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Summary: A numerical method is presented to obtain the minimum weight design of
structures whose stresses caused by several alternative loads and the first few natural
frequencies are required to be within certain limits. The requirements may include
other types of eigen-values such as buckling loads. Thicknesses of panels and cross
sectional areas of trusses are taken to be independent design variables, and geometrical
configuration is assumed to be given. Finite element method is used for structural
analysis. A simplc procedure to obtain derivatives of eigen-values with respect to the
variables is first shown. The objective function which is a sum of the weight and the
penalty terms is minimized using the derivatives. Steepest descent method is modified
to speed up convergence. The method is applied to obtain optimum thickness of a plate
beam, a two storied truss and a simply supported beam.

INTRODUCTION

In today’s aerospace applications reduction of structural weight is of great
significance to attain effective and satisfactory mission. A systematic study of
minimum weight design is necessary to attain the allowable lowest value of the
structural weight, still satisfying the requirements imposed on the structure.

In meeting this need the loading index concept was fully developed by Shanley,
Gerard and others [/-3], which has proved very useful in efficiency analysis and
in efficient design of compression members. Although this concept must be
greatly evaluated, it does not seem to present the sole and the final guide to
designing.

The concept basically assumes that optimum proportions result when the pos-
sible forms of failure occur simultaneously. But it has been pointed out that this
concept does not always lead to the most efficient design. Cohen discussed on
the subject and showed an example of truss core sandwich cylinder whose mini-
mum weight occurs when the critical stresses of two modes are not equal [9].

It is a concept essentially applicable to each structural members whose external
loads are precisely known. In case of redundant structures, load to be carried
by each member is a function of member proportioning itself, and therefore it is
a quite difficult matter to optimize all members simultaneously. Even after that
task has succeeded, there exists no guarantee of optimality of the whole structure.

[259]
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260 T. Yasaka

In the mean time introduction of high speed digital computers made matrix
structural analysis and programming techniques very powerful tools for designers
and they have been successfully incorporated into the problem [/0-26]. Although
present technique is limited within elastic range, fully automatic design is possible
in case of some simple structures such as trusses under multiple loadings.

When weight is reduced and as a result stiffness of the structure is lowered,
often dynamic properties beome critical to successful attainment of the mission.
For examples, Turner [35] states that, “In spacecraft design it may be required
that the fundamental cantilever bending frequency of a deployed appendage shall
not fall below a specified minimum value in order to avoid undesirable control
coupling effects.” Tt is expected that a structure in orbit is subjected to rather
small external loads, and that frequency criterion is of preference to that of
strength. In aeroelastic applications frequency requirements plays a major role
and a technique to obtain a minimum weight structure with specified frequencies is
fundamental to optimize a structure satisfying flutter requirements [34]. Minimi-
zation of weight with consideration of vibration and flutter requirements has been
discussed by Turner and others [35-38].

It seems that there exists a need to develop a method of minimum weight design
with due consideration to static and dynamic behavior, since a design is often
influenced by both. The difficulty exists in the fundamental difference of govern-
ing equations of those behaviors; one the simultaneous equations and the other
eigen-value equations.

As the first step to this the author tried to develop a method to obtain minimum
weight design where stresses caused by several alternative loadings are required to
be within certain limits and lower boundaries of natural frequencies exist.

The structure is replaced by thin panels and trusses, which are analyzed by
finite element method. Thicknesses of panels and cross sectional areas of trusses
are taken to be independent design variables. The degree of influence of varia-
tions of each design variables on stresses and frequencies are first calculated, then
the point of the lowest possible weight is searched using techniques of non-linear
programming.

The method is first developed to deal with structures whose stiffnesses and
weight are linearly related to design variables, but as the extension, treatment of
those with non-linear relationship is briefly discussed. Feasibility of including
buckling behavior into requirements is also discussed.

1. FOUNDATIONS TO MINIMUM WEIGHT DESIGN

1.1 Present Status
1.1.1  Minimum Weight Design

While there has been an effort to specifically determine member sizes in terms
of the load and the basic dimension, e.g., loading index [/-8], there is an iterative
scheme of minimum weight design under development which basically is design
and redesign processes applied to the whole structure each time modifying in such
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a manner as to reduce the total weight and satisfying requirements. A design is
represented by a point in design parameter space or by a vector whose components
are design variables, and modification by movement of the point or the vector.
Requirements become constraints and divide the space into acceptable region and
the region of violation.

Schmit [10] was the first to present this concept which was applied to redundant
trusses. In succeeding works [//-14] the concept was furthered through introduc-
tion of non-linear programming techniques into redesign cycles. For example the
steepest descent method was used in Ref. 14 in analysis and synthesis of trusses.
What was of particular notice in those works was the feasibility of optimizing
a structure under multiple loading conditions. It was also shown that fully
stressed design in which the stress in each member is equal to the allowable stress
in at least one loading condition may be inefficient. Fully stressed design was
studied in more detail by Razani [29], Dayaratnam et al. [30] and Kitcher [31].

Gellatly and Gallagher [15,16] used a procedure made up of three different
modes: (i) Initial step, (ii) Steepest descent and (iii) Side-step. In the initial
step a fully stressed design is obtained revising the design repeatedly. Then in
the second step the weight of the total structure is reduced in the most rapid possible
manner until limitations on stresses etc. are reached. The side step move from
the constraint surface is directed toward the “optimum vector” which is determined
using vectors normal to the weight plane and constraint plane.

Kicher [17] used gradient projection technique with modification for systematic
synthesis of stiffened cylinders. In gradient projection technique a new design
immediately violates constraints when the feasible region is convex which is
commonly so, therefore the direction of move is tilted toward inside of the ac-
ceptable region. Gradients to yield and buckling constraints are obtained by finite
difference scheme and perturbation of the design variables.

Among other significant investigations [/8-28] usage of linear programming is
of special attention. It is attractive from the view point of computer economy,
but when the optimum proportion is not at the vertex at which the number of
constraints active is the same as that of independent design variables, convergence
seems to be unsatisfactory.

A desirable direction was pointed out by Moses et al. [24] who introduced
probability concept into constraints.

The existing techniques were recently reviewed by Maruyasu et al. [33] and
evaluated both qualitatively and quantitatively.

Weight minimization with vibrational behavior of the structure considered is a
comparatively new problem. Niordson [39] has treated the cantilever beam with
a solid cross section of constant shape. After Turner’s presentation [35],
Taylor [36,37] and Prager [38] showed the methods of optimum shape determina-
tion of a bar for axial vibration at specified or maximum frequency. Taylor made
use of a function related to the energy of the system which was subjected to
variation, while Prager used Rayleigh’s quotient.

The method presented by Turner [35] shows feasibility of application to more
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complex structures utilizing numerical procedures. Basically a functional

Olm, u]:fL{m +2g}dx+ 4,9, (1.1.1)

is subjected to variation, where the first term in the integral shows mass distribu-
tion, and the second term in the integral and the last term correspond to vibrational
requirements and boundary conditions respectively with Lagrange multipliers.
After introducing lumped parameter system into the equation, a set of second
order simultaneous equations for determination of modal displacements is derived.

Turner’s succeeding work [34] put another important step toward aerospace
vehicle designing with due consideration to flutter requirements. Based on the
similar principle as used in the former the structure is optimized for a succession
of values of the flutter frequency. The frequency and mass distribution for mini-
mum total mass are then determined graphically. The technique of minimum
mass design with specified natural frequencies was used determining the initial guess
of the structure.

Lagrange multiplier function and variational principles are widely used in
optimum shape determination for buckling properties of bars [4]-44].

1.1.2 Finite Element Method

Matrix structural analysis became a very powerful tool for designers and espe-
cially finite element displacement method is widely admitted to be the most efficient
to automated analysis due to its simplicity of formulating stiffness matrix [45-48].

Levy [46] introduced the idea of replacing a continuous structure by pieces.
An aircraft wing was replaced by elementary beams and torque boxes generating
a stiffness matrix for each element, and stiffnesses are summed up. Turner et
al. [50] refined this application by reducing the torque box to assemblies of tri-
angular or rectangular slices. This finite element idealization was extended by
Clough [51], Klein [52-55], Melosh [56-57], Pian [58] and others.

The method is successfully used in stress analysis of complex structures [59,60].
Kapur et al. [61] and others [62,63] have shown that the method may be used to
find critical buckling stresses of thin plates. Applications into dynamic problems
are also successful. Vibration problems were solved first by Leckie and Lind-
berg [64] and Archer [65] followed by Dawe [66] and Guyan [67]. To dynamic
stability [68] and panel flutter problems [69] it is also shown to be applicable.
Techniques to avoid processing very large matrices have been presented both in
static [70] and dynamic problems [71-74].

1.2 Structural Analysis Using Finite Element Method

1.2.1 Introduction

The solution of stress and strain distributions in elastic continua is obtained
first by deriving stiffness matrices of finitely discretised elements which are inter-
connected at a dicrete number of nodal points on their boundaries. Element
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stiffnesses are assembled to yield the stiffness matrix of the whole structure, and
the following procedures are straight forwarq.

In deriving element stifiness matrices a serjes of approximations are assumed.
Firstly a function is chosen to define the state of displacement within each finite
element in terms of its nodal displacements which will be the basic unknown
parameters. It is not always easy to engyre displacement continuity between
adjacent elements. Secondly forces acting on the element are concentrated or
replaced by equivalent forces at its nodes, thys Jocal violation of equilibrium
usually arises. Equilibrium conditions are satisfied in the overall sense only.

Although care must be paid to the degree of accuracy, in most cases it is assured

that as the number of elements is large ang their sizes are sufficiently small, the
solution is very close to the actual situatiop_ Since it seems that there exist very
few questions left to be discussed except those mentioned above, at least in case
of one dimensional and plane stress Problems used in the followings,
here the finite element method to be one we established.

Here notations by Zienkiewicz [45] are widely used.

we consider

1.2.2 Stiffness Matrix

A typical triangular element of a two dimensional continuum shown in Fig. 1.2.1
is considered, with nodes numbered anti-clockwise order

A six components element displacemep¢
vector is defined

{5}e:{ui: via uja ’vj: Up, ’Um}
vi(Vi)

where { } symbolizes a column vector, ;4
the superfix e signifies the quantities concery,_
ing the element. u;, v; are displacements of Xy
the node i in the direction of x and y Tespect.-

ively.

Assuming linear elastic relations, strajpg
{e}={es» &> 725} and stresses {o}={0.,q,, T4y}
are defined in terms of element displaCemems’
as

x
Fic. 1.2.1. Triangular Element.

{e}=[B]{s)e (1.2.1)
{o}=ID]y (1.2.2)

Element nodal forces {F}*={U;, V;, U,, V.UV } are

Y =lk)eqa)e (1.2.3)

Here, [k]¢ is the element stiffness matrix, apnq

[k]e=tAA[B]T[D][B]{5}e (1.2.9)

t and 4A are the thickness and the area of the triangle, respectively. Both
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matrices [B] and [D] do not contain the thickness ¢.

The stiffness matrix of a truss element is also expressed by the similar form and
in this case ¢ and 44 represent the cross sectional area and the length, respectively
of the element.

1.2.3 Total Stiffness Matrix

The formation of the total stiffness matrix of the structure in two dimensional
is straight forward.

First displacement of the structure is represented by 2N-vector {u} composed
of displacements of all N nodes. Element nodal displacements and forces are

expressed in terms of {u}:
{0} =[N u} (1.2.5)
{FYe=[kIF[N){u} (1.2.6)

where [N] is a 6 X2N or 4X2N matrix depending on the type of the element and
its components are either O or 1. ,
Then corresponding components of {F}* are added, or in matrix expression

LINI{F}e (1.2.7)
which is equated to 2N-vector of external loadings
{F}=ZINI"{FY = (ZINT[KIIND{u} (1.2.8)
Stiffness matrix of the whole structure is
[K]1= X [NIT[k]°[N] (1.2.9)

When the structure is 3-dimensional composed by 2-dimensional elements,
direction cosines of the local co-ordinate axis O-—x,y with respect to the global
co-ordinates must be taken into consideration.

(1.2.5) and (1.2.6) are replaced by

{6} =I[TINHu) (1.2.10)
{F}*=[KI[TIINY{u} (1.2.11)

where {u} is a 3N-vector and [N] is a 9X3N or 6 X3N matrix. [T] is a 6X9 or
4 X 6 matrix composed of direction cosines.

Before nodal forces are summed up and equated to the external loads they
have to be transformed into global co-ordinates again.

{F}= ZINTTITT"{FY = (X INI"[TTTIKI[TIIND){u} (1.2.12)
Stiffness matrix of the whole structure is

[K]= X INTIT]"[KJIT]IN] (1.2.13)
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Care must be taken when all the elements joining at a particular node are in
one plane. Force normal to those elements is not originated, thus three global
components of the force at the node are not independent. Due to the similar
reason one of the displacement components of that particular node is not uniquely
defined. Therefore it becomes necessary to eliminate the particular column and
row from [K].

1.2.4 Displacement and Stress

Stiffness matrix (1.2.9) or (1.2.13) generally is still singular since rigid body
movements are permitted. Inserting boundary conditions, another new matrix is

made. In the followings [K] denotes this new matrix.
Thus

{F}=[K}{u} (1.2.14)
which is solved and
{u}=[K1-YF} (1.2.15)
Once {u} is obtained, stresses in all clements are then obtained.
{0}=[DBNKu}=[DBNI[K]-{F} (1.2.16)
where
[DBN]1=[DI[BIIN] or [DI[BIITIIN] (1.2.17)

1.2.5 Substructure Analysis

Analysis of large complex structure with sufficient accuracy involves treatment
of large matrices. There is a substructure concept which effectively avoids this
situation [70].

The structure is divided into substructures by introducing interior boundaries,
and boundary displacements for a substructure is denoted by {u,} and interior dis-
placements by {u;}. If the corresponding external forces are denoted by {F,} and
{F:}, then equation of equilibrium may be written in partitioned form as

[K,,,, KM] {ub] _ {Fb} (1.2.18)
Kib Kii ui Fi

It is now assumed that displacements may be calculated from the superposition
of two vectors, {u} and {#’}, where {u} denotes the displacements due to {F,} with
{us}=0, while {v} represents the necessary corrections to the displacements {u} to
allow for boundary displacements {u,} with {F;}=0. Thus,

{u}:{“b}-_—{o}-irl“g] (1.2.19)

u; u; 74

Similarly, corresponding to the displacements thus defined, the external forces {F}
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can be separated into

®={el={al + o) 0220

When the structure boundaries are fixed, expanding (1.2.18),

Ky {ui}={F3}

[KiJ{ug}={F:}={F} (1.2.21)

Therefore
{usy=IK;1"{F} (1.2.22)
{Fi}=[KullK;; 1" {F:}={R,} (1.2.23)

When the boundary is then relaxed,
[KypH{uf} + [Kp: {uf} = {F5}

(K J{ut} + [K;; {uf} =0 (1.2.24)
and
{uf}= — K1 [K;p J{ush)} (1.2.25)
{F3}=[K,Huf} (1.2.26)
Where
[Ky]=[K;,]— [K;: 1K1K ] (1.2.27)

represents the boundary stiffness matrix.
Combining (1.2.20), (1.2.23) and (1.2.26), we obtain

K, J{ut} = {Fo} — {R,} ={Qs} (1.2.28)

which is equivalent to (1.2.3) if this substructure is considered to be a sort of an
element. The following process is carried out with {uj} as the basic parameter.
{uf} is generally much smaller in the number of components than {u}, therefore
considerable computational advantage is derived. Behavior of the whole structure
is then obtained by simple matrix algebra.

1.3 Vibration Analysis
1.3.1 Method of Analysis

Vibration analysis using finite element method is presented in Refs. 64-67, in
which consistent mass matrix is used. Considerable accuracy has been reported
in vibration analysis; for instance, the deviations of the bending frequencies of the
first three modes of a three segmented beam from the exact are 0.024, 0.373
and 1.20 per cent [65] and those of nine-element cantilever plate are 0.571, 2.3
and 1.1 per cent [66].
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In the present analysis as shown in 1.2, bending term is not included for simpli-
city. Bending effect is obtained in overall sense only, i.e., by tesion-compression
of plates and trusses. Therefore to be consistent with this situation, mass is lumped
at certain convenient nodes. In the author’s previous work [79] in which Levy
type stiffness matrix [49] and simple lumped mass system were incorporated,
acceptable accuracy in frequencies was obtained. A low aspect ratio wing was
analysed and the agreement of the results with experiment was within a few per
cent deviation.

Equation of dynamic equilibrium when damping is neglected is written,

[M1{ii} + [K]{u} =0 (1.3.1)

where [M] is a diagonal mass matrix, and {"} represents time derivative,

=
dee L)
Assuming harmonic motion

{u}=et {1}
— M} + [K1{i2} =0 (1.3.2)

Eigen-value problems thus defined may be effectively solved by ijterative
procedure. In the present work, so called power method is used through-out to
solve (1.3.2). This method is known to be particularly effective when only the
first few modes of vibration are concerned.

1.4 Optimum Design: Non-Linear Programming
14.1 “Is it optimum?”

A vast amount of information will be needed to answer the question, “Is it
optimum?” You must consider many aspects of it: costs and efficiency in manu-
facturing and usage, its strength, durability, etc., etc. Among those the most
benefitial or the most desirable is chosen, and is called the objective, the others
called constraints [33]. In our problem the objective is weight of the structure,
while constraints are static and dynamic behaviours. The objective f, which is to
be minimized is a function of design variables {t}={t,, ---,t,}, and behavior
functions ¢,({f}) which are commonly highly non-linear must meet certain require-
ments which guarantee satisfactory operational activities of the structure.

The traditional statement of the non-linear problem by Wolfe [75] is:

“Given the continuous functions ¢,, ¢,, - - -, 9, and f,, it is required to find the
point {¢t} which minimizes f, under the constraints ¢, <0, i=1,2, ..., m.”

1.4.2 Convexity [75]

It has been stated that an answer obtained is global if f, is convex and the set S
of {#} satisfying the constraints g, <0 is also convex. Otherwise there is a pos-
sibility that it is only a local minimum and true minimum or optimum exists
somewhere else.
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Convexity of a set S is defined as follows:
{t}=0{t},+0{t},eS forall {t},{t},eS
and 0<6<1, 6=1—6

which means that any point on a line segment between {t}, and {t}, belongs to §
whenever {t}, and {¢}, do.

Definition of convexity of a function f, may be stated in a number of ways. For
instance:

f60{th +0{e}) <0f,({1) + 0.({1)) (1.4.1)
for all {th,{th,eS and 0<0<1,0=1-9¢

In our case f, is confined to be a linear function of {¢}, therefore it is convex.

In general it is quite difficult to prove convexity of S. Fortunately it is known
to be generally convex at least locally [15, I7] and in the followings convexity of S
is assumed.

1.4.3 Unconstrained Optimization: Method of Steepest Descent [(76]

Although unconstrained problems are not common, it is useful clarifying the
techniques of non-linear programming, and also as is seen in Reference 14 by
Schmit, et al., an inequality constrained minimization problem is transformed
into one unconstrained. In the present section the objective f, is considered to
be a non-linear function of {t}.

Initially {f}°={8,#, ---, &} is selected. A new position {t}' which makes f,
smaller most rapidly is

{t} ={1}"—o grad f, (1.4.2)

where ¢ is a positive scalar, and grad f, is a column vector. 4§ is determined after
several trial and error processes in such a way that it makes f, smallest. Denoting
the value to be 4,,, the new point is

{t}' ={t}°—06n grad f, (1.4.3)

The cycle is continued until any larger value of 6 than some prescribed valuc
does not make f, smaller.

In practical applications it tends to make a zigzag toward the true minimum.
The higher the non-linearity is the more number of zigzags is necessary and con-
vergence is slower. There are several methods to improve convergence.

1) Subrelaxation

A constant §, 0<#<1 is introduced and the step is

(£ ={1}*"1—65,, grad f, (1.4.4)

This document is provided by JAXA.

y e



A Method of Minimum Weight Design 269

2) Diagonal Step
After several trials and {f}*, k=1,2, . . -k are determined, the next step is not
along the gradient of f,, but is toward the third side of the triangle {£}*-?, {t}*~* and

{}*.

{efer ={t}* + o, ({e} —{}*) (1.4.5)
3) Parallel Tangents {t*
Based on the same principle as that of the
former, the idea is more expanded. (2 T
{ff*={t)**"'—d, grad f,
{fPEr={* 4 o, ({t}* — {1}*-?) (1.4.6) Fic. 1.4.1. Diagonal Step.

Application of diagonal step to structural analysis is seen in Ref. 77.

1.4.4 Constrained Optimization

When the acceptable region of {f} is bounded by constraints ¢;<0, (i=1, - - -,
n) the problem becomes extremely complicated. The degree of difficulty mainly
depends on the qualities of g, and when all g; are linear as well as the objective
function fi, the problem falls into the realm of linear programming which can be
solved very effectively using Simplex Method. Some of the existing methods of
non-linear programming such as Cutting Plane Method and Reduced Gradient
Method are based on the same principle as that of the Simplex Method. In those
methods non-linear constraints are approximated by successive sets of linear
constraints. It is widely admitted that the use of the Simplex Method saves
computational time compared to other methods outlined in the present section,
but it requires large computer memory capacity, which makes it intolerable for
today’s computer to handle problems with many constraints and variables.

Application of the Steepest Descent Method:

There is an idea of using the constraints of the problem to modify its objective,
rendering a constrained optimization problem into an unconstrained. The modifi-
cation of the objective is to be such that, for points satisfying the constraints, the
original objective is changed only little while for points outside the acceptable
region the modified objective has very large values.

Consider the modified function f proposed by Wolfe [75]

m

f=f+ 2 h({thg.({z} (1.4.6)
where
_ [0 if g,({hH=0
h. —
(1) {K if g.({fh>0
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and K is a suitable large positive number. f is sought to minimize, using the
steepest descent method, in which

m

grad f=gradf,+ > h;grad g, (1.4.7)
=1

Since grad g; is normal to the boundary surface g,=0 and points away from
the acceptable region S the effect of the latter term is to kick the point {f} back
into S if it tends to leave it under the influence of the first term.

Schmit and Fox [/4] presented as the “penalty functions”

2. <9)° (1.4.8)

where the value of the function with angular bracket is,

o [0 zZ0
@'= 1 z>0
(pr=z%2)’ (1.4.9)

Introduction of the penalty function in this way does not affect the continuity of
f or its first derivatives, thus insuring smooth convergence.

Gradient Projection Method:

In the methods presented previously it is unavoidable for the point to go back
and forth across the actual boundary g;=0. In this method once the point {t}
reaches at a boundary of a constraint, it travels along it until another new con-
straint becomes active. Then the new direction of travel will be along the inter-
section of the two constraint surfaces.

Minimizing process using this method is realized in projecting the vector
—grad f,, onto the boundary surface to determine the direction of the next move
—{p}. Since boundary surfaces are generally curved, the gradient vector is
projected on local tangent planes.

As can be seen in the Fig. 1.4.2,

{p}=gradf,+agrad g, (1.4.10)
Since {p} is perpendicular to grad g;

\ (grad g.)"{p}
=0=(grad g,)"grad f, +a(grad g,)"grad g,
(1.4.11)

Thus,

- {P}
agred g a= —(grad g;)Tgrad f,/(grad g,)7grad g,
(1.4.12)
When more than one constraint, ¢,,(i=1,
FiG. 1.4.2. Desirable Direction. 2, - - -, m) become active, the same principles
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are used.
{p}=gradf,+ Ja; grad g, (1.4.13)
Let [G] be the m by n matrix consisting of the corresponding m rows of grad g,
{p}=grad f, +[G1"{a} (1.4.14)

Supposing all grad g, are linearly independent, [GI[G]” is nonsingular. A vector
{a} consisting of «; and {p} are determined.

[GH{p}=I[G] grad f, + [GI[G]"{«} (1.4.15)
{a}= —([GIGI")'[G] grad f, (1.4.16)
{p}=grad f,—[GI"((GIIG]")~'[G] grad f, (1.4.17)

Although this technique speeds up convergence considerably, it is apt to lead
the point to vertex of n constraint surfaces which some time is not the optimal
point. At the point of convergence, it is always necessary to be testified against
Kuhn-Tucker condition for optimality [32].

Rosen [87] derived a conclusion which is equivalent to the Kuhn-Tucker
theorem, that if

{r}=0 (1.4.18)
{a} >0 (1.4.19)

are satisfied at a point {¢}, it offeres the global minimum of f, within the acceptable
region. If ¢;<0, the corresponding constraint g, is dropped from the formation
of [G] and the process continues.

2. MINIMUM WEIGHT DESIGN

2.1 General Description
2.1.1 Object and Assumptions

The present chapter proposes a general method to obtain the minimum weight
design of structures built up of thin panels and trusses.

It is required that both static and vibrational behaviors are considered simul-
taneously. In considering static behaviors the structure must be safe against
several alternative loading conditions.

Assumptions made on the structure are:

1)  Geometrical configurations and materials arc already given and design
variables are thicknesses of panels and cross sectional areas of trusses.

2) The structure is composed of several sections of panels or trusses and
each section contains only one design variable holding thickness or cross sectional
area constant within the section.
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3) Bending stiffness of panels and trusses are either negligible or not con-
sidered.

4) The structure is within elastic limit and initial stresses and thermal effects
are not present.

Requirements which may be imposed on the structural behaviors are:

1) Stresses must satisfy certain requirements.

2) The first few natural frequencies must satisfy certain requirements.

3) Design variables must have values between some prescribed realistic limits.

2.1.2  Structural Idealization

Consider for example a box beam shown in Fig. 2.1.1. It is considered to be
composed of two panel sections and a truss section which are shown in Fig. 2.1.2.
Thickness or cross sectional area of each section is constant, which is the variable
to be determined.

Each section is again divided into an appropriate number of finite elements
shown in Fig. 2.1.3 in order to obtain stiffness matrices and stresses using the
method outlined in 1.2.

Due to the properties of the elements and variables employed, both stiffness and
mass matrices are expressed as

[K]l=4[K ]+ [K,]+ - - - + 4,[K, ]+ [K,] (2.1.1)
M]=t,[M]+6IM,]+ - +£,[M, ]+ [M,] (2.1.2)

Lz
<SP %Z

\ Fic. 2.1.2. Idealized Sections of the
Fic. 2.1.3. Finite Elements. Structure.
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where t,, t,, - - -, t, are design variables, and [K,] and [M,] are stiffness and mass
matrices of the non-structural or predetermined members.

Substructure method is applied to panel sections for computational economy.
Displacements of nodes common to other sections are taken to be {,} defined in
1.2.5. Because of linearity of the stiffness with respect to the thickness of the
panel, reaction {R,} is independent of the variable and the boundary stiffness
matrix is linear of the variable. General form of the stiffness matrix (2.1.1) still
holds validity. Mass is generally lumped at those boundary nodes.

2.2 Mathematical Model
2.2.1 Mathematical Presentation of the Problem

The given problem is to minimize weight of the structure, while requirements
on stresses and frequencies are satisfied. We now know that the problem can be
stated as one of the non-linear programming whose presentation is in 1.4.1,
where f, represents weight of the structure and g; requirements imposed.

2.2.2 Objective Function

The objective function f, is a linear combination of design variables ¢,,¢,, - - -, ¢,
which are components of a vector

{t}:{tl’ tz, tt T tn}

f, is defined as
fi= Z Agty={A}"{1} 2.2.1)

where A, is weight of the i-th section when ¢, is unity. If some non-structural or
predetermined members are incorporated, f, does not give actual weight of the
structure, but still f, defined by Eq. (2.2.1) holds validity as the objective.

2.2.3 Constraints

Constraints may be formulated in various forms depending on the type of
requirements they represent.

Requirements on stresses may be given in two-folds; from view points of elastic
limit and stability. To be elastic, the following must be satisfied,

(6% +0d}—0,.0,+37%,)"*—0y <0 (plane stress)

(2.2.2)
0—a,Z0 (truss)

where ¢y is yield stress and o, g, etc. are stress components calculated following
the procedure in 1.2. The relations must be held for all finite elements and for all
loading conditions.

To avoid elastic buckling

O —0cr, k=0 2.2.3)
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must be held for appropriate stress component of some elements ¢, and for all
loading conditions. ¢,, , is a critical stress of the k-th buckling mode considered
and may be a function of design variables.

Frequency of the k-th vibration mode w, must satisfy

wc-r,lc_wkgo (22.4)

where w,, ;. is a prescribed critical frequency.
Design variable #; may have upper and lower boundaries, and

tLi—ty: =0

2.2.5)
t,i—6=0 (

where t; ; and ¢, ; are upper and lower boundaries respectively of the variable ¢;.

2.3 Derivatives
2.3.1 “Why Derivatives?”

In applying programming techniques we have seen that derivation of gradients
of the objective and constraints is necessary. Apart from that immediate need,
recognition of the role of derivatives of stresses and frequencies with respect to
design variables is important in designing structures especially indeterminate.
There is a “hybrid action” defined by Cross [78] as “structural action in which
two or more parts participate in carrying loads to such an extent that if the strength
of one part is changed the forces acting on other part are largely affected.” If this
action is profound, one member cannot be designed without due consideration for
its effect on other members. Design and redesign process in a usual way in which
an over stressed member is increased in strength and so on will be greatly simpli-
fied and be made systematic if gradients are found and incorporated in. This is
true in dynamic behaviors as well. Also when the mission is changed a little or
a member is necessitated to alter a little, evaluation of the behavior is straight
forward with the knowledge of derivatives.

One way of obtaining those derivatives is a finite difference approach. Early
works of Schmit et al. used this approach to find out tangent planes of constraints.
Generally speaking it would involve a quite tedeous computation, since basically
it is a series of complete reanalyses and considerable accuracy is demanded in each
computation.

Direct method of deriving derivatives is shown in the following sections.

2.3.2 Derivatives of Stresses

Evaluation of derivatives of stresses with respect to design variables is widely
done by those discussing structural optimization [/5,79]. This essentially is to
find out the rate of change of solution of simultaneous equations with respect to
parameters included in coefficients. Or it may be reduced to the problem of
obtaining derivatives of an inversed matrix.
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Suppose that a non-singular square matrix [K] includes a parameter #,. When
t; is increased by a small amount 4¢;, [K] and its inverse [K]™' will be altered by
small quantities 4[K] and 4[K]"' respectively. Thus

(IKT+4IKDUKT '+ 4K ) =] (2.3.1)

where [I] is a unit matrix. Expanding and substituting the relation [K][K]'=[/],
(2.3.1) becomes after neglecting second-order term,
AIKJIK}' + [K]4[K]'=0

or (2.3.2)
A[K]'= —[K] ' 4[K][K]™

Reducing 4¢ to an infinitesimally small quantity, we obtain the relation

oK [K]—l_a_”f_][x]ﬂ (2.3.3)

ots ot

Stresses are calculated by (1.2.16) and (1.2.15).

{0}=[DBN{u} (1.2.16)
{u}=[KI{F} (1.2.15)

Design variables are found in [K]~! only, so differentiating (1.2.15) we have

0
ot;

0 (n_ -1
'a“ti‘{”}* [K]1-'{F}

—_ [K]*%[K][K]*{F} (2.3.4)

i

k2
= — KT 2 (K1()

T

and

3 4 9
5 1o =DBNI - {u)
(2.3.5)

__ [DBN][K]“%[K]{u}

Since stiffness matrix [K] is expressed as a linear combination of #; in (2.1.1),
finally we have

9 _{u}= — K1 [KIK] (P} = — K] K () 2.3.6)

5"1__{0}: — [DBNIIKI'[K }{u} 2.3.7)

These relations are equivalent to those derived by Gellatly et al. [/5] and
Romstad et al. [/9].
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It should be noted as mentioned by Gellatly that, “this method is particularly
attrative since it only requires the matrix multiplications” of (2.3.6) and (2.3.7)
and “[K]™" and {u} are calculated only once”. It should be also mentioned
that the similarity of (1.2.16) and (2.3.7) allows the usage of the same compu-
tation coding to obtain as that used to obtain {o} by only inserting a vector
—[K;H{u} instead of the last vector of the external force {F} in (1.2.16).

2.3.3 Derivatives of Frequencies

It has been an uncommon practice in structural optimization to use derivatives
of frequencies discussing vibrational behaviors; rather the method incorporating
Lagrange multipliers has been extensively used by Turner [35], Prager et al. [38]
and Taylor [36,37]. Though this method may be efficient dealing with simple
columns or beams as has been applied, ingenuity would be needed for it to be
applied to more complex structures.

A numerical method is developed to obtain derivatives of frequencies, which
may be effectively incorporated into the existing methods of structural optimization.

Frequencies are determined by the eigen-value problem (1.3.2) of order N, or

[KKu}=2[M{u}

e (2.3.8)

where [K] and [M] are expressed as
[K]=Y4,[K,] (2.1.1)
[M]=5t,[M,] (2.1.2)

in terms of design parameters ¢,.

Following the similar procedure as in 2.3.2, a parameter ¢, is altered by a small
amount A4¢,.

Stiffness and mass matrices [K] and [M] of the modified structure become

[K']=[K]+ 4[K] (2.3.9)
[M']=[M] + 4[M] (2.3.10)

The eigen-value and the eigen-vector of the new system are consequently
altered by small quantities

=21+ M (2.3.11)
(W'} ={u} + A{u} (2.3.12)
(2.3.8) may now be written as
Kl =V TM ')

or
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[KT{u} + AIK{u} + [K14{u} + AIK) 4w}
=AM {u} + AAMYu} + 24IMYu} + AM] A} (2.3.13)
+ A24IM){u} + AAM)A{1) + 24T A} + AAAIM] A{us)

Substituting (2.3.8) and neglecting higher-order terms ( 2.3.13) becomes
AIK{u} + [K14{u} = AAM(u} + 24IMY{u} + AM ] A{u} (2.3.14)
or dividing it by 4¢;,

A{u} ____A_l_ _
[P]T Ati{Q} {R} (2.3.15)

and

[P]=[K]—2[M]
‘@ {0} =[M]{u} (2.3.16)
{R} = (—A[K1+ 24IM]){u} | 4,

The number of unknowns appearing in (2.3.15) is N+ 1, i.e., N components of
A{u} and 42, while there are N equations contained.

It is always possible to eliminate one component of 4{u}, since essentially an
eigen-vector {u}, hence {u} + 4{u} is subject to an appropriate way of normalization.
The simplest of all would be to set one component permanently to unity. Suppos-
ing the r-th component u, is set to unity, the r~th component of 4{u} must vanish
in order that {&'} is also normalized in the same manner as {u}.

Now we form a new unknown vector {X} of the order N which is composed of
A{u} with its r-th component replaced by 42. Corresponding coefficient matrix [P’]
is basically [P] with its r-th column replaced by —{0}. Then (2.3.15) becomes

[P'i{X}={R} (2.3.17)
@
where
{X}={4u,, du,, - - -, du,_,, 42, du, ., - - .}/ 4t
and
[P/]:[PlaPZ: c "Pr—la ’—QaPrHs c ]
P; representing i-th column of [P].  Although [P]=[K]—A[M] is singular with the
rank N—1 in most vibrational problems, [P’] is generally not singular since one
column is replaced by a completely new vector. Then,
{X}=[P'T"Y{R} (2.3.18)
When 4¢; tends to infinitesimally small quantity dt,,
&
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A[K] = aaz [K]dt, = [K,)dt, (2.3.19)
A[M]= a"’t [M]dt, =M, ]dt, (2.3.20)

{X} and {R} in (2.3.18) become with relations (2.3.16) taken into consideration

(K= [, D By O B} 23.20)
ati H at,,‘ ’ ’ ati ’ ati ’ a[.,' ’
{R}=(—I[K 1+ aIM;D{u} (2.3.22)

The r-th component of {X} is the derivative of the eigen-value.

Care must be payed to the choice of r which is the number of component
equated to unity. 1If |u,| is small compared to the absolute values of other
components of {u}, 4{u} would be large and susceptive of computational error.
Therefore it would be safe always to choose the component of the largest absolute
value as one to be equated to unity.

2.3.4 Extension into Non-Linear Relationships

In the preceding sections it has been assumed that linear relationships are held
between design variables and stifiness and mass matrices. These assumptions are
not essential in deriving derivatives of either stresses or frequencies.

When the linear relationships (2.1.1) and (2.1.2) are not assumed, it is clear
that

a4 L
2o} =~ IDBNIKI I 2.3.5)

still holds validity to obtain derivatives of stresses. If the stiffness matrix [K] is
differenciable with respect to t;, evaluation of (2.3.5) is straight forward. When
derivatives of frequencies are concerned, (2.3.22) must be replaced by

(R)= (—585 K]+ z%w]) {u} (2.3.23)
and
{X}=[PT"{R} (2.3.18)
is now valid, where {X} and [P'] are unchanged.

2.4 Minimum Weight Design by Steepest Descent Method
24.1 A New Objective

Based on the concept shown in the earlier part of /.4.4, constraints are incorpo-
rated into the objective function in such a way that they make the objective very
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large when they are not satisfied, while they do not affect it much when they are
satisfied. Among various types of penalty terms, one proposed by Schmit and
Fox [/4] which may be stated as

<9:)*
where

0 when ¢,<0

. 2:
<9: g% when ¢,>0

is chosen from the stand point of smoothness of the function.
The new function becomes

f=1,+C 3 <90
=3} A+ C %, <o (2.4.1

where C is an appropriately chosen positive constant and M is the number of
constraints.

tz
gi=0 i

frin

14 ta
FiGc. 2.4.1. Contour Lines of Fully Fic. 2.4.2. Contour Lines of Non-
Stressed. Fully stressed.

Contour lines and minimum of f of two parameters are shown in Figs. 2.4.1
and 2.4.2. Fig. 2.4.1 indicates the case in which the fully stressed design is the
optimum, and Fig. 2.4.2 indicates the case in which it is not the optimum. In
either case steepest descent process will lead to the point of f.;, which is near
the optimum. It should be noted however that the point of f.;, lies always in
the region of violation. But it is expected that when the constant C is increased
the point moves toward the boundary until finally the violations of constraints
become well within the tolerable limit.

2.4.2 Steepest Descent Move

First of all an arbitrary point {f}'={f, 4, - - -, £} is chosen in n-dimensional
design parameter space and the value of f is evaluated. Then the design point
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1s moved toward the direction of the steepest descent, —grad f and the new point
will be

{tf={t}) —o grad f (2.4.2)

where & determines the distance of travel. It is a general practice to determine §
such that the value of f({#}>) is minimum, which will be denoted as Om, and

{tf={t}'—6, grad (2.4.3)

There is no *‘royal road”’ to the determination of 0, and hence a trial and error
process is adopted. First p, is determined such that the largest component of
00 grad f which is denoted as (g, grad f),, is 109% of the corresponding component
of {#r}'. If the value of f evaluated at that point which is denoted as f is smaller
than the former, the same distance is again traveled. This is repeated until at last
at the (k+ 1)-th move f** is no more smaller than f*®, the value just one before,
then the point traces back to the (k)-th point. The distance of travel 0, is then
halved and swayed back and forth evaluating f each time. Finding the point of
the smallest f, p, is halved again and swayed. The process continues diminishing
f continuously until some satisfactory convergence is obtained. The process is
shown in Fig. 2.4.3. In actual application very high accuracy is not needed, and
halving process is conducted three or four times. If in the first place f is not
smaller than the original, g, is divided by 5 and the same process follows from the
original point.

f(\d\]

Fi16. 2.4.3. Halving Process.

Succeeding points {1}, {#}?, - - -, {t}* approaches toward the point of fmwm- When
the one-fifthing processes do not succeed in finding smaller value of f after several
trials until the largest component of 0o grad f is smaller than the prescribed value
t., the series of points is considered to have converged. Fig. 2.4.4 shows the flow
chart for the whole process.
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Initial Setting {{}'
and f

l grad f {t¥ [{t} +P grad f

i t

[nitial Setting R
and =1 {f}-Z/‘)j grod f
1 and f*

{t} —Pograd F
and f*

{t} + £ grad
and f’

=
J+1

[ Present {t)° sToP )

Fi16. 2.4.4. Seeking the Minimum Point with the Steepest Descent Method.

2.4.3 Convergence Speed and Modification

As stated in section 1.4, the process tends to make a zigzag toward the minimum
point. Generally it can be said that as the value of the constant C is increased
the zigzag becomes sharp and convergence slow. It is intended that during the
earlier part of the process C is fixed at a relatively small value until a fairly rough
first guess is obtained and then is gradually increased to improve accuracy. Still
it is not rare to find that a few hundred redesign processes are needed to obtain
a satisfactory design subject to variables of only four or so. Speaking in terms of
computer economy, stress and vibration analysis which includes inversion of total
stiffness matrix is the main source of computing time consumption. Therefore
linearization concept of stresses and frequencies is first introduced to reduce the
number of complete analyses done during the optimization procedure:

{a}={o}o+ (grad {eh"({t} — {1},
o=w,+ (grad 0)T({t} —{t},)

where grad {¢} and grad o are evaluated at {tf},. Then f is minimized and have a
design {r'},. Derivatives are evaluated at this new point and the process continues
until satisfactory convergence is obtained.

The basic philosophy is the same as that in Ref. 18 and 19 except the process
to obtain {#'}, from {r},. Therefore the underlying difficulty encountered in those
references is also the difficulty on the present method.

(2.4.9)
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Weight Plane
Actual Constraint Surface

Replaced Constraint  Surface
by Linear Approximation

——=>> Design Point Path

F16. 2.4.5. Linearized Constraints and Path.

In linear programming with r variables, the optimum always lies at a vertex of
n constraint surfaces; in our problem it corresponds to a so called fully stressed
design. A structure which is optimum at non-fully stressed region encounters a
difficulty. This situation is shown in Fig. 2.4.5. The optimum is obtained at a
point O where the constraint surface ¢;=0 is tangent to the weight-constant
plane, but when the constraint surface is replaced by a plane, the point travels
along the plane until another constraint becomes active. Romstad [19] avoided
this circumstance by imposing a limit to the maximum distance of travel. Ex-
amples using this concept are shown in the next chapter.

2.44 Constrained Path

The path of the design point in the parameter space is zigzag as long as the
steepest descent method is used throughout: linearization of stresses etc. does not
change this fundamental property, since f is non-linear any way. Careful study of
the zigzag path tells us that it is along the constraints, that is, the point “vibrates”
across the constraint surface being active. It is of practical advantage to smooth
the path in the whole ignoring small fluctuations, thus reducing the number of
analyses considerably.

This fact resembles to physical phenomena of a small rubber ball rolling down
along a U or V-ditch. If the initial starting point is improper, the path is zigzag
until the friction takes it over. Subrelaxation in /.4.3 corresponds to the effect
of the friction. But if there is a force to push the ball along the ditch the path
will be smoothened to the greatest extent.
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{t}=g{tr+8{1}
026£1

f =const.

{ts}
FiG. 2.4.6. Gradient Projection. FI1c. 2.4.7. Violation of the Constraint.

Suppose a constraint g, is active, that is, the point {¢} satisfies ¢,({t})=0.

The direction of the steepest descent shown in Fig. 2.4.6 does not generally
coincide with the constraint surface. A move in the direction of —{p’} which is
in a plane tangent to g;=0 is the most desirable. {p’} may be obtained readily
applying the concept of gradient projection outlined in I.4.4, where f, is replaced
by f, and {p} replaced by {p'}.

When {1} lies near the constraint surface g;=0 to a certain admissible degree,
that is

g:.({th <e (2.4.5)

where ¢ is a small positive scalar, the next move is constrained to the direction of
—{p’}. When some other constraints also become active, calculation of {p'} is
straight forword following the procedure in 1.4.4.

Now we have as an assumption that g, is convex and from the definition of
convexity (1.4.1), we can prove that g, increases in the direction of {r'}.

{p'} is considered to coincide with {t,} —{}, where {t,} lies on the extension of
{*}—{1} and {f} which is also on the surface g;=0 tends to {1}. {t'} may be ex-
pressed as

{t}=[0{t.}+0{t}],_, (2.4.6)
where §=1—6. From the definition (1.4.1)
9:(0{t} +0(t) <09.({t.) + 69.({t}) (2.4.7)
therefore
9:.({t)=0 (2.4.8)

Now taking {t,} on the further extension of {t}—{f} and applying (1.4.1) again
with finite value of @, it may be concluded

9:({t:p=9.({t,h) (2.4.9)

On the consequence it can be expected that g; will be increased by more than ¢
in time.
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The constrained path concept was developed basically under the intension of
improving convergence in the steepest descent method. There is little tendency
that {¢} severely violates the actual constraint, since f must monotonously decrease.
Once, after a series of the application of the concept, ¢ becomes larger than e,
the point {¢} is free of the particular constraint and the normal type of the steepest
descent move restored will bring it back to the boundary of the acceptable region.

In gradient projection method presented by Rosen [81,82], the point {f} must
always be in the neighbourhood of the boundary of the acceptable region. After
each movement toward —{p} defined by (1.4.17), another process must be em-
ployed such that

{0 =[% _[GIT(GIGD[Glg}) k=0,1, ---

where [G] is a matrix composed of grad g,’s defined in 7.4.4 and {g} is a vector
composed of g,;({t}¥), until g, <e is attained.

In the steepest descent method presented in 2.4.2, whether the constrained
path is employed or not, the initial point may exist in the region of violation as
well as in the acceptable region. The Rosen’s method requires it to be in the
acceptable. Ref. 82 proposes a method to find an acceptable point, which is
another maximization problem.

2.4.5 Optimality of the Vertex

Design parameter space with #n co-ordinates is divided into acceptable region
and the region of violation by constraint hyper surfaces. Generally movement
along the constrained path will lead the point {f} toward a vertex of constraint
surfaces, which does not always offer the minimum of f.

The similar situation is encounted in the gradient projection method, in which
fi is not the global minimum at the vertex. Since, in the neighbourhood of the
vertex, behaviors of the true objective f; and the modified objective f are almost
identical, the optimality of the vertex reached by the constrained path may be
examined by the criteria (1.4.18) and (1.4.19) developed by Rosen. In the
present section the Rosen’s criteria are demonstrated in a more direct way.

If a vertex is not the optimal point, the optimum lies on a surface of the accept-
able region which is locally tangent to f;-constant surface as shown in Fig. 2.4.8.
At the optimal, it is clear that {p} which is the projection of grad f, on to the
local tangent of the surface of the acceptable region must vanish.

Suppose we have a point {t}, at which m constraints g, (i=1, . -.m) are active,
i.e.,

9({t}y=0 i=1,...,m (2.4.10)

and j-th component of {a} (1<j<m) determined by (1.4.16) is negative. It is
always possible to find a vector of a small magnitude such that

0:({f}o+ 4(1}) {zg 83 2.4.11)
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O I Not Optimum
® : Optimum
Fic. 2.4.8.

which may be restated incorporating (2.4.10) as
gi({t}o + A{t}j) = gi({t}c) + (grad gi)TA{t}j

= (erad go"aiy, 20 O

Increment of f, due to the movement from {f}, to {¢},+ 4{z} p

Af =f({th+ 4{1}) — .({}) = (grad )7 4{1},

which is rewritten using the relations (1.4.13) and (2.4.12) as
m T
Af, = ({p}—— % a;grad gi> A8,

= (PP *A{t},— f;l ay(grad 9)7 {1},
={pD74{t};—a,(grad g*)7 41},

=
e N
3.=0
a{t}

285

(2.4.12)

(2.4.13)

(2.4.14)

When {p} vanishes, that is, when {}, is a vertex (m=n) or grad f, is perpendic-
ular to all constraint surfaces active, f, can be reduced in its value by moving {1},

in the direction of 4{¢},.

The physical meaning of 4{¢}, is shown in Fig. 2.4.8-b in which A{t}, satisfies

the relations

(grad g,({r}))"4{t},=0
(grad g,({t}))" 4{2},<0

(2.4.15)

and further reduction of the value of f, is possible by moving away from the vertex

in the direction of 4{t},.

Conversely if {«}>0 it can be proved that {t}o is the optimum, since in Fig.

2.4.8-a,

H{th+4{1),  fi{th+ 48} 21,1}y

and
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f({t}e+ 04{t}, + 64{t},) = 0f,({t}, + A{t}) + 6f,({t}, + 4{t},)
=f,({t}o) (2.4.16)

because of linearlity of f,, where 0<0<1 and §=1—6. 04{t}, + 64{t}, expresses all
possible directions within the cone spanned by 4{t}, and 4{¢},, and along this direc-
tion f, is increased in its value.

Consequently, when {p}=0 is reached, if all components of {«} are non-negative,
the global optimum is assured to have been obtained, and if a component of {a} is
negative, the corresponding constraint is dropped to make the movement free of
the constraint.

3. EXAMPLES

3.1 Cantilevered Beam
3.1.1 The Model

As a preliminary study to find the best suited method, a cantilevered beam
made of steel with the length of 400 mm and the depth of 100 mm is chosen.
The beam is partitioned into four sections of equal size along its span and their
thicknesses are design variables to be determined (See Fig. 3.1.1).

100 -
v
T~
250kg  500kg |250kg

u
Section 1—1

Section ¢ |
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N

7 8 r >-10 1
Section ® ‘
g . 2 § "
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15 @ 16 ||17 18 —19
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g 3 4 ©
F Section L+ 1 I
|
1 Secliion Symmetry Condition :

!
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L

e Boundary Nodes

FiGc. 3.1.1. Structural Partitioning

This document is provided by JAXA.



A Method of Minimum Weight Design 287

— . 20 kg/mm?
——— = 20kg/mm?

w1 -
250kg b 250k
|
i
|
i
Section
1 Iy
ot i )
a. 3 ,
P I . ‘0‘7/ [
T )\,\
¢ Oy
i" IS ts
2“/
St
er] @ (‘;Loﬁb 1
Initial “f, Final _
Design = + = Design
b & I ay
aid '211 " A
ts =10mm g r,/ ty= 2.664mm
. 2 -
tz =10mm Seclion t2= 5.566 mm
» =10mm 2 N 13=8.521 mm
te =10mm 4] AN Lv O te=11.363mm
‘o \/'V
i
i o
o s}
/ of
w’
(s3]
~ )
s -
< |
¥
T
.9
3] e
19 A
© g,l
Section @
I 3 ;(3’
? 1y
- A © )
SN A7 SN AT
b | s
L= | -
W )
‘C" - o2 1 o ~ A
[Ge} .lf’/ i [te) n/
kS o 1 , o
X i <
i [}
“, | m} y
2 © J
N @ S I © (4
3 22 2| 357
o o
I
< 3© o
S; o~ i 2] >
a ((8 4 ~ g; c
i Section E
4 © 8
o =
o =
@ o >
2N\ A
8
>
HYEIANG
o v
= ]
- !
- o 7 7T 7
e Y

Fic. 3.1.2. Principal Stresses.
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It is subjected to the lateral tip load of 1000 kg. The requirements to be met
are: 1) Any part of the beam is within the elastic limit, 2) The fundamental
bending frequency is above a prescribed value. Young’s modulus E=2.1x10*
kg/mm?, Poisson’s ratio v=0.3, yield stress g, =20 kg/mm? and specific weight
of 7.8X10¢ kg/mm? are assumed.

3.1.2 Finite Element Analysis

Assuming plane stress condition, each section is now divided into 24 triangular
finite elements with 19 nodes (See Fig. 3.1.1).

The section stiffness matrix [K;] obtained is of order of 38x38. Now, incor-
porating substructure method outlined in 1.2.5, [K,;] may be reduced to 12x12,
where the boundary displacement vector {1,}is defined by displacements of nodes
1 through 6. Also considering the symmetry of the structure and of the external
forces, the number of independent displacements may be reduced.

Us=Uy, Vy= —Vy, Ug= U3, Vg= —V; 3.1.1)

The final matrix [K;] thus obtained is of order 8x8.

The total stiffness matrix [K] obtained by linear summation (2.1.1) is of order
of 18X18 after the geometrical boundary conditions are taken into account. If
the substructure method was not used, it would be of order of 128 X128, and if
symmetry was not considered, it would be of 24x24.

Thicknesses #;=t,=t3=t,=10 mm are assumed and displacements, stresses and
the first natural frequency are obtained. Principal stresses in each triangular
elements are shown on the left side of Fig. 3.1.2. Comparison of the results with
those obtained by the simple beam theory is shown in Table 3.1.1.

TABLE 3.1.1
FEM Beam Th. Deviation
(%)
Maximum Stress (kg/mm?) 22.27 24.00 7.21
Maximum Deflection (mm) 1.209 1.219 0.82
Fundamental Frequency (cps) 521.4 518.6 0.56

Computation by HITAC 5020F took about 9 seconds for the generation of
boundary sticness matrices including the compilation time, and only 1.1 seconds
were needed for stress calculation followed.

3.1.3 Linearized Version

Stresses are assumed by the linear relation (2.4.4) and the steepest descent
method with diagonal step is used to optimize thickness of each section. The
objective to be minimized is defined by (2.4.1)

f=2A44,+C3<g:)" (2.4.1)

Since all the sections are of the same material, 4; is chosen to represent the volume
of the i-th seciton with unit thickness instead of the weight.
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There are three types of ¢g;’s:

)  (oy:—o0y) /oy (3.1.2)
Go,i— (% + 0'?; —0.0,+ 373:y)1/2lmax within section ¢

i) (0., —0)/ o, (3.1.3)

i) (i~ /1 (3.1.4)

These types insure that contributions of various constraints to f are of the same
magnitude.
The value of C is first chosen to be

C=V,= 2 A{t)nun (3.1.11)

which is the initial volume of the structure, and then f is minimized under the
assumptions of (2.4.4) where gradients are evaluated at {t},={t}injum- Con-
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Fic. 3.1.3. Design Modifications. Linearized.
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vergence condition ¢, defined in 2.4.2 is chosen to be 104 mm.

Then as the second step, C is doubled and f is minimized under the same
assumptions, starting from the final values of {f} in the first step. At the termina-
tion of the K-th step, step, C is multiplied by 2K and the (K+1)-th step enters.
Steps are conducted up to the 6-th and the final value of C equals to 3840V,

The final values of {f} of the 6-th step are denoted as {t'},, and if the difference
of the total volume evaluated at {t}, and {¢'}, is less than 0.001%, convergence is
assumed to have been achieved. If not, {t'}, become the starting values {t}, of the
next modification cycle.

If the variables {t} are too far removed from the starting values {f}, at which
derivatives are evaluated, linearized assumptions (2.4.4) would not hold validity
anymore. Before calculating the direction of the steepest descent —grad f, each
variable is tested against its starting value to find the deviation, and if it is more
than 20%, the modification cycle ceases and the new cycle enters evaluating new

TaBLE 3.1.2. Design modification of four sectioned cantilevered beam.
Linearized concept.

w¢r=600 cps, oy=20kg/mm?

CYCLE SECT 1 SECT 2 SECT 3 SECT 4 FREQ VOL
mm mm mm mm cps  10fmm3
kg/mm? kg/mm? kg/mm? kg/mm?2
1 4 10. 0000 10.0000 10. 0000 10. 0000 521.41 40.0000
gy 5.320 11.141 17.047 22.685
2 0. 5000 7.0011 12. 6685 19.0653 1181.88 39.2348
106.754 15.888 13.449 11.926
3 3.2996 4.3776 10.7825 18.0111 929.56 36.4708
16.135 25.383 15.783 12.619
4 2.4805 5.2578 9.9668 17.1913 968. 41 34.8964
21.475. 21.154 17.075 13.321
5 2.5718 5.7281 8.3319 13.1744 867.15 29. 8062
20.713 19.436 20.434 17.249
6 2.6607 5.5627 8.5176 11.0739 823.24 27.8149
20.002 20.009 20.010 20.521
7 2.6634 5.5656 8.5210 11.3551 823.24 28.1051
20.000 19.999 20. 000 20.012
8 2.6637 5.5682 8.5211 11.3626 829.29 28.1156
19.997 19.999 20.000 20.000
9 2.6640 5.5655 8.5213 11.3626 829.34 28.1134
19.995 20.000 19.999 20.000
CYCLE NO. 8
C SECT 1 SECT 2 SECT 3 SECT 4 FREQ ZIG NO
Vo 2.6565 5.5376 8.4560 11.2495 827.58 28
20.100 20.049 20.098 20.199
2V, 2.6603 5.5512 8.4884 11.3012 828.36 23
2.0023 20.051 20.077 20.108
8V, 2.6623 5.5615 8.5120 11.3480 829.17 S
20.008 20.014 20.021 20.025
48V, 2.6632 5.5650 8.5187 11.4594 829.32 5
20.001 20.001 20.004 20.005
384V, 2.6640 5.5655 8.5214 11.3615 829.31 2
19.995 20.000 19.999 20.002
3840V, 2. 6640 5.5655 8.5213 11.3626 829.33 1
19.995 20.000 19.999 20. 000
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TaBLE 3.1.2. (Continued)
wqr=1000 cps, oy=20kg/mm?

" CYCLE SECT 1 SECT2 SECT3 SECT4 FREQ  VOL
mm mm mm mm cps 10!mm?
kg/mm? kg/mm? kg/mm? kg/mm?2
R 10. 0000 10. 0000 10. 0000 10. 0000 521.41  40.0000
oo 5.320 11.141 17.047 22.685
2 0.4900 7.0286 12.7288 19.1353  1195.15  39.3827
108.934 15.826 13.385 11.882
3 0.9922 7.9423 14.3835 21,6229  1145.05  44.9409
53.771 14. 006 11.844 10.515
4 2.2502 7.9425 14.3831 21.6226  1028.78  46.1984
23. 688 14.005 11.843 10.513
5 2.5876 4.3296 10.7714 18.0107  1005.49  35.6993
20. 581 25.665 15.801 12.620
6 2.5992 5.2945 7.8738 19.2871 963.45  35.0546
20. 493 21.028 21.576 11.782
7 2.6324 5.5051 9.8433 18.2671 985.45  37.2479
20.235 20.308 17.278 11.796
8 2.6645 5.5607 10. 4862 20.2303  1000.52  38.9416
19.992 20. 002 16.220 11.235
9 2.6631 5.5634 9.4267 21.0394 996.63  38.6926
20. 003 20. 001 18.030 10.802
10 2.6635 5.5611 10.5287 19.9671 997.11  38.7204
19.999 20.001 16.156 11.383
11 2.6197 5.5256 8. 3664 20. 4833 978.84  36.9950
20.334 20. 148 20.307 11.095
12 2.5964 5.5740 10.8917 17.5705 974.30  36.6326
20.513 19.951 15. 631 12.936
13 2.5260 5.5263 7.7543 20.3250 964.32  36.1316
20.272 20. 151 21.903 11.181
CYCLE NO. 7
C SECT 1 SECT2 SECT3  SECT 4 FREQ ZIG NO
Vo 2.6224 5.5048 9.8688 19.3801 988.02 17
20.313 20.210 17.233 11.727
2V, 2.6432 5.5333 10.1560 19.8330 994.24 86
20.153 20.103 16.730 11.450
8V, 2.6568 5.5524 10.3676 20. 0903 998.07 37
20.049 20.032 16.359 11.293
48v, 2.6632 5. 5606 10.5076 20.2516  1000.81 10
20.001 20. 000 16.114 11.194
384V, 2.6645 5.5607 10. 4862 20.2303  1000.23 11
19.999 20. 000 16. 151 11.207
38407/, 2.6645 5.5607 10.4862 20.2303  1000.23 1
19.999 20. 000 16.151 11.207
CYCLE NO. 8
C SECT 1 SECT2 SECT3  SECT 4 FREQ ZIG NO
Vo 2.6177 5.5018 8.8030 20.0539 987.29 70
20. 344 20.227 18.812 11.332
2V, 2.6411 5.5343 9.0933 20. 5880 993.73 61
20. 169 20. 108 18.363 11.036
8V, 2.6570 5.5558 9.3329 20.9137 998.09 43
20.049 20. 029 17.993 10.855
48V, 2.6631 5.5634 9.4267 21.0394 999.83 17
20.005 20. 005 17.848 10.785
384V, 2.6631 5.5634 9.4267 21.0394 999.83 2
20. 005 20. 005 17.848 10.785
38407/, 2.6631 5.5634 9.4267 21.0394 999.83 1
20. 005 20. 005 17.848 10.785
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derivatives.

The critical frequency w,, is first assumed to be 600 cps and then increased
by 100 cps successively. At lower critical frequencies, convergence is satisfactory,
and as the final result, obtained is a fully stressed design which is identical below
800 cps and the results are shown on the right of Fig. 3.1.2. The fundamental
frequency at this proportioning is 829 cps. At higher values of critical frequencies
than 1000 cps, succession of modification tends to oscillate. This is due to the
fundamental property of the linearized concept which is pointed out in 2.4.3.
Examples of convergence processes are shown in Fig. 3.1.3 and Table 3.1.2. In
the table shown are designs of each modification cycle {t},, corresponding maximum
equivalent stresses ¢,=(¢%+02—a,0,—37%,)"* of each section, fundamental
frequencies and the volume. Also shown are examples of processes within a
cycle. Converged values at each step are listed with the number of zigzags ex-
perienced and, here, stresses and frequencies are assumed values by (2.4.4).

Average of about 200 zigzags has been experienced in one modification cycle
which has not been stopped due to more than 20% deviation of the variable.
Computation time was about 180 seconds for a case with the critical frequency

TasLE 3.1.3. Design modification of four sectioned cantilevered beam. Constrained
path concept. * signifies a quantity constrained. The numeral in ()is a
caracteristic value «.

@¢,=600 cps, cy=20kg/mm?

NZG SECT1 SECT2 SECT3 SECT4 FREQ VOL f

mm mm mm mm cps 104 mm3 104
kg/mm? kg/mm? kg/mm? kg/mm?

C= Vo, e=0.05
11; 10. 0000 10. 0000 10.0000 10.0000  521.41 40.0000 120.913

g 5.320 11.141 17.047 22.685

2 8.2302 9.4262 10.4690  12.5625 600.06*  40.6879  40.6879
6. 466 11.819 16.275 18.071

3 7.0844 8.0261 8.8710  10.8352  600.04* 34.8167 35.7217
7.512 13.881 19.205*  20.952*

4 7.7733 5.5681 . 8.8693 10. 8351 596.22* 33.0458  34.1053

6.845  19.974*  19.203*  20.949%
(2.40) (5.89) (8.08)  (—0.36)
5 2.6721  5.5721  8.8788  10.8473  819.34  27.9703  28.8742
19.935%*  19.973*  19.204*  20.951*
(1.33) (2.80) (@.64) (5.15)

C= 2V, e=0.025

1 2.6721 5.5721 8.8788 10. 8473 819.34 27.9703  29.7783
19.935* 19.973* 19.204 20.951

2 2.6721 5.5724 8.8090 11.2879 828.98 28.3414  28.3767
19.935* 19.972* 19.350 20.133*

3 2.6721 5.5732 8.4787 11.2876  826.62 28.0116  28.0668

19.935%*  19.972*  20.100%*  20.133*
(1.33)  (2.80) (4.23)  (5.59)

C= 8V, €=0.00625

1 2.6721 5.5732 8.4787 11.2876  826.62 28.0116  28.2319
19.935* 19.972*  20.100*  20.133

2 2.6721 5.5733 8.4785 11.3441 827.86 28.0680  28.1550

19.936*  19.972%  20.100*  20.032*
(1.33) (2.80) (4.24) (5.64)
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TaBLE 3.1.3. (Continued)
0c»=1000 cps, oy =20 kg/mm?
NZG SECT1 SECT2 SECT3 SECT4 FREQ VOL f
mm mm mm mm cps 10* mm?# 104
kg/mm?  kg/mm? kg/mm? kg/mm?
C= Vo, e=0.05
14 10.0000 10. 0000 10.0000 10. 0000 521.41 40.0000 973.346
ao 5.320 11. 141 17.047 22.685
2 2.4613 7.6436 12.1627 19.1250  959.49*  41.3926  50.6947
21.654 14.561 14.001 11.885
3 2.6551 7.1659 12.7178 19.3443 959.15* 41.8831 48.0626
20.069* 15.527 13.937 11.750
4 2.6544 5.4494 10. 4268 17.5309  956.95* 36.0615 43,6468
20.069* 20.410* 16.324 12.965
5 2.6544 5.4502 10.0749 17.7245 956.73* 35.9040 43.5644
20.068* 20.410* 16. 890 12.823
6 2.6544 5.4508 9.7727 17.9175 956.56%* 35.7954  43.5145
20.068* 20.410% 17.409 12.685
7 2.6543 5.4512 9.589%4 18.0506  956.49* 35.7455 43.4909
20. 069* 20.410* 17.739 12.591
8 2.6543 5.4515 9.4576 18.1543 956. 46* 35.7177  43.4744
20. 069* 20.410* 17.984 12.519
9 2.6542 5.4517 9.3748 18.2233 956. 45* 35.7040  43.4622
20.070* 20.410* 18.142 12.471
10 2.6542 5.4517 9.3722 18.2256 956. 44* 35.7037 43.4610
20.070* 20.410* 18.147 12.470
11 2.6540 5.4520 9.2410 18.3393 956.43* 35.6863 43.4534
20.071* 20. 410* 18.403 12.392
C= 2V,, e=0.025
1 2.6540 5.4520 9.2410 18.3393 956.43 35.6863 51.2205
20.071* 20.410* 18.403 12.392
2 2.6541 5.4484 10. 8031 20.0586 994.36* 38.9642 39.5675
20.071* 20.411%* 15.747 11.331
3 2.6539 5.4497 10.0941 20.5554  993.42* 38.7531 39.4489
20.072* 20.412* 16. 846 11.057
4 2.6540 5.4499 10.0184  20.6258  993.40% 38.7481 39. 4457
20.072* 20.412* 16.972 11.020
5 2.6539 5.4501 9.9057 20.7342 993.39* 38.7439 39.4422
20.073* 20.412% 17.164 10.962 (0.87)
(11.74) (7.40)
C= 8V, €=0.00625
1t; 2.6539 5.4501 9.9057 20.7342  993.39 38.7439  41.5385
gy 20.073* 20.412 17.164 10.962
2 2.6539 5.5268 9.9258 20.7539 992.27 38. 8604 40.9483
20.073* 20.130 17.129 10.951
3 2.6539 5.4818 9.9848  20.8125 994.55* 38.9330  40.6143
20.073* 20.293 17.028 10.920
4 2.6539 5.5504 10.0457 20.8737 994. 54* 39.1237 40.1362
20.073* 20. 044* 16.925 10.089 (0.88)
(11.77) 7.77)
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_ of lower than 900 cps, and for cases with higher ones, convergence was not
attained.

3.1.4 Constrained Path

It is found that linearized concept is not applicable to some types of problems.
It cannot be avoided to evaluate stresses and frequencies at each redesign, but it is
intolerable, at the same time, to do so from the stand point of computation time.

The constrained path concept is now used to reduce the number of redesigns.
Since the behaviors of the structure are not assumed but exactly calculated any-
time, only a single cycle is necessary to be carried out. Three steps to increase
the value of C and to decrease ¢ are conducted. The processes and results are
shown in Table 3.1.3. The values of equivalent stresses and frequencies with
“*” signify that they meet constraints (3.1.2) and (3.1.3) within the limit of &
ie.,

(9)*=Wa0:—0av)[or)’<e?, i=1,...,4 (3.1.6)
(gn)z: ((wcr_w)/wcr)zé‘sz (3. 1 .7)

In these cases, the constrained path —{p’} is taken for the next move. As an
example the case of w,, =600 cps, and the second zigzag, NZG=2, where the
fundamental frequency is constrained is chosen to show the proedure to generate

—{pr'}.

Since all g,’s are negative

{giy=0 (3.1.8)

and

grad f=grad f,
:{AU Aza A3, A4}
={1,1,1,1}x 10* (3.1.9)
Also it is calculated that

grad o={—22.81, —6.46, 6.26, 14.57}

and
grad g,= — grad o (3.1.10)
mCT
Similar to the procedure in 1.4.4,
{p'}=grad f+a’grad g, (3.1.11)

or
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1 —22.81
1 o« | —6.46
n_ 100 — & 3.1.12
wl 1 % Wy 6.26 ( )
1 14.57
Since {p’} must be perpendicular to grad g,,
(grad g,)"(grad f+a’grad g,)
—22.81\7/(1 —22.81
/
_ 1] —6.46 Il jor__ o | —6.46
., 6.26 1 @,, 6.26
14.57 1 14.57
. (--8.44><104—_“' -813.5) ~0 (3.1.13)
Wer Wy
« _ 8-;‘;‘?5104 — —0.1037 X 10? (3.1.14)
W, .
1 ] —22.81 0.763
1 . —6.46 10.933
N % 10+ 0.1037 x 10° = % 10 3.1.15
=1 + 6.26( 11.067 ( )
1 14.57 1.151

Now we proceed toward —{p’}, i.e., we decrease thicknesses proportionaly.
It is seen in the table that, because of the movement, the frequency @ is changed
from 600.063 cps to 600.037 cps. It may be concluded that this movement is
almost along the constraint surface g,=0 and since  is decreased, there is a
tendency that g, is increased in this direction which is anticipated by (2.4.9).

Every time {«’} and {p’} are calculated, {a} and {p} defined in 1.4.4, by
(1.4.10) and (1.4.12) or (1.4.16) and (1.4.17), are also calculated in order
to testify optimality. At a point where {p} vanishes, if all components of {a} are
non-negative, the point is optimum, and if the i-th component «; is negative, it is
expected that the optimum does not lie on the constraint 9:=0 (see 2.4.5).
In actual application if |p;| <|4,]/100, (i=1, - -, 4) are satisfied, it is assumed
that {p} vanished.

At termination of NZG=4, {p} vanished, since —grad f, is projected on to the
intersection of four constraint surfaces in the four dimensional design space.

The 4 by 4 matrix [G] consisting of four rows of grad g, is,

(grad a,,)7 —0.0028 —3.6 —0.0086 0.0016
[G]= (grad g,,)” _| —0.0040 0.0014 —2.2 —0.0091
(grad g,)7 —0.0046 —0.0006 0.0026 —1.9
—(grad w)T 28 4.0 —7.7 —16
(3.1.16)
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and
{a}=—(GIIGI")"'[G] grad f, 1.4.17)
{p}=grad f, + [G]"{a} (1.4.18)
13.0 0014 0.019 —14.4
- 0.014 4.48 0012 17.0
[GHGY'= o019 o0.012 361 303 (3.1.19)
144 170 303 1115
0.0785 —0.0049 —0.0117  0.0014
., | —0.0049 02223 02223 —0.0045
(IGHGID'=| _p.0117 0.0371  0.0371 —0.0107 | -1:20)
0.0014 —0.0045 —0.0107  0.0013
_36 0.2380
—22| 0.5793|
(Glgrad fy={ ] otx10%  {ad={ o gapgX10° (3.1.21)
8.3 —0.0360
Also,
—1.001 —0.001
] ~1000| 0.000
—0.993 0.007

It is seen that «,, corresponding to the frequency requirement, is negative, i.e.,
the optimum does not lie on that surface. Therefore {p’} is again calculated
rearranging [G], dropping the last row. In the next move,  is increased, and
instead, stresses in the section 1 are increased to the critical value and convergence
is obtained, i.e., {«}=0 within 5% of requirement violation.

In the following steps C is increased and ¢ is decreased inversely proportional
to C, reducing the requirement violations.

In the case of w,,=1000cps, convergence was rather slow, but finally the
process ended in satisfactory convergence. In the first step, C=V,, {p} did not
vanish, instead, the one fifthing process became critical. In the following steps,
{p} vanished and the optimality was proved. The optimum lies on the surface
on which only three constraints meet. It may be seen that in the process using
the linearized concept, the point of design variables was wandering around this
optimum point.

3.1.5 Remarks on ihe Results

Comparing the two methods applied on the problem, incorporation of the
constrained path concept was found to be superior to that of the linearized.
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Rosen’s criteria were successfully applied to examining optimality of the vertex.
In the following examples the constrained path concept is used throughout.

It is interesting to note that not all the requirements necessarily become critical
at the final design. When the critical frequency is sufficiently low the maximum
stress at each section reaches at the critical value while the frequency still have
margin. With higher critical frequency, the margin appears at the stress side.
This phenomena correspond to the non-fully stressed optimum proportioning
under multiple loading conditions.

3.2 Two Storied Truss
3.2.1 Model

A two storied truss with diagonal members across the corners which may be
applicable to sounding rocket instrument compartment framework is chosen as
the next example with the variables of four. The height of each story is 300 mm
and the base is also 300 mm in length. Effectively rigid trusses are attached to
each story and they are assumed to be predetermined. The structure is subjected
to two alternative external loading systems. Axial compressive load of 1000 kg
and lateral load of 500 kg which may act in both directions are then assumed.
Tubular cross section of trusses made of aluminum alloy with Young’s modulus of
7200 kg/mm? is assumed.

3.2.2 Minimum Weight Design with Constant Mean Diameter

All tubular trusses are assumed to have a constant mean diameter D. Wall

thickness of the i-th section #; is expressed in terms of the area #; which is the
basic variable, as

- i
ti prommnd d . 3.2.1
D ( )
The following requirements are first imposed on stresses.
i) |o|—oy =<0 (3.2.2)
i) o,,—0=0 (3.2.3)
i) o,,—0=<0 (3.2.4)

where o.,, and o.,, are Euler buckling stress and local buckling stress, respec-
tively. For example, assuming perfect elasticity and neglecting the effects of
eccentricity of load application and initial curvature, for the section i,

Oern= —*ED?| 842 (3.2.5)
Oery= —0.4EF; /D= —0.4Et, | zD* (3.2.6)

are chosen.

.Overall stability criteria is discussed by Hayashi [83]. The structure of this
kind may be instable in shear mode when stiffness of diagonal members is in-
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sufficient.  Critical axial load of single storied one with one diagonal member is

_ Ethil

F, = X2 3.2.7
e ( )

where a is the length of the diagonal member and [ and b are height and base
length respectively. With two diagonal members F,, is doubled and inserting

F.,=1000kg, /=b=a/v 2 =300 mm, the minimum cross sectional area ¢, of the
diagonal member becomes

t;=0.196(mm?) ‘ (3.2.8)

In the two storied truss under consideration, coupling of the two buckling modes,
those of the first and the second story, does not occur, and #, defined by (3.2.8)

L1 L1
-~ 20
£ L2y=g=="=L2
5 8 LN
2 3
_oer I L1=500kg
o &
.12 |
E s
5 101 300
S 8l
2 or LC2
= 4 e e —A
T A
— 9] Constraints
70 o $ /’ i) lol <oy
/ i) g > Ocra
/ / ill” O > Ocre
R 60 é\‘\/ 7 iv) ta,la> to
e e (5// // L.oading_Conditions
E | g of O LC.1: both L1and L2
- 50“6/1/ o LC2° L1only
" v [/ ® LC3: L2only
o b /
L -
5 40
©
C
2
E‘ 30
]
¢ 20
(&)
10} _
' 1 1
G0 15 20 25 30 35
Mean Diameter , D (mm) ‘
Fic. 3.2.1. Optimum Proportioning of Two Storied Truss.
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may be adopted as the lower boundary of both ¢, and 7,. Additional constraints
are

t,—4,<0 (3.2.9

The structure is optimized in terms of the total volume of the variable sections
using the constrained path concept. Derivatives of the constraint iii) becomes

___-04E . aO'i
zD? ot;

— 9% (i%j) (3.2.10)
ot;

(3.2.6) and (3.2.10) are evaluated whenever the objective is evaluated. Three

loading conditions are chosen: 1. the axial force L1 and lateral force L2 acting

alternatively, 2. L1 only acting, 3. L2 only acting. Fig. 3.2.1 and Table 3.2.1

show the optimum proportionings for various values of D, and Table 3.2.2. shows

an example of design modifications toward the optimum.

It is seen that under the loading condition 1, when both loads act alternatively,
L2 almost solely determines the member sizes of 2 through 4, since values of .
through 7, are almost identical with those obtained under the loading condition 3.
On the other hand, the member 1 is not determined either by L1 or L2, but rather
by the combined action of both. The member 3 which has a small value of #;
under the application of L1, is required to have larger value of #; under L2, and

TasLE 3.2.1. Optimum Proportioning of the Two Storied Truss.
Constant Mean Diameter

D L.C. n ' ty t3 A VOL
mm mm? mm? mm? mim? 10¢mm3
10 1 26.823 E, 76.019 E, 71.614 E, 71.539 E, 18.324
2 51.536 E 51.176 E 0.527 w 0.533 w 6.253
3 25.316 E 76.000 E 71.139 E 71.139 E 9.076
16 1 15.345 Yy 37.500 Y, 28.005 E; 28.005 E, 7.923
2 24.034 Y 24.141 Y 2.835 w 2.774 W 3.367
3 12.500 Y 37.490 Y 27.989 E 27.989 E 7.749
22 1 18.883 Y, 37.500 Y, 17.711 Y, 17.679 Y, 6.386
2 23.226 Y 23.248 Y 5.237 W 5.310 w 3.683
3 12.503 Y 37.500 Y 17.682 Y 17.682 Y 6.001
28 1 18.858 Y,  37.500 Y, 17.678 Y, 17.679 Y, 6.382
2 22.131Y 22.147 Y 8.447 W 8.500 w 4.095
3 14.622 W 37.500 Y 17.601 Y 17.602 ¥ 6.115
Loading Condition 1=L1 and 12
2=L1 only
3=L2 only

Failure Mode E=Euler buckling
W=local wall buckling
Y =yielding
E;, E;=Euler buckling due to L1, L2
Y1, Ys=yielding due to L1, L2
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consequently, the load carried by the member 1 under L1 is reduced. Optimiza-
tion of the structure under multiple loading systems is thus automatically done
in the present example.

Table 3.2.1 gives the idea that Euler buckling constraint is predominant at
smaller value of D and at moderate values, yielding becomes so, and still larger
it becomes, local buckling tends to become critical. The total volume is small
when buckling constraints are not active.

Some of the members seem to have far too small value of 7 than realistic.
Although in the present example, since clarification of the effects of each constraint
is aimed at, there were included no upper and lower boundaries of the variables
except that required by the shear instability, setting realistic ¢, and t, seems
necessary in actual applicaiton.

TABLE 3.2.2. Design Modification of the Two Storied Truss
Constant Diameter, D=16 mm
Loading Condition 1

oy 20 kg/mm?
Initial Critical Stress: Member 1 2 3 4

Gern  25.266  25.266 12.633  12.633
Gera  89.524  89.524 89.524 89.524

41 g, fy gy 13 a3 1y gy
mm? kg/mm? mm? kg/mm? mm? kg/mm? mm? kg/mm?

C:Vo, e=0.05
25.000 14. 8764 25.000 14.843 25.000 7.246 25.000 7.293

10. 000 30.000 14.142 14.142
24.996 14.434 - 66.406 6.581 27.940 7.046 27.940 3.189

10.001 11.294 12. 654* 12. 654*
15.450 19.919* 56.560 7.531 27.940 9.731* 27.940 3.634*

16.181 13.190 12.654 12.654
15.461 19.922% 37.670 10.577 27.940 9.718 27.940 5.142

16.170 19.910% 12. 654* 12.654*
C=2V,, e=0.025 CONVERGED

C=8V,, e==0. 00625 CONVERGED
C=48V,, e=0.00104

15.461 19.922 37.670 10.577 27.940 9.718 27.940 5.142
16.170 19.910 12.654 12.654
15.460 19.905 37.670 10.572 28.005 9.709 28.005 5.139
16.170 19.909 12. 624* 12.624*
15.433 19.926 37.642 10.578 28.005 9.720 28.005 5.142
16.199 19.924 12.624* 12. 624%*
15.345 19.996* 37.554 10.598 28.005 9.755 28.005 5.152
16.292 19.971 12.624* 12. 624*
15.345 19.996% 37.500 10.610 28.005 9.755 28.005 5.158
16.292 20.000* 12.624* 12.624*
Final Critical Stress: Member 1 2 3 4

Ger,1 25.266 25.266 12.633 12.633
Ocr,2 54.949 134,28 100.29 100.28
£, ##: stresses due to L1, L2
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3.3 Buckling load of a Beam
3.3.1 Finite Element Analysis of Beam Instability

References 61-63 suggest matrix displacement formulations of structural in-
.tability problem. Since mathematically this is identical with vibrational problem,
the same treatment may be used when the buckling load is included in one of the
requirements imposed on the structure whose weight is to be minimized. A
simply supported beam under axial compression is taken as an example to optimize
its shape.

Gallagher and Padlog [63] formulated element force-displacement relationships
including instability effects applicable to beams of constant stiffness, and excellent
agreement of the result with the theoretical one is reported. Their formulations
are rearranged to obtain

 0 [k i)+ F,, [k, }{a})={F} (3.3.1)
B 6 =34 —6 34
- | — 2 2
[kf]Z—-z—Ef‘ 341 24 341 Al (3.3.2)
ar | 6 34 6 34
_—341 A 341 241
12 -4 —12 —A4l 7
—a A oa —Lla
Kl=— L : 3 3.3.3
Unl=toai| =12 a4 12 & (3.3.3)
T R ) B
3 3
e and
{E}:{wh 0;1/1, Wy, 01/2} (334)
{F}Z{le’ M'yw Fz27 Myz}
where 4l and EI; are length and bending stiffness of the i-th element respectively
and F,, is the critical load to be solved and, when tensile, is positive. The directions
of the transverse and the angular displacements w, 6,, force F, and momet M, are
shown in Fig. 3.3.1.
Suppose a beam with the length ! is divided into n elements of equal length,
dl=I/n. In order to non-dimensionalize (3.3.1), it is now divided by EI,/I* or
El /1, where EI, is a reference bending stiffness.
. Lk N{u}+ 2Lk, Hu}={F} (3.3.5)
@
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,W
Jig .Q{/z/
My // //
' A 2 // \ Fx
Fx,(_‘_‘-, —- - - > x
/A /i MI
FZ1 FZz s
= al 1
Fic. 3.3.1. Beam Element.
6 —3 _¢ 3
n n
232 3 1
n n? n n?
k] =2n L 3 3 (3.3.6)
El,| _¢ 2 6 =
n n
3 1 3 2
n T
12 -1 g 1
n n
4 11
n n 3n? n 3n?
k.]=2 (3.3.7)
=10 12 X o 1
n n
Lttt 1 3
L n 3n? n 4n* |
Ut =W l, 6 , W l, 0 z
(6= (1, Oy 31,0, 539
{F}=UP|EI{F,, M,/ F,, M,/
and
A=F_I|EI, (3.3.9
[k,] and [k,] are assembled to yield [K ;] and [K,] and
(K Nu}+ ALK, {u} ={F} (3.3.10)

The vector {u} is composed of transverse and angular displacements of all nodes,
and {F} represents external loads corresponding to {u}. Putting {F}=0, (3.3.10)
becomes

— K J{u} =K, {u} _ (3.3.11)
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TABLE 3.3.1. Buckling Load: Simply Supported

_ Fer

n =Ei Error
1 —12.0 1 0.2159
2 —9.9440 0.00754
3 —9.8855 0.00161
4 —9.8748 0.00053
5 —9.8718 0.00022
6 —9.8707 0.00011
7 —9.8701 0. 00005
8 —9.8698 0. 00002
9 —9.8700 0. 00004
10 —9.8693 —0.00003
11 —9.8701 0. 00005
EXACT —9. 869607

Assuming EL;/El,=1, i=1, ...n, 2 is solved for various values of n, and
the results are shown in Table 3.3.1. It may be stated that a good agreement with
theoretical value is obtained even when partioning is rough. With n larger than
8, the deviation is within the computing error.

3.3.2 Derivatives

When the stiffness EI; is a function of #;, the deviation rate of 2, with respect to
t; may be calculated following the procedure in 2.3.3. When a sandwich beam
or thin tubular beam with a constant mean diameter is considered, the stiffness is
preportional to the variable ¢; which is the thickness of face plate or tube corre-
spondingly. When the cross-sectional shape is similar for all elements, it is
proportional to #, where t; represents cross sectional area. The total weight of
the beam, in both cases, is represented by a linear combination of #,’s.

The case n=3 is taken as an example and EI,/El,=%,/t,=t,, {;=f,, i=1,2, 3
are assumed where 7, is a reference value, and ¢; the variable. The matrices [k,]
and [k,] become

324 54 324 —54
—54 12 54 6

kd=|_324 54 324 54 (3.3.12)
s4 6 54 12
3.600 —0.100 —3.600 —0.100
0100  0.044  0.100 —0.011 |
kd=| _3600 0.100 3.600  0.100 (3.3.13)

—0.100 —0.011 0.100 0.044

[K,] and [K,] become
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12 54 6 0 0 0]
—54 648 0 —324 —-54 0
6 0 24 54 6 0
K/ ]= 3.3.14
K1 0 —324 54 648 0 —54 ( )
0 -—-54 6 0 24 6
L 0 0 0 0 —54 12
[ 0.044 0.100 —0.011 0.000 0.000 0.000)
0.100 7.200 0.000 —3.600 —0.100 0.000
(K,]= -0.011 0.000 0.088 0.100 —0.011 0.000 (3.3.15)
0.000 —3.600 0.100 7.200 0.000 —0.100
0.000 —0.100 —0.011 0.000 0.088 —0.011
_ 0.000 0.000 0.000 —0.100 —0.011 0.044_]
(3.3.11) is now solved by the power method and
A=—9.8855 (3.3.16)

{u}={1.000 —0.276 0.500 —0.276 —0.500 —1.000} (3.3.17)
[P] matrix defined by (2.3.16) is, by using (3.3.14), (3.3.15) and (3.3.16),

[P]:[Kf]‘*‘)»[Kh]

11.561 53.011 6.110 0.000 0.000 0.000)
53.011  576.82 0.000 —288.41 —53.011 0.000
_| ©6.110 0.000 23.121 53.011 6.110 0.000 (3.3.18)
0.000 —288.41 53.011 576.82 0.000 —53.011
0.000 —53.011 6.110 0.000 23.121 6.110

L 0.000 0.000 0.000 —53.011 6.110 11.561_

The vector {Q} defined by (2.3.16) is, by using (3.3.15) and (3.3.17)

{0}=[K,){u}={0.011 —0.843 0.011 —0.843 —0.011 —0.011}
(3.3.19)

The first column of [P] is replaced by {Q} and

0.011 53.011 6.110 0.000 0.000 0.000
—0.843  576.82 0.000 —288.41 —53.011 0.000
0.011 0.000 23.121 53.011 6.110 0.000
—0.843 —288.41 53.011 576.82 0.000 —53.011
-0.011 -53.011 6.110 0.000 23.121 6.110
L —0.011 0.000 0.000 -—53.011 6.110 11.561_

(3.3.20)

[P]=

Derivatives with respect to ¢, is first sought to be obtained. The vector {R} in
(2.3.16) becomes simply
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(K1) ()
54 6

324 54
54 12

0 0

0O O

0 O

SO OO OO0
(o NelNoloNeNe)

(el oo loNeNe]

1.000 0.112
~0.276| | —8.329
0.500( _)—2.888 3.,
~0.276 0.000
—0.500 0.000
J\—1.000 0.000

{X}=—IP'1"{R}={—1.934, —0.044, 0.364, —0.092, —0.098, —0.374}

(3.3.22)
The first component of {X} shows the derivative of 1 and the rest, derivatives of
mode.
02/dt,= —1.934
o{u}/at,={0.000, —0.044, 0.364, —0.092, —0.098, —0.374}
TABLE 3.3.2. The Strongest Beam: Simply Supported
Case 1;
Eli=(t;/t))Ely=4,EI,
n y 1 ty 13 1 4 143
3 —10.6278 0.816 1.369
4 —11.0334 0.673 1.327
5 —11.2817 0.670 1.212 1.437
6 —11.4450 0.494 1.095 1.411
7 —11.5564 0.433 0.992 1.341 1.468 Simmetrical
8 —11.6387 0.387 0.903 1.260 1.451
9 —11.6961 0.346 0.828 1.185 1.402 1.478
10 —11.7437 0.319 0.761 1.111 1.344 1.463
11 —11.7787 0.291 0.706 1.043 1.288 1.433 1.481
Case 2;
EL;=(t;/ 1)’ El,=1t?El,

n A 5 1y 13 N 113 Is t7

3 —10. 8525 0. 882 1.236

4 —11.4318 0.786 1.214

5 —11.8097 0.710 1.151 1.279

6 —12.0696 0.649 1.081 1.269

7 —12.2569 0. 600 1.020 1.231 1.299 Simmetrical

8 —12.3967 0.558 0.963 1.186 1.293

9 —12.5034 0.524 0.913 1.142 1.266 1.310
10 —12.5880 0.491 0.869 1.100 1.238 1.304
11 —12.6569 0.475 1.055 1.198 1.287 1.321
12 —12.7158 0.449 0.792 1.018 1.161 1.261 1.319
13 —12.7606 0.425 0.760 0.983 1.132 1.236 1.303 1.326
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In the similar manner, the rest of derivatives are obtained.

a2/dt,= —6.018
8{u}/at,={0.000, 0.033, —0.275, 0.033, 0.275, 0.000}
91/ot,= —1.934
8{u} /3t,={0.000, 0.011, —0.088, 0.059, —0.177, 0.373}

Total computation time is less than one second.

When the element stiffness is proportional to #, the similar process may gen-
crate derivatives. In this case the matrix in (3.3.21) is multiplied by 2t;. The
value of 2 is identical with that of the former since t,’s are unity, and derivatives
are

32/0t,= —3.868
92/dt,= —12.035 A
d1/dt,= —3.868

Buckiing {oad . A

10k o
1
{ 1
% 5 10 15
i [ i i
o 0. 02 03

1/n
Fic. 3.3.2. Buckling Load at Optimum Shape.

3.3.3 The Strongest Beam

- The shape of the beam composed of n elements are optimized so as to maximize
its critical compressive load with its weight held constant. The cross sectional
shape is assumed to be constant within an element, which is to be determined by
the variable.
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The objective to be minimized is 2 and only one constraint that is of equality

S t,= 3 7,/t,=const. (3.3.23)
i=1 i=1
is incorporated.
Initially, ¢,=1, i=1, ...n are assumed. The gradient of the objective is
composed of the derivatives of 2.  —grad 2 is projected on to the plane defined

by (3.3.23) and the direction of movement is found out. After the similar
procedure as that shown in 2.4, the optimum point at which —grad 2 is perpen-
dicular to the plane (3.3.23) is obtained. The optimum shape and corresponding
eigen-value 2 are shown in Table 3.3.2 for various values of n and for two cases;

Case 1:

El,=Y“El,=1EI,
ty

Case 2:
7\
El,— (T\) EI,—£EI,
0

Fig. 3.3.2 shows plots of 2 against » and 1/n. It can be seen that 2 is almost
linearly related to 1/n and the value when » tends to infinity, i.e., when the cross
sectional shape varies continuously, can be extrapolated. Refs. 41 and 84 give
analytical solution of both cases for continuous cross sectional shape

Case 1:
'Ln[n: —12
HE)=6(—&Y)
Case 2:
zmin: - B‘nz
4 .,
(&)= 3 Sin 6
0«-1— sin 20 = —n&
2
where

0<e=x/I<1/2

Fig. 3.3.3 shows the optimum proportioning for various value of »n and the
analytical results. The plots of ¢, at the middle of each corresponding element
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- — n= 3
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Fi6. 3.3.3. Optimum Proportioning of Simply Supported Beam.

show agreement with that of continuous curve, but Fig. 3.3.2 also suggests that »
must be considerably increased in order that 2 becomes close to Amm-  If tapered
elements are used in generating the stiffness matrices [,], 2 would become closer
t0 Apn for relatively smaller value of ».

4. CONCLUSIONS

In reviewing recent development of techniques in minimum weight and optimum
design of structures, it becomes clear that iterative means is the most adequate
one from the stand point of today’s computation ability using high speed digital
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computers and of needs to deal with complexity of the requirements. The pro-
posed method herein takes full advantage of existing numerical methods of struc-
tural analysis and showed an ability to cope with complex problems expected in
aerospace applications.
The existing numerical methods incorporated are:
1)  Finite element method which presents a realistic basis to analyze both
static and dynamic behaviors of structures and incorporation of sub-

structure method which enables us to handle even the most complex
structures.

2) Non-linear programming techniques which yield economical redesign
cycles toward the most desirable.

The new concepts incorporated into the present method are:

1) Simple procedures deriving derivatives of frequencies with respect to
design variables.

2) Application of the substructure method into structural minimum weight
problem.

Using the above mentioned methods and concepts, the author presented a
general method of minimum weight design with requirements imposed on stresses
caused by several alternative loadings and natural frequencies. Although methods
with strength requirement alone taken into consideration are known, incorporation
of derivatives of frequencies first made it possible to optimize structures with
static and vibrational behaviors considered simultaneously. It is also shown that
buckling requirements can be treated in the same manner as those for vibrational
behaviors.  Since the substructure method can be used in analyzing a structure,
a complex and realistic structure can be treated by this method.

Various techniques of non-linear programming have been considered to find
the most adequate one for the present purpose, and the steepest descent method
is chosen as the basic philosophy from the view point of computer storage eco-
nomy. Linearization concept of behaviors is found to be inadequate to certain
types of structures and requirements. Constrained path concept which is analog-
ous to the gradient projection method is successfully applicd to simple examples.

In the first example a cantilevered plate beam divided into four sections is
optimized in terms of the thickness of each section. Requirements are given on
stresses caused by a vertical tip load and on the first bending frequency. The
linearization and constrained path concepts are applied in optimization process
and the latter was found superior. Two storied plane truss is considered as the
second example and optimized with the requirements that it is safe against Euler
and local buckling of tubular truss members and over-all shear buckling as well as
yielding under two alternative loadings. The third example shows feasibility of
including buckling load obtained as an eigen-value into optimization procedure.
A simply supported beam under axial compression is optimized in its shape and
results are compared with analytically obtained ones. It was shown in this ex-
ample that the method can be extended into the problems in which design variables
are quadratically related to stiffnesses.
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The present method can be further extended without loosing the underlying
philosophy. The statements of the limitations which the method is subjected to,
will clarify at the same time its direct extensions which is possible.

1) Thermal effects are not taken into account.

2) Only one variable is allowed to exist within a substructure.

3) Bending terms are excluded from the plate element stiffness.

4) Modification of the geometrical configuration is not possible.

Thermal stresses can be taken into account by modifying external loads. In-
ability to modify geometrical configuration is probably the most significant limita-
tion this method is subjected to. It will, without any doubt, decrease the final
structural weight, and may drive out under-stressed members which otherwise
are the most desirable. Although some effort is directed toward this problem [4],
further development seems necessary.
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NOMENCLATURE
A; =weight of the i-th section with ¢; unity
44 =area of triangular panel element or length of truss element
[B] =matrix defined by (1.2.1) {¢}=[Bl{d}*
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C = positive constant in the penalty term (cf. (2.4.1) f=f,+C2<{9>)
D =mean diameter of tubular cross section
[D] =matrix defined by (1.2.2) {s}=[D}{e}

[DBN] =[D][BI[N]or [DI[BI[T][N]=matrix defined by (1.2.17) {¢}=[DBNKu}
E =Youngs’ modulus

EI =Dbending stifiness

f =f,+C X {g>*=modified objective function

foin = minimum of f

fy = Y, A;t,=objective function, weight function

{F} =force vector

F, =transverse force

g = constraint

{G] =matrix consisting of m rows of grad g;

] =unit matrix

[k]e —=element stiffnes matrix

[K] —total stiffness matrix of a structure

K] =stiffness matrix of the i-th section with ¢; being unity

[K,] =boundary stiffness matrix

[Kyul, [Kyil, [Kyp], [K;;]=submatrices

k] =bending stiffness matrix of a beam element

[k,] =additional bending stiffness matrix of a beam element due to axial
elongation or compression

[K,] =total stifiness matrix corresponding to [k ]

K1 =total additional stiffness matrix corresponding to [k,]

l =length

Al =length of an elemeént

m =number of constraints active

M =number of constraints

M, =bending moment

[M] =diagonal mass matrix

(M;] =diagonal mass matrix of the i-th section with ¢; being unity

n =number of independent design variables

N =number of nodes

[N] =matrix defined by (1.2.5) {o}*=[N}{u}

{p} = projection of f, on a plane locally tangent to constraint surfaces

{r'} = projection of f on a plane locally tangent to constraint surfaces

[P1,{Q}, {R} defined by (2.3.16)
[P1=[K]—2IM], {Q}=[M]{u},
{R}=(— AIK]+ 24IMD{u}/ 4t

[P] =matrix [P] with a column replaced by {Q}
{0} =equivalent boundary force vector

{R,} =boundary reaction vector

S =set of {f} satisfying constraints
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t =independent variable, representing thickness of panel or cross sectional
area of truss and beam
t =actual thickness or cross sectional area corresponding to ¢
{1} ={t,- - -t,} =design point
{t}* =design point at the k-th zigzag
{r}® =design point at the k-th move in a zigzag
L =convergence criterion
Ly, 1., =upper and lower boundaries respectively of the variable t,
[T] =matrix composed of direction cosines
V, =initial volume of the structure |
u, v =displacement components in x and ¥ directions respectively !
{u} =displacement vector of the structure

{u,}, {u;}=Dboundary and interior displacement vector, respectively '
O—x,y =rectangular co-ordinate system '

{X} = vector composed of derivatives of mode and eigen-value ¢

{a} = parameters defined by (1.4.14) {p} =grad fi+[Gl{a}

{a’} = parameters defined by {p'}=grad f+ [G{a'}

0 =scalar

Om =scalar which makes f'= f°—0,, grad f, minimum

{o}¢ =element displacement vector

€ =small positive constant determining active constraints

{e} ={e2» &> 72y} Vector composed of strain components

0 =arbitrary scalar, 0<6<1

4 =1-—¢

A =eigen value

v = Poisson’s ratio -

o =relaxation constant

o =scalar defining the distance of travel

{g} ={04, 0, 74} =vector composed of stress components

Ty =maximum equivalent stress (0% 40, —a,0,+ 373,)"* within the i-th &
section

oy =yield stress

Oer i =critical stress of the k-th buckling mode

wy =natural frequency of the k-th vibration mode

@e,,e  =critical frequency of the k-th vibration mode

[ 1] =matrix or row vector

{ } =column vector

( )"  =matrix transpose

( )™ =matrix inverse
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