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Summary: The energy transfer processes of an electron gas are investigated, both analyti-
cally and experimentally, for a pipe flow of weakly ionized nonequilibrium plasmas. An
energy equation for electrons is solved for an axially symmetric flow through a circular
tube for the case when the plasma density distribution in the flow is mainly controlled by
ambipolar diffusion. It follows from the analysis that the electron temperature exponen-
tially decreases along the tube axis. The decay rates of the electron temperature along the
tube axis are obtained in analytical formulae for both slug and Poiseuille flows. The meas-
urement for the decay rates is worked out for ionized argon flows in the low-density
glow-discharge tube for a range of the Knudsen number for electrons around 0.1. The
measured decay rates are found to be in qualitative agreement with the rates evaluated
from the present analysis.
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b, b, eigenvalues for the diffusion equations for slug and Poiseuille flows
(j: 1’ 27 t ')

C;,C, eigenvalues for the electron energy equations for slug and Poiseuille
flows (j=1,2, -..)

D, ambipolar diffusion coefficient

D, ion diffusion coefficient

e electronic charge

Jo(by)  Bessel function of the first kind, of order zero

k Boltzmann constant

K, electron thermal conductivity

K, modified Kundsen number, defined by Eq. (3.1.22)
K, ordinary Knudsen number for electron-atom collisions
L, electron Lewis number, defined by Eq. (3.1.21)

m particle mass’of ‘species”s

n, number density of species s

n, plasma number density

P, ambipolar Peclet number, defined by Eq. (3.1.20)
Q.. effective hard sphere cross section for particles s and ¢
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r radial coordinate of a circular tube

R tube radius

S,, S, eigenfunctions for the electron energy equations for slug and Poiseuille
flows (j=1,2, ---)

T, temperature of species s

u,,v, axial and radial velocities of atoms

#,, v, normalized axial and radial velocities of atoms

U, reference velocity or mean velocity of the flow through a circular tube

eigenfunction for the diffusion equation for Poiseuille flow (j=1, 2, - - )

Z(y)  function defined by Eq. (3.2.9)

o normalized plasma density

7 normalized radial coordinate of a circular tube

A,4, decay rates of the plasma density along the tube axis for slug and
Poiseuille flows

2; index defined by Eq. (3.2.4)

m, f,  decay rates of the electron temperature along the tube axis for slug and
Poiseuilli flows

Iy index defined by Eq. (3.2.11)

& normalized axial coordinate of a circular tube
Ty normalized temperature of species s
b, normalized floating potential
SUBSCRIPTS
a atoms
e electrons
i ions
s refers to species
0 refers to the quantities at a reference point or in a reference section

SUPERSCRIPT

* refers to the quantities on the tube axis

1. INTRODUCTION

Recently, studies of ionized nonequilibrium flows have been carried out by many
investigators in connection with gas dynamic problems encountered in reentry of
space vehicles and MHD power generation. Here, the term nonequilibrium implies
such a phenomenon that the electron temperature deviates from both ion and atom
temperatures. Such nonequilibrium phenomena are accompanied by the rapid
change of thermodynamic and/or electric properties of gases; shock transition (11~
[5], highly expanding nozzle flow [6]~[9], boundary layer [/0]~[16], and so on.
Moreover, such phenomena occur more and more conspicuously as gas density
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Energy Transfer Processes in an Ionized Nonequilibrium Flow 85

decreases, since the energy exchange between electrons and heavy particles becomes
less efficient. Therefore, in order to clarify the characteristics of such nonequi-
librium phenomena in ionized flows, it is useful to study the energy transfer processes
of an electron gas at low density; electron thermal conduction, diffusion, and so on.
In the present paper, the energy transfer processes of an electron gas are investi-
gated, both analytically and experimentally, for a pipe flow of weakly ionized non-
equilibrium plasmas at low density. The electron temperature distribution in a
circular tube is analytically obtained by solving the energy equation for electrons,
and compared with the measured distribution. 1In particular, in order to estimate
the effects of gas rarefaction on the energy transfer processes of an electron gas in
ionized nonequilibrium flows, the electron temperature distribution along the tube
axis is measured for a range of the ratio of the electron mean free path to the
tube diameter (the Knudsen number for electrons) around 0.1, and compared with
the distribution evaluated from the present analysis.

In the analysis, an electron gas is regarded as a continuum fluid. We consider
the case when charge separation is negligible everywhere except the thin sheath
close to the wall. Therefore, the plasma density distribution may reasonably be
assumed to be mainly controlled by ambipolar diffusion. With the assumption of
ambipolar diffusion, the continuum equations for electrons are simplified, and
reduced to two equations; the diffusion equation and the energy equation.

The diffusion equation has been solved for a stationary plasma in a circular tube
bv Schottkv 771 and for a plasma flow through a circular tube by Schottky and
Issendorff [/8] and Konenko [79]. Schottky and Tssendorff [/8] have analyzed a
slug flow vnder the assumption of constant electron temperature. Konenko [79]
has analyzed a diffusion flow of stationary plasma with electron temperaturc
gradient. In the present paper, the solution obtained by Schottky and Issendorff [78]
is applied to the analysis of slug flow and its extended solution for Poiseuille flow
is presented. For weakly ionized gases, quasi-one-dimensional analyses of energy
transfer processes of an electron gas in stationary plasmas in a circular tube have
been made by several investigators [20}~[25]. The energy equation for electrons
has been solved for unsteady one-dimensional heat conduction along the tube
axis [201~[23] or radial energy transport in the tube section [24],[25]. Tt is not
always expected that quasi-one-dimensional analysis can be applied to the present
problem, because in general the plasma density and the electron temperature vary
in both axial and radial directions. Therefore, in the present paper, the energy
equation for electrons is solved for axially symmetric flow for both cases of slug
and Poiseuille flows.

The measurements of the electron temperature distribution along the tube axis
have been made by Randall and Webb [26] for a mercury afterglow in the flow
through a circular tube, by Baranov and Vasil’eva [27] for an arc in a pipe flow of
argon and by Konenko [28] for a diffusion flow of stationary helium plasma, respec-
tively. In the experiment of mercury afterglow [26], the plasma density distribution
in the flow is estimated to be mainly controlled by recombination processes. In
the experiment of argon arc [27], the electron temperature has been measured for

This document is provided by JAXA.



86 H. Honma

an arc deformed by the flow. In the present analysis, only diffusion process is taken
into account, and the net current is assumed to be zero. Therefore, the results of
both first and second experiments cannot be compared with the results of the pres-
ent analysis. Only the electron temperature distribution measured by Konenko [28]
can be compared with the distribution evaluated from the present analysis. As will
be seen later, the experimental conditions of Konenko [28] correspond to the case
when the Knudsen number for electrons is very small. In the present paper, the
electron temperature distribution is measured in a pipe flow of weakly ionized non-
equilibrium argon, and compared with the distribution evaluated from the present
analysis. The test gas (argon) around 1 Torr in pressure is weakly ionized by a
glow discharge and ejected through a circular tube. Experimental conditions corre-
spond to the Knudsen number for electrons around 0.1.

IT. HISTORICAL SURVEY

In this chapter, the works associated with the analysis of the pipe flow of weakly
ionized nonequilibrium plasmas are surveyed. First a survey is made for continuum
approach of the positive column of a gas discharge, since the analysis for plasma
density distribution in the flow is closely related to that of the positive column.
Several authors have analytically obtained the density distribution of charged parti-
cles in quiescent, weakly ionized gases confined by cold walls in order to clarify the
structure of the positive column of a gas discharge. In 1924, Schottky [77] analyzed
this problem under the assumption that quasi-neutrality holds everywhere in the
tube. In 1954, Allis and Rose [29] took into account the sheath in the neighbor-
hood of the wall, and in 1965 Cohen and Kruskal [30] have extensively developed
the work of Allis and Rose [29] in a more rigorous mathematical treatment. In
Schottky’s analysis [77] the ion drift velocity becomes infinite at the wall. Tn 1949,
Bohm [37] suggested a criterion that the ion drift velocity should be less than or
equal to the sound speed of the electron-ion gas (or ambipolar sound speed) in
front of the boundary or the wall sheath. Furthermore, in 1962, Person [321
studied in detail the influence of the ion inertia on the ion drift velocity, and found
that Bohm’s criterion can be derived from his inertia-controlled-diffusion theory.
Recently, Friedman [33] and Friedman and Levi [34] (1967) introduced the effects
of both ion inertia and wall sheath into the analysis through two-fluid treatment.

In 1925, Schottky and Issendorff [/8] analyzed a weakly ionized flow of mercury
vapour through a circular tube. The equation of ambipolar diffusion was solved for
the case when the radial distribution of velocity of neutral particles may be as-
sumed to be rectangular (slug flow). Under the assumption of constant electron
temperature, the plasma density distribution in the flow was obtained in an analyti-
cal formula. For the case when the electron temperature gradient must be taken
into account, the diffusion equation has been solved by Konenko [19] (1963) for
a diffusion flow of stationary plasma. A semi-empirical formula has been used for
the axial distribution of the electron temperature. In taking into account both ion
inertia and wall sheath, the diffusion equation has been solved by Shioda [35]
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Energy Transfer Processes in an lonized Nonequilibrium Flow 87

(1969) for flows of a weakly ionized gas between parallel cold walls on the basis
of the two-fluid treatment presented by Friedman [33].

The survey of the works associated with the energy transfer processes of an
electron gas will also be made first from that with respect to stationary plasma in
discharge tubes. In 1958, Goldstein and Sekiguchi [20] determined the electron
thermal conductivity in a decaying plasma by technique of interaction of pulsed
microwaves. The plasma electrons were heated by the pulsed radio-frequency
input power, and heat propagation phenomena along a discharge tube were ob-
served. The energy equation for unsteady one-dimensional heat conduction was
solved. The extended studies have been carried out by Sekiguchi and Herndon [21]
(1958), by Rostas et al. [22] (1963) and by Nygaard [23] (1967). The first
authors [2/] have determined the electron thermal conductivity in a gaseous plasma
for cases when electron-electron interaction is predominant. The second authors [22]
have studied electron thermal conduction in a plasma with magnetic field. The last
author [23] has determined the electron thermal diftusivity for cases when electron-
atom collisions are predominant. In their studies, the equations for unsteady quasi-
one-dimensional heat conduction have also been solved. In order to obtain the radial
distribution of the electron temperature in a discharge tube, Pytte and Winsor [24]
(1965) have solved the energy equation for electrons for a stationary helium plasma
at pressure of one atmosphere in a cylindrical duct. It has been pointed out that
the electron temperature deviates from the atom temperature in the neighborhood
of the duct wall. Furthermore, Keefer [25] (1967) has analytically obtained the
radial distribution of the electron temperature in a circular tube for an electrodeless
discharge at low pressure under the assumption that the radial energy flux of
electrons is constant. In the analysis made by Pytte and Winsor [24], thermal con-
duction and diffusion have not been taken into account, since the gas pressure is
high. On the contrary, in the analysis made by Keefer [25], the effects of ambi-
polar diffusion and electron thermal conduction on the energy transport have been
taken into account. As for the diffusion loss of electron energy in a plasma of a
gas discharge, Biondi [36] (1954 ) studied the diffusion cooling of electrons in the
occurrence of afterglow of a pulsed microwave discharge. From the fact that the
ambipolar diffusion coeflicient decreases as the gas pressure decreases, it has been
demonstrated that under certain circumstances the average kinetic energy of elec-
trons in an ionized gas may decrease below that of atoms.

In 1935, Randall and Webb [26] studied factors determining the time rate of
decrease of the electron temperature in the mercury afterglow in the flow through a
circular tube. Langmuir’s probe theory (free-molecule thory) was applied to the
analysis of the energy transfer processes of an electron gas in the flow. It was sug-
gested that the rate of decrease of the electron temperature would mainly depend
on the thermal conduction process. The energy equation for an axially symmetric
flow has been used by Baranov and Vasil’eva [27] (1965) only for crude evaluation
of energy transfer processes of an electron gas for an arc in a pipe flow of argon.

The various boundary conditions for the electron temperature at the wall have
been applied to the analyses of ionized nonequilibrium boundary layers. In the
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case of highly ionized gases, Jukes [10] (1956) took into account the sheath close
to the wall and specified condition at the sheath edge. The electron gas was assumed
to be a continuum fluid outside of the sheath and collisionless in the sheath. The
outer and inner solutions are matched such that the energy flux of electrons is
continuous at the sheath edge. This matching condition has been used by many
investigators [11]~[/4]. In the case of weakly ionized gases, another condition has
been presented by Chung [16] (1965). In his analysis, the electron gas is assumed
to be a continuum fluid in the sheath, and so the boundary condition is specified at
the wall. In the case of weakly ionized gases, the electron thermal conductivity is
proportional to the electron density. Therefore, if the electron density is assumed
to vanish at the wall surface, the coefficient of the second derivative of the electron
temperature with respect to the space coordinate vanishes there. Chung [16]
imposed the condition that the second derivative is finite at the wall surface.
Recently, properties of electrons near absorbing and emitting surface have been
studied by Chung[37] (1969) for weakly ionized plasmas by analyzing the
Boltzmann equation governing the eclectrons. From the analysis it was found that
the simple surface boundary condition for the electron energy equation employed
by Chung [/6] in the continuum plasma analysis is correct in the limit of no surface
emission, which corresponds to the case of vanishing value of the electron density
at the wall surface. 1f the wall ion sheath is taken into account, the analysis of two-
or three-dimensional boundary layer becomes very complicated. Therefore, only
one-dimensional cases have been analyzed for ionized nonequilibrium boundary
layers. Recently, a two-dimensional boundary layer has been analyzed by Sherman
and Reshotko [1/4] (1969) by applying the local similarity analysis.

1II. AN ANALYSIS OF A PIPE FLOW OF WEAKLY IONIZED
NONEQUILIBRIUM PLASMAS

3.1 Mathematical Formulation
3.1.1 Basic Assumptions

The analysis is based on the following assumptions.

a) Singly ionized: The gas is assumed to be a ternary mixture of atoms, singly
charged ions and electrons.

b) Weakly ionized: The number fractions of ions and electrons are assumed
to be so small that the thermodynamic properties and the flow velocity of a gas as
a whole are not affected to any appreciable degree by the presence of ions and
electrons. The collisions between the charged particles are neglected.

c) Quasi-charge-neutrality: Charge separation is assumed to be negligible
everywhere except thin sheath close to the wall.

d) Frozen flow: The charged particles produced or lost per unit time by
ionization-recombination reactions in the gas phase are assumed to be much smaller
than those lost by diffusing toward the wall. The ionization-recombination reactions
are ignored in the gas phase.
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e) Fully catalytic wall: It is assumed that the charged particles diffusing
toward the wall all recombine at the wall.

f) Without external field: External electric and magnetic fields are not
applied. The net current is assumed to be zero.

g8) Elastic collisions: It is assumed that the charge particles mainly elastically
collide with atoms.

h) High electron temperature: The electron temperature is assumed to be
much higher than the atom and ion temperatures. However, the value of the
electron temperature should be restricted within a moderate range by the assump-
tions of frozen ionization and elastic collisions, because these assumptions become
invalid for the excessively high electron temperature. The ion and atom tempera-
tures are assumed to be nearly equal to the room temperature.

3.1.2 Basic Equations

On the basis of the analysis made by Burgers [38] and Jaffrin [3], the following
equations for ions and electrons are obtained. The conservation of mass for ions
and electrons yields

div(n,V,)=0, (s=i,e). 3.1.1)

The energy equation for electrons is
n,V,-grad (-;-kTe) —div (K, grad T,)

—en,V,-grad ¢+v.(T,—T,)=0. (3.1.2)

The kinetic energy and viscous dissipation of the electron gas are neglected in
Eq. (3.1.2), since their contribution to the energy transfer processes can be neg-
lected due to small mass of an electron. On the basis of the assumptions ¢) to f)
of the preceding section, the drift velocities ¥, and ¥, of ions and electrons are
assumed to be expressed by

n(Vi— V) =n(V,—V,)=—D, grad n,, (3.1.3)

where n, denotes the plasma density in a quasi-neutral plasma. Equation (3.1.3)
denotes the ambipolar diffusion flux. If the electron temperature gradient is taken
into account for the diffusion flux, the term —Dn, grad(T,/T,) should be added
to the right hand side of Eq. (3.1.3) [12],[16]. In the present analysis, we consider
only the plasma density gradient for the diffusion flux in order to evaluate the effects
of ambipolar diffusion on the electron energy transport from the simplified analysis.
Furthermore, on the basis of the assumption of the preceding section, we obtain
the expression for the space potential ¢ from the generalized Ohm’s law

grad(n,T,). (3.1.49)

grad ¢= k
e

b4

Substituting Egs. (3.1.3) and (3.1.4) into Egs. (3.1.1) and (3.1.2), we obtain
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V,-grad n,=div(D, grad n,), (3.1.5)

(n,Vo— D, grad n,)-grad (%kTB) _div(K, grad T,)
— kT n,V,-grad(In n,) — D,{grad(In n,)}’]
+vca(Te—“Ta):O- (316)
With the dissipation and transfer coefficients D,, K, and v,, assumed to be known
functions of the dependent variables, then Egs. (3.1.5) and (3.1.6) constitute a sys-

tem of equations for two unknowns n, anb T,. For cylindrical coordinates illus-
trated in Fig. 3-1, Egs. (3.1.5) and (3.1.6) become

r

Uo

-l = )
( I )

Fic. 3-1. Flow through a circular tube.

on on d ( on ) D, on 0 ( on )
Ug—2L f v, —L =" (D,—-2 P4+~ D,—2 ), (3.1.7
ox + or 0x 0x + r or + or or ( )

3 oT oT on, 9T, , on, oT
—k{n Ug—C + nyU, "—-Da( p 9%e » e)}
2 U7 ox i or ax  ox + ar  or
_L(Ke aTe)———l—i(rKe aTe)
0x ox r or or
—kTenp[uaaln”P _*_vaalnnp _Da{(alnnp)2+ (alnnp)QH
+veo(T,—T,)=0. (3.1.8)

3.1.3 Dissipation and Transfer Coefficients

As for the energy transfer coefficient v,, and the electron thermal conductivity
K., the formulae evaluated by Jaffrin [3] are used. The transfer coefficient v,, is
expressed as

vea =8y 7 kn, M Qeal T [ mkT (3.1.9)
s

a

where Q.,(T,) is the effective hard sphere cross section for electron-atom collisions,
defined by

Qca(Tg):%fma'(E) ( k;8~)2exp(—— k;e )d(é) (3.1.10)

The quantity o(e) is the momentum-transfer cross section for a monoenergetic
beam of electrons in which ¢ is the energy of a single electron, and can be obtained

This document is provided by JAXA.



Energy Transfer Processes in an lonized Nonequilibrium Flow 91

from theoretical and experimental data [39]. Equations (3.1.9) and (3.1.10) are
obtained from the collision integral of the Boltzmann equation by assuming that the
velocity distribution functions for electrons and atoms are Maxwellian, and that the
energy transfer due to electron-atom collisions is equated to the effective energy
transfer for hard sphere interactions. The same expression as Eq. (3.1.9) has
also been obtained by Morse [40]. Equation (3.1.10) has also used by Daiber and
Waldron [41] to obtain scattering cross sections of argon and atomic oxygen to
thermal electrons.

The electron thermal conductivity is expressed from the Fay’s mixture law [42]
tor weakly ionized gases as

‘T 64 V21,0,
It has experimentally been shown by Nygaard [23] that the electron thermal con-
ductivity is proportional to the electron density for weakly ionized gases. In his
experiment, the electron thermal diffusivity has been determined in a room tempera-
ture neon afterglow plasma. It has been found that the electron thermal diffusivity

is independent of the electron number density and that it agrees within 25% with
Shkarofsky’s theory [43].

In general, the ambipolar diffusion coefficient D,, is expressed as
D,=D(T,/To+1). (3.1.12)

For argon, we use the semi-empirical formula given by [27]

(3.1.11)

D,=0.138 T,/ p.,

where T, denotes the electron temperature in °K, p, the atom pressure in Torr and
D, the ambipolar diffusion coefficient in cm?/sec.

3.1.4 Boundary Conditions

It is assumed that the radial profiles of the plasma density and the electron
temperature are given at the section x=0;

n,(0,n=nyr), T, 0,r)=Tr), (3.1.13)

where the origin of x is fixed at an arbitrary section of the circular tube. For
x— oo, the values of the plasma density and the electron temperature should be
finite;

n,, T,; finite, at x—oo. (3.1.14)
On the axis of the tube, the axially symmetric conditions are given by

Ny _g oT,

T T M

=0, atr=0. (3.1.15)
ar or

On the basis of the assumption of fully catalytic wall, the plasma density is assumed
to be zero at the wall;
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n,=0, atr=R. (3.1.16)
The coefficient of the highest order term of Eq. (3.1.8) vanishes as r—R, because
the electron thermal conductivity approaches zero with n,. Moreover, the term

dlnn,/or of Eq. (3.1.8) diverges as r—R. Therefore, Eq. (3.1.8) has a singularity
at r=R. However, the value of the electron temperature should be finite;

T,; finite, atr=R. (3.1.17)

The characteristics of the singularity of Eq. (3.1.8) at r=R will be discussed later.

3.1.5 Normalized Equations
The variables n,, T,, x and r are normalized by

a=n,[n,, t,=T,/T,, &=x/R, n=r/R,

where the subscript O denotes the values at the reference point. The normalized
equations for Egs. (3.1.7) and (3.1.8) are

4, 0 g, e 0 (L Sa) 10 (2 %), @y
) 7 PD

l{ (‘ irs 4 aar“

) b (_53{ ot Oa _‘7’«)}
0§ o7 P,
1

o 98 ap oy
_ {6 ( « ot ) + 19 (_L‘",L_ 5:.)}
o0& P])LD af Y a77 I)LI) a77
_ dlne | dlna 1 {(alna> (Olna)z]
— ol U g ——m +v Uq- _— - _
“r [ o P, e )T }

(Tc z-a,)::oa (3.119)

s (3%)
3z \' 5 KZ, L P,

where the atom velocities u, and v, and the atom temperature 7', are normalized
by the reference velocity U, and the electron temperature T,, at a reference point,
respectively, as

aa:ua/Uo, Va="0q/U,, Ta=To/T .

The dimensionless numbers P, L, and K,, are defined by

P,—UR/D,, (3.1.20)
L,—=kn,D,/K,, (3.1.21)
Kn,=vmg,/m, |(n,Q..R). (3.1.22)

The dimensionless number P, is the product of the Reynolds number of neutral
gas flow and the Schmidt number for ambipolar diffusion S¢,=vo/D,, where y, is
the kinematic viscosity of atoms. It is termed the Peclet number for ambipolar

This document is provided by JAXA.



Energy Transfer Processes in an lonized Nonequilibrium Flow 93

diffusion or the ambipolar Peclet number. The dimensionless number L, is 0.4
times as large as the Lewis number for an electron gas L,; L,=D,p.C,./K,
(=2.5Lp), where p, and C,, are the density and the specific heat of the electron
gas, respectively. The number L, is termed the electron Lewis number. Since
(n,Q..) " is the mean free path of electrons for electron-atom collisions, (2n,Q.,R)™!
is the Knudsen number for electrons. The number K, is proportional to the
Knudsen number for electrons and the root of the mass ratio of an atom and an
electron. It is termed the modified Knudsen number. As seen from Egs. (3.1.18)
and (3.1.19), the normalized plasma density & depends on #,, ¥, and P,, while
the normalized electron temperature z, depends on #,, 9., Pp, Ly, K,, and z,.
The normalized boundary conditions are written as

a=ayn), .=t at £€=0, (3.1.23)
o, 7., finite, at £&— oo, (3.1.24)
da/on=0, dr./op=0, at =0, (3.1.25)
a=0, r,; finite, at =1, (3.1.26)

where a(y) and z,(5) are arbitrary functions to be given at £=0.

3.2 Linearized Equations and Their Solutions
3.2.1 Linearized Equations

As seen from Egs. (3.1.9), (3.1.11), (3.1.12) and Egs. (3.1.20) through (3.1.22),
the dimensionless numbers Pp, L, and}K, depend on the electron temperature.
Therefore, in general, Eqgs. (3.1.18) and (3.1.19) constitute a system of simultane-
ous, nonlinear equations for the dependent variables « and z,. Equations (3.1.18)
and (3.1.19) should be solved for each gas species and for the prescribed range of
the electron temperature. However, if we assume that these numbers are constant,
both equations (3.1.18) and (3.1.19) are reduced to linear equations for a and z, as

Py 3%+ vg—‘;) = e+ % oy g;‘ (3.2.1)
R O PR )
R L o
- )i, S ) e
_ "3'1}? (353) Zilz(fe_fa)zo, (3.2.2)

Equations (3.2.1) and (3.2.2) can be solved without restriction of gas species and

ranges of the electron temperature. Through simpler analyses, it becomes possible
to obtain the essential features of the flow interested here.
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3.2.2  Plasma Density and Electron Temperature Distributions in Slug Flow

First we consider a slug flow, whose radial velocity distribution of neutral
particles is rectangular. If the uniform velocity of atoms is chosen as a reference
velocity U,, the normalized atom velocities are

,=1, ?,=0.

By means of the method of separation of variables, we obtain the elementary
solutions of Eq. (3.2.1) as

= TN fen |

where the functions J,(by) and Y,(by) are the Bessel functions of the first and second
kinds, of order zero. With the boundary conditions (3.1.23) through (3.1.26), we
obtain

a—= 200:: Aj CXP("ij)Jo(bﬁ?), (3.2.3)
1
where the values of 2, and A4, are obtained from

2,=0.5P,(— 1+ /1 4b/F3), (3.2.4)
A= 2 ToapIb pd
f‘ﬁ(bj)of s

The eigenvalue b, is one of the roots of the equation
I(b;)=0, (3.2.5)

where we define b, <b,<..-, so that we obtain 1,<1,<-.. from Eq. (3.2.4).
As & increases, the value of the first term of the right hand side of Eq. (3.2.3)
becomes predominant except when the value of P,, is very large (because 1,—0 for
Pp—co). For large §, we can approximately rewrite Eq. (3.2.3) as

a=A, exp(—24,5)J(b7p).

Even if the radial profile of the plasma density is given in an arbitrary form at
§€=0, it is transformed into a Bessel function Jy(b,7) far downstream of the origin.
When we choose the initial profile of the plasma density as

a(n) =J(byy), (3.2.6)
we obtain
alé, 77):6Xp(~21$)10(b177). (327)

Equation (3.2.7) is the formula derived by Schottky and Issendorff [/8]. It will be
shown in Chap. V that the radial profile of the plasma density expressed as
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Eq. (3.2.6) can easily be realized in a pipe flow of weakly ionized nonequilibrium
plasmas. In the expression of Eq. (3.2.7), 2, denotes the decay rate of the plasma

density along the tube axis.
Substituting Eq. (3.2.7) into Eq. (3.2.2) and excluding the inhomogeneous term,

we obtain the homogeneous equation

d’z, { 3 } 07, {1 ( 3 )} 07,
— {2, + =L,(P e —+Z(n(1+ =L
9% + 5 »(Pp+2) a8 + " + (77) + > D oy
o’z 1 (32)\*1 .
+ 00 (Lo(Po+2)+LoZ2) + 37{(,5 ) & le=0, (28
where the function Z(y) is defined by
Zp=— L i) (3.2.9)

TS by dy

By means of the method of separation of variables, we obtain the solution of
Eq. (3.2.8) with the boundary conditions (3.1.23) through (3.1.26) as

o= EIBJ exp(— 1,88 ,(; C,), (3.2.10)

where the value of y; is determined from

[ L (§2_) Lo,y ]
=1 2L, P 1 [14 305 L K . (3.2.11)
R I TS
2\ 27 R

The function S,(y; C;) and the eigenvalue C, are determined by solving Eq.
(3.2.14), which will be derived in the following section. It is easily shown that
the functions S, S,--- constitute a system of orthogonal functions under the
orthogonal condition

r17)[10(1317))]”%LDSk(U)St(U)dV:0’

0

for k1. The value of the coefficient B, is obtained from

f lv[fo(bﬂ?)]”%LDSj(v)ro(v)dri

B (3.2.12)

J

f L1 (b 1 40[S, () Ty

The solution of the inhomogeneous equation (3.2.2) can be obtained from the
solution of the homogeneous equation (3.2.8). However, the value of the inhomo-
geneous term including r, is very small in comparison with the other terms.
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We neglect this term in the following argument. If we define C,<C,<-.-, we
obtain ¢, <p,<-.-. For large &, we can approximately rewrite Eq. (3.2.10) as

t.=B, eXP(—#lf)Sl(ﬂ; Cl)s

as well as Eq. (3.2.3) for «. Even if the radial profile of the electron temperature
is given in an arbitrary form at £=0, it is transformed into a function S,(5; C,) far
downstream of the origin. When we choose the initial profile of the electron
temperature as

70(7]):Sl(77; Cl)’
we obtain
(&, p) =exp(— 1, )S8,(n; C)). (3.2.13)

In the expression of Eq. (3.2.13), 4, denotes the decay rate of the electron temper-
ature along the tube axis.

3.2.3 Determination of the Eigenfunction S,(y; C,) and the Eigenvalue C,
The function S,(5; C,) is the solution of the ordinary differential equation for S(3)

2 (1,3 )
Lz +2 L)} AS L ZG)P+C1S=0, (3.2.14)
dy 7 2 dy

with the boundary conditions
S(0)=1, S(1); finite. (3.2.15)

Equation (3.2.14) is derived from Eq. (3.2.8) by the method of separation of
variables. The function Z(y») diverges at »=1, because J,(b,)=0 as shown in
Eq. (3.2.5). Therefore, both boundaries =0 and =1 are singular points.
The elementary solutions of Eq. (3.2.14) are obtained in the form of series ex-
pansions as

1= (O
St = 1 1 (3.2.16)
1=t flogCn+ T+,
in the vicinity of =0, and
S(v)z(l—n)fi‘IJr 25;(1—,7)71}, (3.2.17)
in the vicinity of =1, where
ro= a2 nex (L) L), (3.2.18)

This document is provided by JAXA.



Energy Transfer Processes in an Ionized Nonequilibrium Flow 97

n=-1
k§0 {(Ti + k)pn—k - Qn—k}glf
n(2y.—po+n—1)

b

Po:“l“*z—LDa P1=*2~"‘ZL1),
7 | b ( 5 bf) 5 9
= 42 —~— 4+ 4L, = "L,
12} 12+3+ 8+2 D Ps 3 16 D

With the conditions of Eq. (3.2.15), we obtain from Egs. (3.2.16) and (3.2.17)
S =S =1~ L (Col -, (3.2.19)
in the vicinity of =0, and
SH =SV =51—n)+ {1 + 2?‘ F:(1—pnt, (3.2.20)

in the vicinity of y=1. The functions S(y) and S(y) constitute an analytic
function by analytic continuation at an arbitrary point between 7=0 and 5=1.

In Egs. (3.2.19) and (3.2.20), the coefficients C and 5, are unknown. In princi-
ple, the values of C and 3, can be determined by the matching conditions at an
arbitrary point p=7,(0<»,<1);

SO@)=80(p), BV _ dSVG)
dy dy)

However, many terms are required to obtain SO(p) and SP(y) from Egs. (3.2.19)
and (3.2.20), so that the numerical calculation becomes rather complicated. There-
fore, we use the following method of numerical calculation. For a prescribed value
of C, we can obtain a curve for S(»;C) through the numerical integration of
Eq. (3.2.14), starting from the point »=0. The both values of the function S(»; C)
and its derivative are matched with the series solution (3.2.20) in the vicinity of
n=1. As a matching condition, we use the relation

s _ _g| 1o 4 Zj m’t(l—”)fﬂ_ .

- (3.2.21)
dy 1—y 14 35 (1—p)n
1

Equation (3.2.21) is derived by eliminating 3, from Eq. (3.2.20) and its derivative.
Except appropriate values of C, the function S(y; C) diverges as » approaches
unity. 'The numerical integration of Eq. (3.2.14) is repeated untill Eq. (3.2.21)
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holds in the vicinity of =1 for a prescribed value of C. We obtain discrete values
of C, for which Eq. (3.2.21) holds in the vicinity of »=1. These values are the
eigenvalues C,,C,, - - -. In other words, analytic continuation is possible only for
these discrete values of C; C,, C,, -

In Eq. (3.2.17), two elementary solutions are possible for the value of 7; 7,, r_.
As seen from Eq. (3.2.18), one is positive and another negative. On the basis of
the condition that the function S(») should be finite at =1, the positive value 7, is
chosen as shown in Eq. (3.2.20). From Eq. (3.2.20), we obtain

S(1)=0. (3.2.22)

3.2.4 Plasma Density and Electron Temperature Distributions in Poiseuille Flow

In this section, we consider a fully developed viscous flow of neutral particles in
contrast to the slug flow, for which the viscous effect is ignored. Only a laminar
flow (Poiseuille flow) is analyzed, because the Reynolds number is small in the pres-
sure range interested here. The normalized flow velocities #, and ¥, are given by

i,=2(1—7%), D=0, (3.2.23)

when the mean flow velocity is chosen as a reference velocity U, Substituting
Eq. (3.2.23) into Egs. (3.2.1) and (3.2.2), and solving these equations with the
boundary conditions (3.1.22) through (3.1.26) in the same way as in Sec. 3.2.2,
we obtain the solutions for « and z, for large £ as

a=€CXp (—11§)Y1(7/; l_)l)a

_ ~ 3.2.24
Te—CXP (—.’:‘IE)SI(‘U; C). ( )

The functions Y,(»; b) and S,(; C)) are the first eigenfunctions for the solutions of
equations for Y(») and S(»), respectively, as

§;§i+ % ‘% + (B —2P, )Y =0, (3.2.25)
- ~ _

,‘,1,,‘?44_ {_1__ + Z(77) (1 + iL,;) } ﬁlig,

dy 7 2 dy (3.2.26)

+[C?— Lpy{Z (Y — PpL,y(3— 227718 =0,
with the boundary conditions

Y(0)=1, Y(1)=0; S0)=1, S8(1); finite,

where
A=P,(—14+V1+b/P), (3.2.27)
S, 1 dY (y; b))
Zi=— . ST PV (3.2.28)
PTG by g
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2 - —
] _ R R
-—21_(1 W3 ..”3) T B T
2 27
Equations (3._2.%5) and (3.2.26) are solved in the same way as Eq. (3.2.14), and the
eigenvalues b, b,, --- and C,,C,, - - - are obtained. It should be noted that the
functions Y,Y,, .- and §,,S,, - -+ do not constitute systems of the orthogonal

f_unctions except the cases of P,—co and P,=0. Only the first functions Y, and
S, are presented as solutions for large ¢ in Eq. (3.2.24).

3.3 Numerical Results and Discussion
3.3.1 Numerical Examples of the Dimensionless Numbers P,,K,, and L,

The numerical examples of the ambipolar Peclet number P, and the modified
Knudsen number K, are tabulated in Tab. 3-1 for the case of R=1 cm, p,=1 Torr,
T,=5,000°K, T,,=300°K and U,=100m/sec for argon, neon, helium and nitrogen.
The values of P, vary from 2 to 50 for

these examples. For argon and neon, TaLe 3-1. Examples of the values

of R,, Pp and K,, for R=1cm,

the larger values of K, are obtained for pa=1 Torr, Ty=300°K, T,—
the conditions prescribed here, because 5,000°K and U,=100 m/sec.

the effective hard sphere cross sections

Q..(T,) for both gases are smaller than Gas | R, B K
those of the other gases. The curves H, 24 2.1 4.5
of Q..(T,) are shown in Fig. 3-2 for N, 74 9.6 35
argon, helium, nitrogen and mercury N, 186 51 3.0
vapour. These curves are obtained % 206 14 50

from Eq. (3.1.10) by using the data

for the momentum transfer cross section for a monoenergetic beam of electrons in
the reference [39]. In Fig. 3-3, the values of L, are plotted against the electron
temperature for these gases. The value of L, varies from 10-" to 10-2.

3.3.2 Plasma Density

As shown in Eqgs. (3.2.7) and (3.2.24), the fully developed profile of the plasma
density is expressed by the function Jy(b,») for slug flow and by the function Y,(z; b)
for Poiseuille flow, respectively. The curves of Y(3; 51) are shown in Fig. 3-4
for P, =0, 1.0 and . The curve for P, =0 corresponds to the Bessel function
Jo(b;p). The function Y,(») does not deviate so much from the Bessel function
J(b). The values of b, are tabulated in Tab. 3-2 for several values of Pj,.

In Fig. 3-5, the decay rates of the plasma density along the tube axis 4, and
4, are plotted against P,. Figure 3-5 is a graphical representation of Egs. (3.2.4)
and (3.2.27). The solid and broken lines correspond to slug and Poiseuille flows,
respectively. The values of 4, and 2, approach b, for P, —0 and zero for

PD"-)OO.
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F16. 3-2. Thermally averaged cross sections FiG. 3-3. Electron Lewis numbers Ly as a
Q¢a(T,) for helium, neon, argon, function of the electron temperature
nitrogen and mercury vapour. for helium, neon, argon, nitrogen and

mercury vapour. The atom tempera-
ture is 480°K for mercury vapour and
300°K for the other gases.
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Fic. 3-4. Plasma density profiles in a
circular tube at a great distance
from the entrance for Poiseuille
flow.

3.3.3

Fig. 3-5. Decay rates of the plasma
density along the tube axis as a
function of the ambipolar Peclet
number Pp for slug and Poiseuille
flows.

The Eigenvalues and the Eigenfunctions for the Electron Energy Equations
The values of C,,C,, C, and C, are

The values of C,,C, and C, are
The eigenvalue

The eigenfunction C; depends only on L.
tabulated in Tab. 3-3 for several values of L.
almost independent of L, while the value of C, depends on L,.
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TABLE 3-2. The eiegnvalue 5.

Py by Pp b,
0.0 2.4048 10.0 2.6984
0.1 2.4258 100.0 2.7034
1.0 2.5551 oo 2.7044
2.5 2.6428

TABLE 3-3. The eigenvalues C; (j=1, 2, 3, 4).

Lp C, C, C; C,
0.0 0.0 4.4086 7.6670 10. 8590
0. 00001 0.13501 4.4143 7.6723 10. 8642
0. 00002 0. 16047 4.4167 — —

0. 00005 0.20159 4.4213 — —
0. 0001 0.23948 4.4266 7.6838 10.8754
0. 0002 0.28436 4.4340 — —
0. 0005 0.35648 4.4486 — -
0.001 0.42248 4.4650 7.7199 10.9108
0.002 0.49998 4.4880 — —
0.005 0.62265 4.5329 — —
0.01 0.73241 4.5825 7.8323 11.0215

C, depends on Ly, P, and K,,. The values of C, are tabulated in Tab. 3-4 for
several values of Ly, P, and K,,. The value of C, mainly depends on L,, and
does not deviate so much from the value of C, for the same value of L,, except the
case of K,,=0.1.

As shownin Egs. (3.2.13) and (3.2.24),

1.0 p— . the fully developed profile of the electron
| | temperature is expressed by the function

08 - ]5 /?// N Si(y; C,) for slug flow and by the function
LD:}g-.: // S.\(5; C)) for Poiseuille flow, respectively.

o2/ The curves of the function S,(z) are shown

5 e N in Fig. 3-6 for several values of L;,. The
ﬁ curves of S(7) do not deviate so much

04 |- from the curves of S,(y) for the same
value of L, except the case of K, <1.

Y7 AN SRS RS RN S The electron temperature sharply de-
; creases in the vicinity of y=1, and van-

O | | ishes at y=1, while the radial gradient

O 02 04 06 08 10 of the electron temperature is very small
ki . .
in the central part of the tube section.
Fi1G. 3-6. Electron Temperature profiles I 1oh P h h
in a circular tube at a great distance n actual phenomena, suc E_‘ sharp change
from the entrance. (slug flow) of the electron temperature is unexpected.

Therefore, at first sight, the calculated
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profiles of the electron temperature seem to be inconsistent with actual phenomena.
However, it can be pointed out from the following argument that the solution for
S,(z) is an unique solution which is consistent with physical situations in the neigh-
borhood of the wall. Let us consider a fictitious wall at y=7»,=1—e(¢< 1), and
impose the condition that the electron temperature is finite at »=y,. From the
physical point of view, the electron temperature is not very high in the neighborhood
of the wall, so that we may assume that the order of the function S,(y) should be of
unity. However, if the value of C exclusive of C, is chosen, the function S(z; C)
diverges as 7 approaches unity. Only when the value of C is close to C, the
function S(y; C) has a moderate value of order one at the point =1, as far as ¢ is
sufficiently small. Therefore, we may choose the function S,(y; C,) as a function
which is consistent with physical situations at p=y,. Equation (3.2.22) is regarded
only as a mathematical condition.

TABLE 3-4. The eigenvalue C; (Pp=0, 1, 10, 100).

Lo \ K ‘ Pp=0 1 10 100
10-5 101 | 0.13501 0.13210 0.13462 0.18615
1 0.13147 0.12832 0.13448
10 0.13142 0.12770 0.12829
10° 0.13142 0.12767 0.12789
108 0.13142 0.12767 0.12788
10~ 101 | 0.23948 0.23690 0.26348 0.48288
1 0.23335 0.23009 0.26324
10 0.23309 0.22672 0.23151
10° 0.23308 0.22660 0.22999
108 0.23308 0.22659 0.22999
10-3 1071 | 0.42248 0.43195 0. 58062 1.36483
1 0.41252 0.41955 0.57543
10 0.41112 0.40232 0.43476
107 0.41110 0.40183 0.42999
10° 0.41110 0.40183 0.42994
10-2 101 | 0.73241 0.82029 1.44526 3.39432
1 0.72009 0.79639 1.24756
10 0.71306 0.72045 0.81872
100 0.71295 0.71894 0.81073
100 0.71295 0.71892 0.81065

3.3.4 Decay Rates of the Electron Temperature along the Tube Axis

Figures 3-7 (a) through (c) give graphical representations of Eqs. (3.2.11) and
(3.2.29). The broken line in each figure corresponds to the limiting case of P, — o
and L, =0, which is the case when the plasma density is constant throughout the flow
field, and when the electron temperature distribution is quasi-one-dimensional
along the tube axis. The solid and chain lines correspond to slug and Poiseuille
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Fi1G. 3-7. Decay rates of the electron
Lo=10"" temperature along the tube axis as
a function of the modified Knudsen
number K.

(a) Pp=0.

(b) Pp=10.

(¢) Lp=10-4.

( ...... PD_" o, LD = 0,
—  Slug flow,
~-— Poiseuille flow.)

10™

flows, respectively. The following results are obtained from Figs. 3-7 (a)
through (c).

i) The decay rates of the electron temperature along the tube axis can be divided
into three cases with respect to the modified Knudsen number K,,. For small K,,,
the rates p, and g, mainly depend on K,,. On the other hand, for large K,,, these
are independent of K,,, but depend on L, and P,. The boundary value of K,, for
the former case is about 0.8 to 2.0, and that for the latter is about 20 to 100. In
the case when the value of K, is intermediate, the rates y, and g, depend on P, L,,
and XK,,.

ii) For small K,,, the decay rates increase as the value of K,, decreases. The
case of small values of K,, is termed the collision-dominated case, since K,, is
proportional to the mean free path of electron-atom collisions. The energy loss
due to electron-atom collisions is predominant in the energy transfer processes of
an electron gas. In the collision-dominated case, the values of g, and g, agree
with the values for L,=0. This agreement also denotes that the energy loss of
electrons toward the wall is negligible in comparison with the energy loss due to
collisions, because we obtain S,(p)=1 for L,=0. The difference between the
values of y, and g, is undistinguishable.
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FiG. 3-8. Decay rates of the electron

temperature along the tube axis as

a function of Lp, Pp and 2, for the

case of K,,=103.

(a) Electron Lewis number Lp.

(b) Ambipolar Peclet number Pp.

(c) Decay rate of the plasma den-
sity along the tube axis 2
(or ).

|
| I | (——— Slug flow,
102 00 s Poiseuille flow.)
Mo, M

iii) The case of large K, is termed the diffusion-dominated case, since P, and
L, include the ambipolar diffusion coefficient. The energy transfer due to ambipolar
diffusion and electron thermal conduction is predominant in the energy transfer
processes of an electron gas. In the diffusion-dominated case, the values of y, and
£, deviate from the values for L, =0, and mainly depend on P, and L,. The slight
difference between the values of g, and g, can be recognized.

For the diffusion-dominated case, the values of , and g, are plotted against L,,
and Pp in Figs. 3-8 (a) and (b). The curves of g, versus 4, and g, versus 4, are
also shown in Fig. 3-8 (c). In the case when P, is not so large, we obtain an
approximate expression for s, from Eq. (3.2.11) as

m~Ci/, (3.3.1)

for large K,,. Since C, increases with L, as shown in Tab. 3-3, the rate y, in-
creases with L,. When the eigenvalue C, is determined by solving Eq. (3.2.14)
for S(y), the fourth term of the left hand side of Eq. (3.2.14) —L,Z*y)— plays
an important role. This term expresses the contribution of the electric field formed
by ambipolar diffusion to the energy balance for electrons. The electrons diffusing
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toward the wall lose their thermal energy across the negative potential barrier.
Therefore, C} appearing in Eq. (3.3.1) expresses the contribution of energy loss of
electrons toward the wall to the rate p,. The rate 2, of the right hand side of Eq.
(3.3.1) is derived from the thermal conductivity, which is proportional to the plasma
density. That is, the variation of the electron thermal conductivity with the plasma
density contributes to the value of the decay rate (- When the value of 2, ap-
proaches zero (P, increases), we obtain an approximate expression for y, as

th NZLC%/LDa

instead of Eq. (3.3.1). The rate y, decreases as P, increases, in contrast to Eq.
(3.3.1). As L, increases, the decrease of the rate », with 2, appears for the smaller
values of P,; e.g., the curves for P,=100 in Fig. 3-8 (a) and for L,=10"? in
Figs. 3-8 (b) and (c). In the case of large P, the contribution of the variation of
the electron thermal conductivity becomes small, and the convective and diffusive
transfer of electron energy along the tube axis becomes predominant.

3.4 Quasi-One-Dimensional Approximation

In this section, the energy loss of clectrons toward the wall is neglected. The
electron temperature is assumed to be constant in each section of a circular tube.
The radial gradients of « and z, in the energy equation (3.2.2) are neglected. The
rates g, and g, for the quasi-one-dimensional approximation are obtained by
assuming C,=0 and C,=0 in Egs. (3.2.11) and (3.2.29), respectively.

As an example, the curves of g, versus
K, are shown in Fig. 3-9 for the case of \ '

P,=10. In the collision-dominated case, 10 1
the curves agree with those obtained from

the preceding analysis for an axially sym- 1
metric flow. This agreement implies that 3
the quasi-one-dimensional approximation

can be applied to the collision-dominated
case. In the diffusion-dominated case, N
the values of g, are smaller by one orde 102
or two orders of magnitude than those c\o*{ N
obtained from the preceding analysis, 107 1 10 10° 10°
because the elec.trons lose their énergies Fic. 3.9, Decay rates of the electron
only by the action of thee lectric field temperature along the tube axis for
formed by the plasma density gradient quasi-one-dimensional  approxima-
along the tube axis for the case of quasi- tion.

one-dimensional approximation. (c=mnn- Pp—oo, Lp=0.)

Po=10
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IV. AN EXAMPLE OF THE MEASURED DEcAaY RATES
OF THE ELECTRON TEMPERATURE
ALONG A TUBE AXIS

In the present chapter, we compare the calculated decay rates of the electron
temperature along the tube axis with the rates measured by Konenko [28] in a
diffusion flow of stationary helium plasma. The experimental conditions corre-
spond to the collision-dominated case (for small K,,). A glass tube with oxide
cathode was used. The spiral anode divides the tube into two parts. One is the
ionization region, and the other the diffusion region. In the ionization region, a
discharge is excited. From the positive column of this region, plasma diffuses
through the anode into the other side of the tube, containing a mobile Langmuir
probe. The electron temperature curves along the tube axis were taken for the
pressure range from 0.6 to 4 Torr. The plasma density and the electron tempera-
ture at the anode are about 4~5x108/cm? and 3x10* °K, respectively. The gas
temperature is considered to be room temperature. The estimated value of Lj is
equal to 5X10-%. The value of K,, varies from 0.4 to 3. The corresponding value
of K, varies from 2.3 X103 to 1.8 X100,

The electron temperature distribution was expressed by the semi-empirical
formula

T,=T, explk’ exp(—7'x)].

The values of the maximum electron temperature gradient k’y’ have been obtained
from the electron temperature curves through the relation

_dInT,

, 4.1
dx x=0 ( )

k/TI:

and plotted against helium pressure.
In the present analysis, the relative
electron temperature gradient can be
expressed as

Po=0
Lo=5x10"°

~quasi -one-dimensional
approximation

dinT,

t=—w/R. (4D

O:Konenko’s Data
|

By comparing Eq. (4.2) with Eq. (4.1),

we obtain the relation 116 ) EEE I - —
 Lo=0-1 u
#lzle/R. (4.3) 10" 1 10 1Oa sz):
Km
We can obtain the value of g, from the Fi6. 4-1. Comparison of measured and
measured value of k'T’ through Eq. calculated decay rates of the electron
(4.3). The values of th thus obtained tempera.tx%re alon.g the tube axis for
. . . the collision-dominated case.
are plotted against K, in Fig. 4-1.
The solid lines correspond to the case SRR Pp—oco, Lp=0.)
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of L,=0 and 5x 102 for P, =0. The curve for quasi-one-dimensional approxi-
mation is also shown in the figure. The broken line corresponds to the limiting
case of P, o0 and L,=0. The measured values of , are found to be in qualita-
tive agreement with the values obtained from the present analysis. The measured
rates increase as the value of K,, decreases, and agree with the estimated rates in
the order of magnitude.

V. EXPERIMENTAL STUDY OF A PIPE FLOW OF WEAKLY IoNIZED
NONEQUILIBRIUM ARGON

5.1 Experimental Apparatus

A schematic diagram of the experimental apparatus is shown in Fig. 5-1. The
apparatus mainly consists of the high pressure bottle for gas supply, the discharge
chamber, the circular tube, the test section, the vacuum tank (5 m?®) and the vacuum
pumps; a mechanical booster (2,000 m3/h) and a oil rotary pump (3 m®/min). The
test gas is supplied from the high pressure bottle into the discharge chamber, and
ejected into the test section through the circular tube. The test gas is ionized by
dc glow discharge between ring electrodes mounted at both ends of the discharge
chamber.

The discharge chamber and the test section are made of steel cylinder of 130 mm
in inner diameter and 300 mm in length. The outside view of the discharge cham-
ber and the test section is shown in Fig. 5-2. A schematic diagram of the dis-
charge chamber is shown in Fig. 5-3. Both electrodes are ring-like and 60 mm in
inner diameter. The anode and the cathode are 2 mm and 30 mm in length,
respectively, and made of steel. The cathode is a cold one. The test gas is injected
into the discharge chamber through holes drilled on the hemisphere of a ping-pong

/- Test Section
/

‘ — Power Supply
/ - ( W
- —
= - +
Vacuum Tank
(5m?) N o T E’LC - . Discharge 73\/7\/
] Chamber
: F
L2 _+_|
Probe Circuit Vacuum Gauge Flow Meter
Mechanical

Booster
- —+—4 Gas Supply j

X-Y Recorder

— Rotary Pump

W Window T : Traverse
C : Circular Tube P Probe

F1G. 5-1. A schematic diagram of the experimental apparatus.
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Fi1G. 5-2. The outside view of the discharge chamber and the
test section.
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Fic. 5-3. A schematic diagram of the discharge chamber.

ball fixed on the chamber wall, and runs through the ring cathode into the circular
tube. It is observed from the window that the test gas at the center of the ring
cathode has luminescence of the positive column of argon plasma, and that it is
surrounded by ring-like negative glow. It is estimated that the positive column
projects into the cathode ring as shown in Fig. 5-3. The circular tubes of 20.4 mm
and 37.5 mm in inner diameter, and 80 mm in length are employed. Since the
diameter of the cathode ring is 60 mm, it is estimated that the central core of the
plasma in the ring flows down through the tube. In fact, the plasma potential
measured in the tube is nearly equal to the potential of the positive column.

When polarity of the ring electrodes is exchanged, the plasma density measured
in the tube becomes about one tenth to one hundredth less than that for the former
polarity of the electrodes. As the plasma density decreases, the assumption of
quasi-neutrality becomes invalid. As will be shown later in Sec. 5.4.2, the assump-
tion of quasi-neutrality is valid, when the polarity of the electrodes is chosen as
shown in Fig. 5-3. Furthermore, trial use is made of the spiral cathode or spiral
anode as used by Konenko [28]. In the case of the spiral electrode, the electric
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probes, which are used to determine the electron temperature and the plasma
density, becomes rapidly dirty, so that the measured electron temperature becomes
uncertain. Therefore, we employ the method of discharge as shown in Fig. 5-3.

5.2 Method of Measurements

The mean flow velocity in the circular tube is determined from the volume flow
rate, which is measured by the flowmeter, as Up=0Q,/nR? where u,, is the mean
flow velocity and Q, the volume flow rate. Moreover, a pitot tube with flat nose
(3 mm in diameter) is used to determine the radial distribution of the flow velocity
in the section of the tube exit. The pitot pressure is measured by the Pirani-gauge.

The electron temperature is measured by the double probe. The equivalent
resistance method, which has been proposed by Johnson and Malter [44], is used
to determine the electron temperature from the voltage-current curve. We use the
cylindrical probes made of tungsten or molybdenum. The probes are 3 mm in
length and 0.1 or 0.2 mm in diameter. The distance between two elements of the
probe is about 2.5 mm. The probe is placed in parallel with the tube axis, and
moved in directions parallel and normal to the axis. The X-Y recorder is used to
obtain the voltage-current curve.

In the present experiment, we need the axial and radial profiles of the plasma
density in a circular tube, but the precise value of the plasma density is not neces-
sary, so that we may use the method of Malter and Webster [45] to determine the
plasma density. Moreover, in order to determine the radial profile of the plasma
density, a single probe with strongly negative bias is employed instead of the double
probe, which is inferior to the single probe with respect to space resolution. The
radial profile of the ion current is utilized to gain the information about the radial
profile of the plasma density. Initially, the floating potential is measured at a few
points in the circular tube. Then, the probe potential is fixed at the potential which
is nearly equal to —10 volts relative to the floating potentials, and the probe is
moved in the radial direction in a constant speed by using the servomotor. The
radial profile of the ion current is plotted by the recorder.

5.3 Experimental Results and Discussion
5.3.1 Flow Velocity

The experiment is carried out for the case of the chamber pressure of 0.5, 1 and
2 Torr. The test gas is argon. The chamber pressure is adjusted by the needle
valve of the flowmeter. The mean flow velocity is controlled by adjusting the
opening of the valve between the vacuum tank and the rotary pump. The pipe
flow with the mean velocities between 30 and 120 m/sec is obtained.

The radial distribution of the flow velocity at the tube exit is shown in Fig. 5-4 for
the case of chamber pressure of 1 Torr. The flow velocity on the axis of the tube
is about 200 m/sec, which corresponds to the Mach number of 0.6. The change
of the sound velocity is estimated within 5%, so that the Mach number distribution
measured by the pitot tube can be considered as a velocity distribution. In Fig.
5-4, the measured velocity distribution nearly agrees with a Poiseuille distribution.
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Similar results are obtained for the cham-
ber pressures of 0.5 and 2 Torr.

In the case of Fig. 5-4, the estimated 10 o
initial length is about 20 cm. Since the
tube length is 8 cm, the tube exit corre-
sponds to half of the initial length. The s
calculated distribution at half of the initial 5 05

length nearly agrees with a parabolic
distribution [46], and cannot be dis- 1-7°
tinguished from a Poiseuille distribution
within the present experimental accuracy.

O ” S
At the other section of the tube, it is not 10 O n 10
assured that the velocity distribution FIG. 5-4. Comparison of measured and
nearly agrees with a Poiseuille distribu- calculated velocity profiles at the

tube exit. The discharge chamber
pressure is 1 Torr. The mean flow
velocity is 103 m/sec.

tion. However, the detailed measure-
ments of the velocity distribution are not
carried out, because it is estimated that
the plasma density and the electron temperature distributions are not affected by
velocity profiles so much.

5.3.2 Discharge

The discharge current applied is 0.1 to 0.15 A and the discharge voltage 400
to 500 V. The variations of the discharge current and voltage remain within 2~
3%, or sometimes within 5%. Stable discharge is confirmed by observing the
glow of discharge from the window of the end plate of the discharge chamber.
The intensity of photo-emission of the glow is observed by the photomultiplier.
The variation of its outputs is recorded by the syncroscope, and is found to remain
within 0.5% even in the case of the largest fluctuation of the intensity for the case
of the chamber pressure of 2 Torr.

5.3.3 Plasma Density and Electron Temperature

The radial distributions of the ion current at five sections of the circular tube of
2.04 cm in diameter are shown in Fig. 5-5 for the case of the discharge chamber
pressure of 1 Torr. The center of the middle section between the inlet and the exit
is chosen as a reference point. At the tube inlet (6= —4), the radial distributions
of the ion current are found to be various forms immediately upstream of the inlet,
but these immediately approach a similar profile. At &= —2, the ion current profile
nearly coincides with the calculated radial profile Ji(b) of the plama density.
At the other sections, similar results are obtained. Therefore, we can apply the
present analysis to the flow for §> —2.

The radial distribution of the electron temperature is measured by the double
probe, and shown in Fig. 5-6. The radial distribution of the plasma density which
is measured by the double probe, is also shown in Fig. 5-6. The electron tempera-
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Fic. 5-5. Radial distributions of the ion
current at several tube sections, where
§=4 corresponds to the tube exit.
The discharge chamber pressure is 1
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FiG. 5-6. Comparison of measured and
calculated profiles of the plasma den-
sity and the electron temperature at
a few sections.

ture is nearly constant within scattering of +10% around the axis, but increases
toward the wall. This increase of the measured values of the electron temperature
is estimated to be caused by the double-probe characteristic, which is affected by

the space field near by the wall.

The axial distributions of the plasma density and the clectron temperature are
shown in Fig. 5-7 in the form of semi-log plots. The straight lines can be drawn
to determine the values of ¢ and 2. These values are obtained by the method

of least squares.
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Fic. 5-7. Typical log-plots used to obtain
the decay rates of the plasma density
and the electron temperature along
the tube axis.

The standard deviations are below 0.05 for all data.

At the
reference point (£=0), the measured
electron temperature varies from 4,000°K
to 5,000°K, and the measured plasma
density varies from 5x 10°to 5 x 10" /cm?.
The values of P,,L, and K,, evaluated
at the reference point are 5 to 30, 6x 10-°
to 9X107° and 30 to 140, respectively.
In the evaluation of the values of K,,
the atom number density is assumed to
be the mean of the densities of the dis-
charge chamber and the test section.

In Fig. 5-8(a), the measured values of
4, are plotted against P,. The solid and
broken lines are the theoretical curves
for slug and Poiseuille flows, respectively.
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It is found that the measured decay rates of the plasma density nearly agree with
the rates evaluated from the analysis. In Fig. 5-8(b), the measured values of u
are plotted against K, the ordinary Knudsen number which is defined by the ratio
of the electron mean free path to the tube diameter. The decay rates of the
electron temperature along the tube axis are measured between K,=0.06 and 0.3
or K,,=30 and 140. The solid and chain lines are the curves evaluated, respec-
tively, from the axially symmetric analysis and from the quasi-one-dimensional
approximation for slug flow for the case of L,=5x107%, P,=5and 50. The broken
line corresponds to the case of Lp,=0 and Pp—co. It is found from Fig. 5-8(b)
that the order of magnitude of the measured decay rates agrees with that of the rates
evaluated from the axially symmetric analysis, and that the values of the measured
rates increase with P, independently of K, or K,. In Figs. 5-8(c) and (d), the
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Fic. 5-8. Experimental results.
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measured values of 4, are plotted against P; and the measured values of 2,, respec-
tively. The theoretical curves are also shown for L,=10"* and 10-* for the case
of K,=10°. The solid and broken lines correspond to slug and Poiseuille flows,
respectively. Figures 5-8(c) and (d) show that the measured decay rates of the
electron temperature qualitatively agree with the rates evaluated from the present
analysis. The measured rates increase as P, increases.

5.3.4 Floating Potential

The floating potential distributions are measured along the tube axis for a few
cases. In Fig. 5-9, the measured values of the normalized floating potential gradient
at the reference point (dé,]de),_, are plotted against P,, where we define
$,=e¢;/(kT,). The solid and broken lines show the curves of (d¢,/d§),_, versus
Pp, evaluated from the present analysis for slug and Poiseuille flows, respectively.
The signs of both estimated and meas-
ured gradients of the floating potential
become positive as P, increases. The
absolute value of the measured gradient
- of the floating potential is not so accu-
-{~..  rate, because the fluctuation of the
‘ floating potential is large. However,

the reversal of the sign of the gradient
| is clearly obtained. According to the
j present analysis, this reversal of the
|

Poiseuitle Flow -,
(: } RS- . \‘\\ -

,! sign is caused by the increase of the
: 110 5 electron temperature gradient with P,.
Py Therefore, this experimental result
FiG. §5-9. Comparis.on of measured é%nd seems indirect]y to support the ana]y-
;it‘::ﬁ:;dal grrlztd'timst gf the floating  i0a1 result for the electron temperature

& The fibe axis. distribution along the tube axis.

5.4 Examination of the Experimental Conditions
5.4.1 Impurities

If the particles with large cross section for electron-atom collisions are mixed in
the test gas, the effective cross section for the mixture becomes larger than the
cross section for the test gas. The value of the cross section affects the estimated
values of L, and 'K,,. In the present section, the degree of impurity level is
estimated.

The particles with the largest cross section for electron-atom collisions are alkali-
metals. The cross sections between electrons and alkali-atoms are about thousand
times larger than the cross section between electrons and argon-atoms [39]. If the
effective cross section for the mixture is larger by one order of magnitude than the
cross section for argon, the effects of impurities become predominant. When the
alkali-vapour is above 0.1% in the argon gas, the effective cross section for the
mixture exceeds the cross section for electron-argon atom collisions. This impurity
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level is considered uncommon. The gas which is estimated to be mixed, is air.
The cross section between electrons and nitrogen or oxygen molecules is about
thirty times larger than that for argon. The measured rate of volume flow of air
leakage is about 0.1% of the rate of volume flow of argon. The contribution of the
air molecules to the total cross section is estimated to be below a few percent.

5.4.2 Assumption of the Analysis

The analysis of Chap. III is based on the assumptions quoted in Sec. 3.1.1. In
the present section, we inquire whether the experimental conditions satisfy these
assumptions. Rough criterions are given with respect to the regions of the electron
number density n,, the electron temperature T, and the gas pressure p,.

a) Quasi-neutrality: As a criterion, we assme 25/R<0.02, where 13 is the
Debye length at the tube axis.

b) Weakly ionized: As a criterion, we assume 100 <1.0.., where Q,, is the
cross section for electron-electron collisions.

¢) Frozen recombination: As a criterion, we assume the condition that the
loss of the charged particles resulting from ambipolar diffusion overcomes the loss
resulting from recombination in the gas phase. Stationary decaying plasma in an
infinite cylinder is considered. By comparing the time when the electron number
density becomes equal to n, exp(—1), we obtain the criterion,

exp(1)—1 biD_a

ny< ,
o, R

where n, is the electron number density at =0, «, recombination coefficient.
Most of the measured values of @, has been obtained at T,=300°K for afterglow
plasmas, in which dissociation recombination is predominant. The recombination
coefficients of molecular-rare-gas ions (helium, neon, argon, krypton and xenon),
which have been measured by several authors, are tabulated in reference [47].
For high electron temperature, it has been found that the recombination coefficient
a, for dissociation recombination is proportional to T;°7, experimentally [48] and
theoretically [49].

d) Frozen ionization: As a criterion, we assume the condition that the loss of
the charged particles resulting from ambipolar diffusion overcomes the production
of the charged particles resulting from the impact of high energy electrons with
atoms. This criterion may be given from Schottky’s diffusion theory for stationary
plasmas in a discharge tube.

e) High electron temperature: As a criterion, we assume T,/T.>S.

f) Short mean free paths for ions and atoms: The mean free paths for ions and
atoms are assumed to be much smaller than the tube diameter. The significance
of this assumption will be discussed in the following section. As a criterion, we
assume l,,/R<0.05, where I,, is the mean free path for atom-atom collisions.
The criterion for ion mean free path is not assumed, since its order of magnitude
nearly agrees with that of atoms.

This document is provided by JAXA.



Energy Transfer Processes in an Ionized Nonequilibrium Flow 115

10° —
a
il
d - Z
% 104 ;..,,,,7““, p— T
po b
e
10°

1011
Ne (cm™3)

F1G. 5-10. Regime for applicability of the assumptions of
the present analysis for argon, R=1cm, and
To=300°K. T,—n, plane ( pa=1 Torr;
------ 2 Torr; —-— 0.5 Torr).

On the basis of the criterions a) through f), the regime for applicability of the
assumptions can be expressed as a space region in the space coordinates n,, T, and
Do, if the gas species, the tube radius and the atom temperature are given. An
example of the regime for applicability of the assumptions is illustrated for argon,
R=1cmand T,=300°K. For convenience, the cut plane is presented. The plane
T.—n, is shown in Fig. 5-10 for the case of Po=1 Torr. The lines a to e corre-
spond to the criterions a) to e), respectively. The value of «, is assumed to be the
largest value already measured ; a,~107" cm?/sec [47] at T,=300°K. The bound-
aries of the regime for applicability are expressed by hatching. For comparison,
the boundaries for the cases of P.=0.5 and 2 Torr are also shown by chain and
broken lines, respectively. The region expressed by dotted points corresponds to
the region studied in the present experiment. The present experimental conditions
are found to satisfy the criterions a) through e).

5.4.3 Mean Free Path

As quoted in the preceding section, the mean free paths for ions and atoms are
much smaller than the tube diameter. On the contrary, as shown in Fig. 5-8(b),
the experiment is carried out for the ordinary Knudsen number around 0.1 for
electron-atom collisions. The electron mean free path is not much smaller than
the tube diameter. As for the plasma density, the continuum condition is satisfied,
because ambipolar diffusion is controlled by the ion-atom collisions and the space
field regardless of the electron-atom collisions. As for the electron temperature,
the electron thermal conductivity cannot always be used for the case of large
Knudsen number for electrons. However, it is expected that the continuum ap-
proach can be applied as an analytical model, when the Knudsen number is not so
large (below unity) as in the present case.
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VI. CONCLUSIONS

In the present paper, some characteristics of the energy transfer processes of an
electron gas at low density are clarified by solving the energy equation for electrons
for a pipe flow of weakly ionized nonequilibrium plasmas and by comparing the
analytical results with the experimental results. The electron temperature distri-
bution in a circular tube is analytically obtained, and compared with the measured
distribution.

The results are summarized as:

1) Tt is found from the dimensional analysis of the energy equation for electrons
that the electron temperature distribution in the flow depends on the dimensionless
numbers P,,L, and K, which are termed the ambipolar Peclet number, the
electron Lewis number and the modified Knudsen number, respectively, defined by
Egs. (3.1.20) throuch (3.1.22).

2) Tt follows from the analysis that the electron temperature exponentially
decreases along the tube axis. The decay rates of the electron temperature along
the tube axis are obtained in analytical formulae given by Eqs. (3.2.11) and (3.2.29),
respectively, for both slug and Poiseuille flows.

3) The decay rates are mainly divided into three cases with respect to the
modified Knudsen number K,,. For small K,,, the decay rates mainly depend on
K,,, while for large K, the rates depend on the ambipolar Peclet number P, and
the clectron Lewis number L,. The boundary value of K, for the former case is
about 0.8 o 2.0. and that for the latter is about 20 to 100. For the intermediate
values of K,,, the decay rates depend on K,,, Lp, and P,.

4) For small K,, the decay rates increase as the value of K,, decreases. The
case of small value of K,, is termed the collision-dominated case, since the energy
loss due to electron-atom collisions is predominant in the energy transfer processes
of an electron gas.

5) For large K,,, the decay rates increase as the value of L, or P, increases,
unless P, is very large. The case of the large value of K,, is termed the diffusion-
dominated case, since the electron energy transfer due to ambipolar diffusion and
electron thermal conduction is predominant in the energy transfer processes of an
electron gas. It is pointed out that the dependence of the rates on Pp is mainly
caused by the variation of the electron thermal conductivity with the plasma density.

6) It follows from the simple analysis of the quasi-one-dimensional approxi-
mation of the energy equation for electrons that in the collision-dominated case the
decay rates are very close to the rates evaluated from the simple analysis. There-
fore, in this case the quasi-one-dimensional approximation may be applied to the
present problem. On the contrary, in the diffusion-dominated case the decay rates
deviate from the rates estimated from the simple analysis.

7) As for the collision-dominated case, the decay rates measured by
Konenko [28] for a diffusion flow of stationary helium plasma are found to be in
qualitative agreement with the rates from the present analysis. The measured rates
increase as the value of K,, decreases, and agree with the estimated rates in the
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order of magnitude. This data may be considered to support the analysis in part
for the collision-dominated case.

8) As for the diffusion-dominated case, the decay rates are measured for a pipe
flow of weakly ionized nonequilibrium argon. The value of the modified Knudsen
number varies from 30 to 140, and corresponds to the value of the ordinary
Knudsen number of 0.06 to 0.3. The measured decay rates are also found to be
in qualitative agreement with the rates evaluated from the present analysis. The
measured rates increase as the ambipolar Peclet number P, increases, and agree
with the estimated rates in the order of magnitude. It cannot always be concluded
from such agreements between analytical and experimental results that the present
analysis may be applied to the case of large Knudsen number for electrons, since
the analysis is based on many assumptions and the data are not sufficient to draw
any definite conclusions. However, one may expect that the energy transfer
processes of an electron gas can be clarified to some extent by solving the energy
equation for electrons as a continuum fluid even for the case when the Knudsen
number for electrons is moderately large up to a certain value.

In the present paper, the exponential decay rate of the electron temperature along
the tube axis is obtained in an analytical formula, and the analytical results are
partly supported by the experimental works.
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