexural wave in lossless
semi-infinite bar, the vibration velocity u is written as u(x) =a(e ** 4 e=**) where
u is complex value and time dependent factor e’ is omitted. u satisfies the equa-
tion d'u/dx'—k‘u=0 and the free end boundary condition, that is the bending
moment is zero at the end. The vibration intensity is expressed by the quantity

1,(x) = —:lzu-u* - %4a|2(1 4 2e75% cos kx 4 e-%¥) (75)

which is expected to correspond to the height of the correlation peak. The second
and the third terms are the evanescent waves and their influence is restricted to the
immediate neighbor of x=0. But at x=0 the relation
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is derived, which corresponds to the result in Fig. 14 that the value at x=0 is almost
6 dB higher than the value at x=0 exterpolated from other values. The de-
tailed measurements near the free end are shown in Fig. 15(a) and for comparison
the calculated curve from (75) is shown in Fig. 15(b). The measurement is made
by 500 Hz 1/2 octave band noise and the calculation is for the sinusoidal excitation
case, but the correspondence of two graphs is good.

Next, the excitor is placed at the point 5.0 m apart from the free end and the
reflection at the free end is measured. The setup and one of the results are shown
in Fig. 16. This time the measurement is made at three points in the direction of
width for each distance, which are grouped in the figure. Five correlation peaks
are observed and each of them corresponds to, from left to right, the direct wave to
p.u.l, the direct wave to p.u.2, the reflected wave to p.u.2, the reflected wave to
p.u.l and the twice reflected wave to p.u.2. The correlation function in (h) is the
case when p.u.2 is removed. This is the case of 1 kHz 1/3 octave band noise.
Varying signal frequency from 500 Hz to 2 kHz by 1/3 octave step, the measure-
ments were performed and the heights of second and third peaks in reference to the
first peak as a standard, are plotted in Fig. 17. From the theoretical consideration
of the free end reflection of the sinusoidal wave in semi-infinite bar, the vibration
velocity as a function of position is obtained as

u(x)=afe **4ietk (14 i)e” ey (77)

and the intensity of vibration is

cu* ,
I(x)= u 2“ - =laP(1 —sin 2kx 4+ 2e ¥ cos kx—2e """ sin kx4 e **) (78)

As the distance x is becoming large this quantity oscillates between 0 and 2]lal by
the effect of interference, but when the random signal is used, the strength of the
incident and reflected wave would be [a?/2. On the other hand [,(0)=4iaf’, so
at the free end the strength of vibration is 8 times of the incident wave. This con-
sideration is verified as shown in Fig. 17, though the increment at the free end is
rather small. As for the attenuation it is known that Q is substantially independent
of frequency in the vibration of solid body, and spatial attenuation factor is given
as exp(—ax) where «=w/2cQ. From this relation it is derived that the intensity
of the wave decreases 8.68 « dB per meter, which is proportional to the square
root of frequency [8]. The measured values in Fig. 17 vary widely and an accurate
value of attenuation can not be expected, but the approximate values 0.3-0.8 dB/m
and the tendency of increasing attenuation with frequency is observed.

Next, the reflection and the transmission at a right angle bend are measured.
The setup and the results are shown in Fig. 18. The reflected waves are seen in
the lower parts, and the values at more than 5 m correspond to transmitted waves
beyond the bend. From the theoretical consideration of the wave reflection at the
right angle bend, it is derived that when the flexural wave velocity is small enough
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compaired with the velocity of longitudinal wave, the half of the incident wave is
reflected and the other half is transmitted. The results of Fig. 18 show that the
reflection is very small. One of the reasons is perhaps the roundness at the bend,
which is about 1 cm radius. The spatial attenuation coefficient is difficult to obtain
from these results.

In the two measurements described above, the signal frequency is restricted
under 2 kHz. It is because at higher frequency, sometimes the low speed wave
component which is hard to explain is observed. This phenomenon appears to the
steel strip when the excitor is placed unsymmetrically and the pick-up is near the
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center of the width. One of the examples is shown in Fig. 19. The free end of
the strip is cut to form slant edge of 60°, and the excitor is placed parallel to the
edge. The pick-up is placed at the center of width and moved up and down 1 cm
apart from the center. Three measurements at each distance are grouped in Fig. 19,
which shows that only at the center the long time delayed component appears,
whose velocity is about 2/3 of the normal wave. Fig. 19 is the case of 3.15 kHz
and at the frequencies 2.5-10 kHz, the same results are obtained. The tendency
is observed that the difference between the normal and abnormal wave velocity
decreases as the frequency increases. The measurements moving the pick-up in the
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Fic. 19. Flexural wave excited at the
slant edge. Abnormal component
appears. 3.15kHz. Three positions
of each distance are grouped.

Smm

direction of width by 5mm step are
shown in Fig. 20. It is clearly seen
that the abnormal component appears
near the center. The exact explanation
of these phenomena is not yet obtained.
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