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Summary: A study of an axisymmetric laminar boundary layer flow with local coolant
mass injection at multiple stations is made by use of an appropriate numerical approach
on the basis of the Hartree-Womersley method. The essential feature of the problem
consists in discontinuous boundary conditions associated with the local blowing.

In order to check the accuracy of the H-W method applied to the partial differential
equations of parabolic type with discontinuous boundary conditions, one-dimensional heat
conduction equation is solved numerically as a simple example under the boundary condi-
tions involving several modes of discontinuity and the results are compared with analytical
ones. It is shown that the H-W method is applicable if an appropriate difference method
is chosen for each mode of the discontinuity. Based on these arguments, an appropriate
difference method is presented for an isothermal and an adiabatic wall conditions.

Estimation of cooling effectiveness due to mass injection parameters such as total mass
flow and geometrical configurations of coolant mass exit gives the following results;

(1) in order to increase the overall effectiveness of coolant mass injection, the second
injection should be located in the upstream vicinity of the peak point of the adiabatic wall
temperature or the heat transfer distributions,

(2) if the total mass flow is kept constant, the width of coolant mass exit has negligi-
ble effect on the overall effectiveness pertinent to the heat transfer reduction.

An experiment made under the adiabatic wall conditions indicates fairly good qualita-
tive agreement with the numerical results.

Finally, it is suggested that, under the condition of constant coolant mass flow, the
effectiveness of the local mass injection cooling is superior to the transpiration cooling.

SYMBOLS

A area of coolant injection exit

C Chapman-Rubesin number

Cp specific heat at constant pressure

d width of coolant injection exit

E square error in two-point boundary value problem
H total enthalpy function
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M, free stream Mach number
m mass injection rate
N _ M= DG DML 2, ( E_lw)
(r+ DML 3 142
Pr Prandtl number
P pressure
0 total heat transfer
—q heat transfer rate
R universal gas constant
R, radius of body curvature
Re Reynolds number
r, cylindrical radius of body
(s, ) transformed coodinates system
T temperature
t time
(u,v) components of local velocity vector
w N :_Si(i_)zMi(T_l)@_l_L’iMi) -
Cpo;, Ty, 3 V142 2
w total mass flow
x,y) orthogonal coodinates system
Xg transpired length
X, X,, X; end-point of mass injection exit
7 ratio of specific heats for air
d; boundary layer thickness
0 temperature in one-dimensional heat conduction equation
a position of the second injection exit
H, cooling effectiveness for isothermal wall case
K coefficient of thermal conductivity
A, cooling effectiveness for adiabatic wall case
u coefficient of viscosity
) transformed stream function
r stream function
¢ transformed enthalpy function
Subscripts ;
air . conditions of air
c critical condition
e conditions at outer edge of boundary layer
f conditions of the first injection
L conditions with local mass injection
no conditions without injection
s conditions of the second injection
sh conditions just aft of shock wave
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st stagnation conditions in free stream
T conditions with transpiration
w conditions at wall
oo conditions in free stream
Superscripts ;
) properties with dimensions
* reference conditions for non-dimensionalization
Yy differentiation with respect to argument

1. INTRODUCTION

One of the problems arising from hypersonic reentry of a space vehicle into
atmospheric environment is to keep the vehicle structure at a reasonable tempera-
ture against the severe aerodynamic heating.

The recent studies have clarified that the form of effective heat-shielding is a
coolant gas transfer into the free stream from the surface of the vehicle. It has the
advantages that the coolant at low temperature reduces the overall stream tempera-
ture near the body surface and increase of boundary layer thickness together with
change in temperature profile across boundary layer reduces the heat transfer to
the body surface. Moreover, in the case of inhomogeneous mass injection, the
effects of coolant molecular weight, specific heat and latent heat of chemical reaction
in the boundary layer, etc. contribute to the further heat transfer reduction.

Since the local heating becomes severe in the vicinity of stagnation point of an
axisymmetric blunt nosed body, large mass injection at that point, which influences
even the bow shock wave, was investigated experimentally by McMahon [/],
Warren [2], etc. Furthermore, it is known from experimental viewpoint that less
mass injection separates the boundary layer into two layers, the comparatively thin
inner layer in which the temperature is kept almost constant and the outer layer
which connects the external properties with inner ones. Libby made the analytical
studies by use of this flow model for air [3]1 and helium injection [4]. Similar
analyses have been recently developed by Fernandez et al. [5], Derienzo [6], etc.
by means of analytical continuation of asymtotic expansions of physical properties
in each layer at the interface. Many investigations indicate that the mass injection
at the stagnation point is fairly effective on reducing the heat transfer. However,
in these cases, the influence of the injection is limited to rather narrow domain and
distribution of the adiabatic wall temperature or heat transfer rate has peak point
in the downstream region.

Film cooling, transpiration cooling, etc. aim at extending the cooling effect over
the wide range by injecting or transpiring a small amount of coolant out of several
injection slots or porous surface. These concepts have been discussed especially
in the internal fluid mechanics. For instance, Laganelli[7] proposed a unified
approach to estimate the cooling effectiveness and compared the effectiveness of
the film cooling with one of the transpiration cooling. He proposed the results that
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the transpiration cooling is more effective process than the film cooling if the mass
flow rate is same in both cases, and that the effectiveness of the film cooling
approaches to that of the transpiration cooling as the number of injection slots
increases.

From the outset of 1960, methods of the film cooling and the transpiration cool-
ing have had a new understanding of the cooling means for a blunt nosed body
surface during reentry flight, so that surface heat transfer over a range from the
stagnation point to the downstream one was estimated by the help of similar solu-
tion of boundary layer equations. Gollnick, Jr. [8] showed that the transpiration
of air and helium is enough for practical use to cool the axisymmetric stagnation
region. Goodwin and Howe [9] showed that, in the range of coolant mass flow rate
relatively small, the aerodynamic heating is shielded to a great extent and the most
effective mass flow rate is from 0.1 to 1.0% of that of free stream.

Ablation cooling is taken to be more effective cooling method. It consists in
that the body surface may be melted or sublimated to absorb a part of the heat
input into latent heat of phase change. This effect together with that of the mass
transfer can reduce the aerodynamic heating considerably. Theoretical study of
the ablation cooling has been made in many references [10], [111, [12], [I3].
However, in spite of a number of advantageous attributes of this method, it has,
in structural and economical sense, a defect due to the use of high-polymer mate-
rials or graphite as ablators, since it is necessary to renew the eroded surface
materials for repeated use of the space capsules.

In consequences, in the future when the frequency of space navigation is expected
to increase, any optimum cooling system which makes up for disadvantages of the
defect mentioned above should be designed from the technological viewpoint by
taking cooling effectiveness, economization and structural safety into consideration.

For this purpose a method of “local mass injection cooling at multiple stations”
has been reevaluated recently. This is done in such a way that a small amount of
coolant gas is injected into the boundary layer through narrow slits at several
stations on the surface, making discontinuous injection distribution.

Localization of the injection stations causes essentially non-similar boundary
layer flow and makes the analytical approach very difficult because of the discon-
tinuous boundary conditions. Pallone [14] first solved this problem theoretically
under the assumption that the boundary layer thickness, surface temperature, mass,
momentum and energy are continuous at both sides of discontinuity. In his analy-
sis, although the matching at the discontinuity was treated properly, the extra
parameters so introduced were considered as a function of the streamwise coordi-
nate and, consequently, the analysis could be applied only in the neighborhood of
the discontinuity. On the other hand, Rheinboldt [15] solved a discontinuous
suction on a circular cylinder. However, this solution seems to require too compli-
cated mathematical formulation to be applied easily to general problems.

On the other hand, numerical approaches to this problem have been developed
by use of high-speed electronic computer. These approaches seem, in principle,
to be divided into two methods. The one is the integral method [16], [17], [18].
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Especially, Bethel [18] applied Galerkin-Kantrovich—Dorodnitsyn method to the
boundary layer equations and discussed the convergency of solutions and degree of
approximation. Another is Hartree-Womersley method [/9]. In general, finite-
difference approach is constructed ejther by explicit difference method or by implicit
one, and the H-W method corresponds to the improved implicit difference method.
The explicit difference method is conditionally unstable, so that mesh size is limited
to obtain a stable solution and, therefore, the approximation is not accurate. On
the contrary, the implicit difference method has no difficulty on stability and the
solution as accurate as is desired may be obtained.

This method was applied to the equilibrium flow around a blunt nosed body in
a series of studies by Smith et al. [20], [21], [22],]23], [24], to the non-equilibrium
flow by Blottner [25], Fay [26], etc., and to the heat transfer problem on the flat
faced body by Marvin [27].

The H-W method requires to divide the calculated region into several vertical
strips despite of the rectangular mesh of the usual finite-difference method. The
most important problem appears in adaptability of this method to the discontinuous
boundary conditions, because the stability of the solution is assured in the sense of
the implicit difference. In this sense, although non-similarity in the flow field and
the difference form may be properly treated and the capability of application to the
various interesting subjects may be suggested in the references above, the discus-
sions on adaptability of the H-W method applied to discontinuous boundary con-
ditions do not seem to be exact.

This paper presents a numerical approach to local mass injection cooling at
multiple stations. The main purpose of the present study is to clarify the capa-
bility of optimizing the overall cooling effectiveness with respect to several cooling
parameters such as coolant mass flow and coolant slots geometry, etc. Although
the numerical method may be essentially based on the H-W method, a reasonable
form of difference adaptable to the discontinuous boundary conditions associated
with the local mass injection is presented and the two-point boundary value prob-
lem is so improved as to give a more general method of approach and faster con-
vergency of the iteration.

2. FUNDAMENTAL EQUATIONS AND FREE STREAM CONDITIONS

A characteristic flow pattern under consideration is shown in Fig. 1, and the
essential assumptions imposed on the flow field are as follows;

(1) boundary layer thickness is'very small compared with the body radius,

(2) constant density in shock layer,

(3) no chemical reaction, radiation, ionization and dissociation in boundary

layer.

In the case that the injected coolant gas is homogeneous, the fundamental equa-

tions for the compressible, steady, laminar boundary layer are written [28] as

_0ary)  apor) _ 2-1)
0% oy ’
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First injection

Second injection

Shock wave

Shock layer

Fig. 1. Characteristic diagram of fiow pattern and injection form.
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where H is total enthalpy and has a form
H =C’p'T'+—;-(a2+z‘ﬂ), (2-5)

which is reduced, within the accuracy of the boundary layer approximation, to

I?:C'pT—l——;—ﬁz. (2-6)
The equation of state for a perfect gas is

By introducing non-dimensional expressions

=R S NER TR
e R T g (@9
pr ol e S
the fundamental equations can be reduced to
a(pur,) n a(pvr,) —0, 2-9)

ox ay
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ou ou op 0 ( au)
U —— V—=— 4 — 1, 2—-10
e ox te oy ox t oy ay ( )
N . Op

—— 0OU = 2—1 1)

VRe T oy (

oH oH 0 [ p oH W ( 1 ) auz]
W Voo = — | 77 L 1— ). 5 2-12
e ox te dy ayLPr 5y + 2 # Prl gy ( )
where

H=CpT+‘g" @, (2-13)

and Re is Reynolds number defined by free stream conditions and radius of body
curvature. Constants N and W are given in the symbol list.

As to the boundary layer flow with a favorable pressure gradient, estimation of
order of magnitude of the left hand side of Eq. (2-11) gives [13]

O(N/vRe)~0(3,/R,),
p~0(), u~O0(%/R,), ._g_;?_~0(5,/ﬁ,,)

and d,/R, can be neglected from the assumption. Therefore,

op op du,

=0, — = 0 Uy—C 2-14

3y ox " @-19)
Since the free stream is hypersonic and the objective is a blunt nosed body of

revolution, a constant density solution can be applied for the external flow. Thus,

i, =i, 551
3 142

sin x, (2-15)

where ¢ and 2 are density ratio of normal shock wave and non-dimensional shock
stand-off distance, respectively, which are written as

e G=DMiy2 e 016

If the reference value for normalization of velocity is chosen as

=i\ o L @2-17)
3 142
velocity component at the outer edge of boundary layer is written as
U, =sin x. (2-18)
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Moreover, non-dimensional total enthalpy H, is approximately unity. Therefore,
from Eq. (2-13),

- _;-Wuﬁ
T,=——= | (2-19)
) Cp.
Viscosity can be written as
.y
p=266.93x 10" DT (gr.om-sec) (2-20)
g

according to Chapman-Enskog theory, where ¢ is collision diameter (A) and Q@ is
non-dimensional collision integral which is obtained by the use of Lennard Jones

(6, 12) potential in the temperature range under 1000°K. Consequently, relation
between y, and T, is

pe=T¢". (2-21)
At the outer edge of boundary layer, Cp,=Cp,,,, so that
Cp,=Cp,/Cpy,=1. (2-22)

The assumption of constant density in the shock layer and the body geometry gives
relations

=1, r,=sin Xx. (2-23)

Furthermore, Eqs. (2-13) and (2-19) reduce the temperature in the boundary layer
to ‘

T  H-1/2)Ww
T, (1—(1/2Wu)Cp

(2-24)

Since the boundary layer gas is assumed perfect, the equation of state is also
written at the outer edge in a similar way, therefore, the relation between density
and temperature is

Oe _ ;{’ ) (2-25)
o e

The contribution of energy due to a vibrational or a rotational mode to the spe-
cific heat should be taken into account in the case of polyatomic gases, so that, the
polynomial expression of specific heat such as

Cp=B,+B,T+B.T* (cal.gr-'.°K-Y) (2-26)

should be written for air.
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3. TRANSFORMATION OF FUNDAMENTAL EQUATIONS

The fundamental equations, Eqgs. (2-9) to (2-12), are the partial differential equa-
tions in the (x, y) coordinates system, and they can be transformed by introducing
Lees-Dorodnitsyn transformation defined as

z el P
s:f Petteloridx, =_Octelo f dy 3-1
) V2

Stream function ¥ is defined as

i = — pvr,, v = pur,. (3-2)
0x oy

and is further assumed to have a form

U=v2sf(s,7). (3-3)
Therefore, from Egs. (3-1) and (3-3)

“ =y, (3-4)

Transformed fundamental equations obtained from the above relations may be
written as follows;

<y +8 (% ~1*) +1"=R, (3-6)
(So) +1g+ W c ( )f'f"] - 3-7)

where ()’ represents the differentiation with respect to 3, and

2s du
— e 3-8
A u, ds’ G-®
’ 1/ af
=2 (f as —f ) (3-9)
, 0g , of
R2_2s(f os 9 65)

Eq. (3-9) contains the derivatives of s-direction. The present problem is to obtain
the non-similar solutions involving such non-similar terms as shown in Eq. (3-9).
The transformed coordinate s is related to x through Eq. (3-1), which, by the use
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of Egs. (2-18), (2-21) and (2-23), is reduced to

z 1y, o, \ V2.
s:f (1—?Wsm2x) sin® xdx
[}

=(W ) a—n=sw (3-10)

where

el (- - el )
[ e ()

e (=) 1
(- Sl ]

w
&= 5 COos x.

51+\/5?+(1—%)| ) (3-11)

Transport properties C and Pr are Chapman-Rubesin number and Prandtl num-
ber, respectively, and are functions of f’ and g.
Chapman-Rubesin number:

c=o T (L))" gl_—(% ?;V";’;;z )" (3-12)

Prandtl number:

pr=CpPp _ Pr,,, Cp.ﬁjﬁe_ =Pr,,.Cp, (3-13)

R K[Ee

where Pr,;. is Prandtl number of air and is a function of temperature.
For the purpose of treating the boundary conditions at the outer edge of the
boundary layer, it may be convenient to introduce new variables defined as

¢=f—n, ¢=g9—1. (3-14)

This means that;
(1) derivatives of the new variables with respect to 7 are

¢I:f/__ 1’ ¢II:f//’ Ill:fll/’ ¢/:g/, ¢/I:g//, (3_15)

so that boundary conditions at p— oo can be replaced by zero, and the two-point
boundary value problem is easily applied.

(2) truncation error, which arises when the difference of pe/p and f? in the
second term of Eq. (3-6) is taken, may be avoided.
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By using Egs. (3-14) and (3-15), the fundamental equations, Egs. (3-6) to (3-9),
can be rewritten as

(C¢”)’+ﬁ[—%——(¢’+ 1)2] +¢" ¢+ =R,, (3-16)

(5#) +o@newafc(i-D)@rng =R, @7

where

os

R,:Zs[(¢’+ 1) a(¢,a::' 1) __¢u a(¢+77) ]’
(3-18)

4. BOUNDARY CONDITIONS

From the definition of stream function, Eq. (3-2), the value of stream function
along the wall is given by

Tpo=— [ (ovr)udn. (4-1)
|

In the present approach, a step-wise distribution of (pv),, is assumed as shown in
Fig. 2. Singularities in the streamwise derivative of ¥, exist at the points x=ux,,
Xy, X3, s0 that Eq. (4-1) becomes an improper integral. By use of a relation

ww = 1/ Z—;Sﬁw’ (4"2)

the reduced stream function ¢,, at the wall may be, therefore, summarized as follow ;

(I) 0<x<x;  ¢p=—rr,(1—cosx)/+/2s, (4-3)
(pV)y Second injection
N 1
First injection
'fll/

S
X

0 X x; x5

1 I M =—1IV

Fig. 2 Mass idjection distribution.
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[
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X1 =0.1250
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1.0 -
0.8~ -
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X2 =0.4236, ‘X =0.4486,
0.4 ,=2.00 .
X2 =0.5984, X, =0.6234
0.2~ s =2.00 .
i
0 ! { I ]
0 0.2 0.4 0.6 0.8 1.0 1.2
. X
Fig. 3. Stream function distributions.
(II) x, <x<x,; $u=—rm (1 —cos xl)/‘\/zs:: (4-4)
I x,<x<x,; Puw=—[111 (1 —cos x,) + ri1,(cos X,—cos x)]/+/2s, (4-5)
AV) x,<x; $uw=— I, (1—cos x,) + m,(cos X,—c0s x)1/4/25,  (4-6)
where the relation, r,=sin x has been employed. Several examples concerning the
distribution of ¢, are shown in Fig. 3. Non-dimensional injection parameters are
defined by the equations
. i, . i,
m,— — ==, m,= = (4"‘7)
" Npu#*[VRe " Np.a*[VRe

On the impermeable wall such as regions (II) and (IV) in Fig. 2, the stream function
has the values equal to those of the points x=x, and x,, respectively. Non-constant
value of ¢,, on the impermeable walls is clearly due to the transformation defined by
Eq. (4-2) and, therefore, it should be remarked that ¢ does not correspond to the
normal velocity component » directly.

Three kinds of wall conditions are considered in the present approach.
(1) an isothermal wall

The constant surface temperature T, is given and T » Which is the temperature
gradient at the wall, is to be determined. The boundary conditions on the wall are;

#=0 (non-slip), d=—1,
ﬁ:ﬁwzépr'ms — ¢w:prTw’ (4_8)
V=7,,. ¢, =specified.
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(2) an adiabatic wall

T,=0 is given and the surface temperature T, is determined. The boundary
conditions on the wall are;

=0, d=—1, )
(8T /39),,=0, —  ¢,=0, (4-9)
V="7,. ¢, = specified.

(3) a coupled wall—wall is locally isothermal and locally adiabatic—

The third wall condition may be a good representation for the practical cases
wherein the mass injection is utilysed to keep the adibatic wall temperature in steady
flight at a tolerable level. The injection regions (I) and (III) are assumed to
consist of the porous materials of which temperature is T, (isothermal) and the
regions (II) and (IV) are the adiabatic walls. The above boundary conditions
on the wall are recapitulated as follows;

region (oV)w wall condition mathematical condition at =0
(1) 0<x<x | 7ty ?SL‘ZE;,Y,Z% ¢iz ;qu (4—3?0: CpysTis—1,
() x1<x<x, 0 impcz; r;‘:::iz)wa" jf:gql.’@_;)b.;:o’
() x<x<xs | it p°r2’i‘;zt;’l":r1;:lr> slit Zi:;ql (4_;)&_1”: Cp;sTjs—1,
R I

At the outer edge of the boundary layer, #=i,, H=H,, consequently,
p—oo; =0, $=0. (4-10)

Here, it will be necessary to check whether the boundary layer approximation is
valid for the local injection under consideration. In the boundary layer approxi-
mation it has been assumed that

i, v,<w,. (4-1D)

In the present approach, validity of these conditions solely depends upon the
magnitude of coolant mass flow rate and width of the injection slits. Because of
this circumstance, the coolant mass flow rate (pv),, and the width of the injection
slit d used in the numerical calculation are so chosen as to satisfy the conditions

v _oao-y,  a<s, (4-12)
(o). :
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respectively, where 4, indicates thickness of oncoming boundary layer just upstream
of the injection slit.

5. METHOD OF SOLUTION

5.1. Outline of the H-W Method

The H-W method developed by Hartree and Womersley [19] involves the pro-
cedure that the streamwise derivative is replaced by the corresponding difference to
reduce the parabolic partial differential quations to the ordinary ones. The basic
scheme of this method is diagramed in Fig. 4, and a solution (S,)K)at the n-station
is found out by integration in y-direction on the strip s=s,, if the solutions have
been found at all previous stations up to and including s,_,.

It is based on the reason why downstream influences can not be felt upstream in
equations of parabolic type.

The characteristics of the H-W method in the treatment of numerical analysis are;
(1) the difference method is implicit and always stable, so that the stability condi-
tions are not necessary [29],

(2) both of s-direction difference and numerical integration in y-direction are
independently made accurately,
(3) the step size of the difference form can be chosen arbitrarily.

Non-similar terms in the fundamental equations are the first-order derivatives in

s-direction such as 9F /s, which are evaluated at the n-station as

2-pt difference: (ili\) = i + ds, FF(5) , (5-1-1)
0s /'n ds, 2 os?

3-pt difference: (%ﬂ) =(aF,—bF,_,+cF,_,)
S /n

(5-1-2)

+ ds,(ds + 4s,_) *F(&)
6 os3,

b

where the second terms of the right hand sides are the error terms accompanied

n—3 n—2 n-1 n
A $4(6)
* s ~—0 5{2)
Sa-9(2) Saal2)
[ < -@ S(1)
Sn—o(1) Sn1(1)
Sa-2(0 S.-(0) SH0
L . 2(0) ‘ i ‘ 40) -
sn 3 Su-gp Sa-y s S

Fig. 4. Schematic diagram of the Hartree-Womersley method.
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with the difference method and & is some value of s in the interval of (s,—s,_,) or
(S»—Sa_z). For an arbitrary interval, a, b and c can be determined as
1 1 Sp—S8n_s

a= + ’ b= ’
Sn—sn—-l Sn—'sn—z (sn—sn—l)(sn-l—'sn—z)

(5-1-3)

— sn_sn-—l 3
(Sn~—S,,_2)(Sn_,—~Sn_2)

Reference [21] points out that the accuracy of the numerical calculation is not
improved considerably even if 4-pt, 5-pt, etc. derivatives may be taken into con-

sideration. Therefore, the difference is restricted up to 3-pt difference in the present
approach.

5.2. Solutions of One-Dimensional Heat Conduction Equation by the H-W
Method

In order to check the accuracy of the H-W method applied to the parabolic
partial differential equations with discontinuous boundary conditions, one-dimen-
sional heat conduction equation is considered. It is written as

a0 _ , 30 —
ha_t___a PP o=const. (5-2-1)

where the initial and the boundary conditions are given as
0(x,0)=0, (5-2-2)
6(0, r) =given, (0, t)=0. (5-2-3)

These equation and boundary conditions correspond to Egs. (3-16) to (3-18) by
replacing x by 7, and ¢ by s.” The boundary conditions including singular points
can be classified as followings.
At the singular point (0, z,),
(1) functional value F(¢) is continuous, while its first-order derivative oF [ot is
discontinuous,
(2) F(v) is discontinuous, while 3F/at is continuous,
(3) both F(#) and 9F /3t are discontinuous.
The difference forms, the adaptability of which is going to be checked, are spe-
cified as follows;
(I) point form
the form in which the n-station exists just on =1,
(IT) mean form
the form in which the singular point =1, exists just on the middle point
between (n—1)- and n-stations.
Furthermore, the difference methods mentioned in the previous section are sum-
marized as follows;
(a) 2-pt difference,
(b) 3-pt difference,
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(c) common use of 3-pt and particular use of 2-pt differences.
The last difference method is that 2-pt difference is used only just aft of the singu-
larity and the 3-pt difference is used for the remainder field.

Representative examples pertinent to each boundary condition can be tabulated
in Table 1. Constants in this table are given as

0,—6 7}
a=—_2"N | p=f—att=0, c=_"1 _,
t(2t,—1,) v (t,—1,)? 524
dZO, 32_01—02 , f_.—_.——.__..03 .
(th—tl)z (tl"tz)z }

Since an analytical solution to Eq. (5-2-1) can be obtained exactly, the numeri-

TABLE 1. Classification of boundary conditions

classification boundary condition figure ‘of boundary con(iition
2 (O,I) =6, (OSL‘;{h) g (0,1)
C t—th I
<1 > =0 b—h ° 1 !
(h<i<t) :
{
= (. (lzﬁt) 0 h tz t
6 (0.t) =a(i—1)*+b,
_ (0<i=n)
<1> =c(t—1,)%+d,
(h=2t <t,)
=0. (<t)
) (O,i) =0 (OStSh) 6 (0.t)
. _ o,
<9 = 0. (fl-J)
0 I t
0 (Ost) :(l<t"‘fz>2’1f"b, gé(}i)‘_“—rr‘——
(0<t=<mn) of =~~~
oy 1|
< 3> =f(t=tr)"+e, b= !
(h=t<h) ; |
|
|
= 0. (<t
(2 ) 0 h B b
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cal results calculated by use of the H-W method under the conditions
6,=0.99, 6,=1.00, 6,=0.90, ¢,=0.050, £,=0.060, ¢=6.325

were compared with the analytical ones at a point near aft of the singularity. In
the numerical computations, integration in x-direction was reduced to two-point
boundary value problem with edge conditions such as 6—0 and d0/0x—0 at
X— oo, starting with the initial value of 36/dx estimated under the boundary con-
ditions given in (1), (2) or (3). The numerical integrations in x-direction were
carried out by Runge-Kutta-Gill method and the step size was 0.1. Convergency
criterion which will be mentioned in Section 6.2 was taken as E<0.05 correspond-
ing approximately 36/3x <0.15 and 6<0.15 at X=X, and is not so strict. How-
ever this criterion seems to be reasonable because of the nature of asymptotic
behavior of the solution.

Two problems arise in the numerical calculations. The first is the effect of
variation of step size 4¢ on the solutions. Examination of the numerical results
reveals that the difference method (c) may be compatible with the discontinuous

0.8 I T T
2pt-+3pt
/) ——0—— Mean form @ (0,.t)
———#——=—Point form
G-
by
|
08 ) . 0.6 lI 7]
2pt+3pt 6(0.t) o Tt
~—o—Mean form -
~—--—-Point form b . - Exact, X=1.0 ]
X=1.0
0.6 0 it @ ]
Exact, X=1.0 0.4r

X=10 N Exact, X=0.5
e

| Exact, X=0.2 X=02 ' 0.2 Exact, X=0.2 y
)V 4 / Ol T
- h T -

0.2+ b T o o
’ Exact, X=3.0 X=30 |
- ‘ - -~
Y :::..z"""""*J"{\ —_— Fxact, X=3.0 X=30
0 1 1 L
0 L L 0 0.10 0.20 0.30 0.40
0 0.05 010 015 At/
ai/n .
Fig. 5. (a) Solutions of one-dimensional Fig. 5. (b) Continued.
heat conduction at 1=0.06. Boundary condition (1), #,=0.05,
Boundary condition (1), #,=0.05, 1,=0.06, 6=6.325, 6,=0.99, 8,=1.00.

1,==0.06, ¢=6.325, 6,=1.00.
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0.7 T . [
g 2pt+3pt
0.6 ~———0—— Mean form i
~~-#-——DPoint form
0.8 T T 0.5 Exact, X=1.0 N
2pt+3pt 4 _
[} ~——o——Mean form o (0.1)
———*-=-=Point form 0 1
0.6 i
Exact, X=1.0 0 1

) 05 10 ois 1o 010 020 030 0.40
a4t/ h at/h
Fig. 5. (c) Continude. Fig, 5. Concluded.
Boundary condition (2, #,=0.05. Boundary condition (3), #,=0.05,
1,=0.06, ¢=6.325, 6,=1.00. 1,=0.06, 0=6.325, 6,=0.99, 6,=1.00,
: #3=0.90.

boundary conditions and the following remarks are obtained. For convenience’
sake, let the boundary condition at x=0 be denoted by F(¢). If F(¢) is continuous
while its derivative is discontinuous at t=t;, then, it is natural that the solution
should approach the exact one as 4t tends to zero. On the other hand, if F(?) is
discontinuous at x=x,, },HI} AF[4t goes to infinity there and the solution

diverges. In this case, limiting value of 4¢ for which the numerical solution can
approach the exact one is restricted as is seen in Figs. 5(c) and (d).

The second is to find the proper difference form for each boundary condition.
In Fig. 5 is further compared the mean form with the point form under the same
criteria, and it is known that the point form is superior for the boundary condition
of the type (1), and the mean form for (2) and (3), respectively.

However, as mentioned previously, the limits of the applicability of the mean
form exist for the conditions (2) and (3), so that another form must be so taken as
to make the limit free. This can be attained by the following procedure. Consider
the condition (2) as an example. Since the boundary condition #(0, 7) is discon-
tinuous at the point (0, #;) in this case and 6(0, t;) has multi-values at this point, it
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Is necessary to obtain a single value 64 of 4(0, t1) in order to make a difference at
this point. Unfortunately, however, there seems to exist an infinite number of the
choice of 64 in the range between zero and #,. Because of this circumstance, 6,
was initially assumed and a solution was calculated at a point near aft of the singu-
larity. The numerical solution thus obtained was next compared with the exact
one and the error was estimated. This procedure was repeated, adjusting the value
of 6,4 so as to reduce the error. Fig. 6 shows variation of the numerical solution
with 0,. 1t is seen in the figure that the value of 4, giving the accurate approxima-
tion near aft of the singularity approaches zero under the common use of 2-pt and
3-pt differences. This trend clearly indicates a fact that the value of 8, should be
taken to be zero in making the difference starting from the singularity. This fact
means that the difference should correspond to the right-derivative of the case (2).

The similar procedure was applied to the other cases of the boundary conditions
and the following important results were obtained.

In the case (1), the point form gives the best approximation and the differences
before and behind the singularity correspond automatically to the left- and right-

,.,—:::.::.y—’.‘:

LX"‘:QI

1 |
0.6 0.8 1.0 1.2
6

Fig. 6. Virtual value at singularity.
Boundary condition (2}, t=0.056, 1;=0.05, ¢=6.325.
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derivatives of the function F(¢), respectively.

In the case (2), as mentioned above, the appropriate difference just ahead of the
singularity should be made to be correspondent to the left-drivative of F(f), while
it should be made to be correspondent to the right-derivative just aft of the singu-
larity. The same is true for the case (3).

These considerations lead to a statement that, with the difference method men-
tioned above, the H-W method is applicable to the parabolic partial differential
equations with discontinuous boundary conditions.

5.3.  Application of the H-W Method to the Boundary Layer Equations

The boundary condition, which has been set up in Chapter 4, is equivalent to
the condition (1) classified in the previous section, in which the point form auto-
matically satisfies the necessary requirements.

Non-similar terms in Eq. (3-18) are written by the use of Egs. (5-1-1) to (5-1-3)
as

2-pt; R1two=-—j-§-{(¢’+1>(¢'—¢;-l>—¢"(¢—~¢n-,)},

’ (5-3-1)
Rm:—j}{(qs'qt DG — ) — ¢ (G—$n_0),}

3-pt5 Rypre=25[(¢"+ D{al¢’ + 1+ b(gr,_, + 1)+ c(gr,_,+ 1)}
4RI, (5-3-2)

RZthreazzs[(Sﬁ/‘i' 1){a(¢+ 1) + b(()bn—l + 1) + c(¢n—2+ 1)}

"'gb,R]a
where a, b and c are shown in Eq. (5-1-3) and

R=a(g+9)+b($us+ 1) +c($n_r+1). (5-3-3)

6. NUMERICAL CALCULATIONS AND DISCUSSIONS

6.1. Properties and Models used in Calculations

Both free stream and injectant consist of air and the numerical calculations were
carried out under the conditions

M.=8, y=1.4, T,=758°K, p,=50kg cm,
R,=2cm, Re=2.222%x10° (R,=2cm),
B,=0.2552cal-gr''.°K"!, B,=—9.25x10%cal.gr!.°K"?,
B,=1.45%10""cal.gr'.°K-3, (300°K <T <550°K),
B,=0.2194 cal-gr!'.°K-!, B,=5.40%x10"*cal.gr'-°K~?,

B,=0, (550°K <T),

Pr=0.677+1.29x10~*T,,T+1.26 X 10~ "T2T?,

&y
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where properties of air are referred to [30] and Cpy.=B,+B,T + B,T".

Models have the first injection exit at the stagnation point and a ring slit at a
downstream station. One model has the first injection only, and the other have the
first injection with fixed geometry and the second one with different geometry.

6.2. Two-Point Boundary Value Problem

Since boundary conditions are given on the wall and the outer edge of the
boundary layer, integration of the fundamental equations in y-direction is reduced
to a two-point boundary value problem. Because of this, it is necessary to specify,
at the wall, the same number of additional conditions as are required to be satisfied
at the outer edge of the boundary layer in order to have the numerical integration
start from the wall. There are two methods to approach this problem. The one is
called “the initial value method” and another is “the quasilinearization method”.
Based on the viewpoint that the latter can not give the accurate solution, it is
intended in this paper to present a refined method obtained by improving the initial
value method extended by Nachtsheim and Swigert [31], which may be summarized
as follows;

(1) assume the starting values,

(2) differentiate the original differential equations with respect to the assumed
Initial values, and obtain the complemental differential equations, which will
be called “the perturbation equations”,

(3) solve the original and the perturbation equations thus obtained simul-
taneously,

(4) judge convergence of the solutions by use of the criteria of the least square
error between the imposed boundary conditions and the calculated values.

This method does not necessitate any limitation to the number of starting values,
in principle. This characteristic is the most favorable advantage subjected to this
method, while the other methods increase difficulty in solving the equations as the
number of the initial values increases.

Let p and g be represented by the initial values to be found,

P=¢ss  a=du, (6-2-1)
then the conditions at »— oo can be written as

¢;(pa q) =0, ¢é,(p> q) =0, )

(6-2-2)
$e(p, 9)=0, ¢(p, 9)=0.]

Taking p, and p, as the first and the second approximations, respectively, the
differences are written as

dp=p,—p,,  49=g,—q,. (6-2-3)
For ¢, and ¢,, it is written that

Agy=($),— (¢, A =(4)),— (¢;’)1,}

(6-2-4)
Ae=(¢e)y— (o), Adpe= (¢’;)z_(¢;)n
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and by use of the abbreviations defined as 3/dp=(),,d/dg=(),,

A/Z IA+IA’ Al/__: IIA IIA,
¢ =¢,dp+ 4,49 ¢ =, dp+ 4, 61} (6-2-5)

A¢p=¢,dp+ ¢, 4q A¢’ = ¢, dp + ¢, 4q.

Hence, the errors at 7=y, are derived, by using Egs. (6-2—4) and (6-2-5), as

—0,=¢'+4,dp+ §,4q, —~5z=¢"+¢;;dp+¢2"’q’} (6-2-6)
—0=¢+dpdp+¢dq,  —8,=¢ +¢,dp+¢,4q,

where the subscripts 1 and 2 are neglected for generality of the order of the
approximation.

The square error is defined by

E=3 4, (6-2-7)

k=1

and the minimization of E requires the conditions

1 1 1 ] T 1
56
1.0 .
T =
0.8 -
0.6 -1
$iv by E
1 0.43810 | 0.00500 | 0.490899 7]
2 0.34208 | 0.02702 | 0.052343
3 0.34199 | 0.05457 | 0.003493
0.4— 4 0.34617 | 0.05887 | 0.000104| -}
5 0.34571 | 0.05747 | 0.000005
6 0.34562 { 0.05741 | 0.000000
] )] I )] 1 1

0 10 2.0 3.0 4.0 5.0 6.0
7

Fig. 7. Convergence of solution of boundary layer equation.
x=0, m;=0.915, T;;=0.492.

This document is provided by JAXA.



Hypersonic Heat Shielding Problem with Local Mass Injection 59
OE __o, _9E _, (6-2-8)
a(dp) a(dq)

From Eq. (6-2-8),

b, a, a, by,

b, a a, b
dp=— 192 9| dg=—1% Da| 6-2-9
= T DEM =" DEm (6-2-9)

where

an=¢p + ¢4+ ¢, + ¢,

W= by + Doy + 1y + PoPes
Ay = Ayy,

UGp=07 + ¢4+ 67+ 9>

b, = ¢'¢p+ b+ ¢"dy + &' Pps
by, = ¢/¢:1 +¢dg+¢” :1/ + ‘/’,¢<Ip

a; Qp

(6-2-10)

Y

DEM =

an Gy

/

The perturbation equations for ¢ and ¢ with respect to p are written as

4% 4| Lo+ 1| 4G4 48 =R,y (6-2-10)

(S0) + 046+ + ¢/, + W e[t — )@+ 1)¢”];:R2p, (6-2-12)

where the boundary conditions are given as

7=0; ¢p=¢;=¢p=¢;=0,}

1" __
v=1.

(6-2-13)

The perturbation equations for ¢ and ¢ with respect to g have the similar forms to
Egs. (6-2-11) and (6-2-12) and the associated boundary conditions are given as

1=0;  go=gi= ;'=¢q=o’}
di=1.

Since the solutions of these equations have essentially asymptotic behaviors at
7— oo, the value of », becomes large as the iteration proceeds. Unfortunately,
the solution is rather unstable at lower approximation and is sometimes divergent.
In order to avoid these difficulties, the criteria

(6-2-14)

#<0.1, ">0.0, $<0.2, ¢’<0.2  at y=y, (6-2-15)

are set up, and if the solution misses any of them, the calculation is stopped. Then,
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the next iteration starts with the assumed boundary conditions calculated by use of
the data obtained in the last trial. The value of E in Eq. (6-2-7) represents the
square error at each iteration and is a measure of the accuracy of the approxima-
tion. These calculations were carried out under the criterion E<10-° in order to
have accuracy of 10~ for ¢/, ¢, ¢, and ¢/.
Another problem is the uniqueness of solutions. It was proved numerically with
the use of two sets of the initial values such as ¢ =0.10000, T,,=0.00100 and
»=0.4381, T;,=0.00501, where T’, is used instead of ¢, for convenience. These
data are shown in Table 2 together with the values of E. In the table, it is seen
that, even if any set of the starting value of ‘¢, and T, may be taken, it seems to
converge to the unique one after six or seven trials, that is, ¢. and T, approach to
0.1944 and 0.0095, respectively. Choice of the other set of the starting values
gives the similar results, and it is desirable to choose suitable set so as to make the
trial as few as possible.

TABLE 2. Convergency history of initial values ¢/ and T/, in
two-point boundary value problem. Isothermal wall
case. 1y=0.915, x=0.

Run 1 Run 2
mumber | 94 T, E mosmber | %4 T, E

0 0. 1000 0.00100 | 19.177 0 0.4381 0.00501 1.4961

1 0.1460 | —0.01920 1.2175 1 0.2364 | —0.06230 1. 1006

2 0.2413 0.09972 1.4882 2 0.2091 | —0.05870 0.7582

3 0.2149 0.03349 0.5882 3 0.1800 | —0.00847 0.7281

4 0. 1987 0. 00823 0.1299 4 0. 1983 0.01947 0. 05793

5 0.1941 0. 00889 0.00109 5 0.1963 0.01368 0.01053

6 0.1943 0. 00955 0. 000057 6 0.1945 0. 00927 0.001144
7 0.1944 0. 00949 0. 000077

6.3. Adiabatic Wall Temperature Distribution

The boundary conditions of the coupled wall defined in Chapter 4 are applied to
obtain distribution of the adiabatic wall temperature. At the stagnation point,
s-derivatives have finite values as s—0, hence R,—0, Ry—O0, so that the funda-
mental equations can be reduced to a set of the well known similar equations. In
the adiabatic region, starting condition, {4»=0, results in| ¢/ =0 which makes the
solution invalid. Therefore, ¢/, should be taken as small as possible. In many
existing works it seems to be taken to be of order of 105,

6.3.1. Effect of Step Size dx

It is needless to say that the essential problem involved in the numerical solutions
of this kind exists in accuracy of the solutions just behind the singularities. How-
ever, it must be noted that the physical feature of the singularity due to the second
Injection is similar to that due to the first one as shown in Fig. 3. Therefore, the
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Fig. 8. Effect of of step size of on wall temperatnre.
my=0.915, T;;=0.492.

discussion on the singularity is to be restricted to the former. In Fig. 8 is shown
the effect of variation of step size 4x which is of importance for checking the
accuracy of the solutions. Non-similar terms clearly depend upon the value of
4x/x. Computed solutions at x=0.126, 0.128, 0.132 and 0.150 (behind the singu-
lar point x=x; (=0.125)) give the following information; 4x should be taken small
just behind the singularity, while at x=0.150 it is sufficient that 4x/x is even 0.10.
The favorable step size exists between 0.03 and 0.10 just aft of the singularity.
Jaffe’s attempt [32] also suggests that 4x/x should be larger than 0.025. On the
other hand, very large value of x/4x causes the instability in numerical integration
in y-direction.

From the above results, the numerical calculations are carried out under the con-
ditions as

0.1250<x<0.1503;  4x=0.0063 (0.0418 < 4x/x<0.0504),
0.1503<x<0.4033; 4x=0.0253 (0.0627 < 4x/x<0.1683),
0.4033<x; 4x=0.0500 (4x/x<0.1239).
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Since the width of the second injection is 0.015 or 0.025 in each model, the value
of 4x/x becomes fairly small. Therefore, for the reason of stability and shortening
of computational time, width of the slit is taken to be one difference step and com-
putational point is put on the end of the slit.

6.3.2. Downstream Effect of the First and the Second Injections

Fig. 9(a) shows the computed results of the adiabatic wall temperature distribu-
tion with mass injection parameter 0.0, 0.915, 1.849 and 3.959. The wall tem-
peratures on several points are shown in Fig. 9(b), where small mass injection rate
is favorable for the adiabatic wall temperature. It is natural that the cooling effect
decreases in downstream region. ‘

Improvement of the cooling effectiveness due to the second injection is shown in
Figs. 10(a) to (d) where the second injection rate #1, is taken up to 2.55 for the
fixed m, of 1.849. Numerical integrations were carried out in such a way that the
initial value at each station is taken to be the converged one obtained at the previous
station so as to speed up the computation. Step size in numerical integration by
Runge-Kutta-Gill method was 0.1. Computational time for the first 28 stations
existing between the stagnation point and the point x=0.8 was about 250 seconds

1.2 T T T T I
Experiment
Ty O m=0.0
- a 0.915 .
a 1.85
° 3.96
1.0+ .
#mr=0.0 No injection, 1.0
> ©o Experiment i
2 (Ref.34) | T,
o ' '8 o
\~ 8
0.8 \'\ ™ A 0.8 s
Experiment (Ref.34)
tiy=4.80
- 1hr=0.915 a
1.849
\ 3.959
0.6 4 o i
0.0
01250 _
0.4 L ! 1 1 I | | | !
00T 04 06 08 10 12 %4 10 2.0 30 40 50
X my
Fig. 9. (a) Adiabatic wall temperature distri- Fig. 9. (b) Variation of adiabatic wall tem-
butions. perature with first injection rate.
Central injection, T,;,=0.492, Central jection, 7;,=0.492,
x;=0.1250. x;=0.1250.
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Fig. 10. Adiabatic wall temperature distri- Fig. 10. Continued.
butions with second injection. (®) x,=0.1250, x,=0.6033,
(@) x;=0.1250, x,=0.4286, x3=0.6183, 1,=1.849,
.1\'3:0.4436, Ti’lf:l.849, ij:Tj3:0.492.

Tj;=T;s=0.492.

by the use of HITAC 5020F at Data Processing Center in the Institute of Space
and Aeronautical Science, University of Tokyo.

o ) In Fig. 11 are presented temperature profiles in the boundary layer at several
stations, in which 7, becomes smaller as x grows. However, this does not imply
that the thickness of the boundary layer decreases with increase of x. Since the
boundary layer thickness is given by the equation

s _NR, +% 1

e 114
= Y8y AT TP U 2 dn, —3—
7 WRe pur, 1—(W/2)ud) fo [‘/’“ 2 uels +1)] » (632

it still increases as x grows because of the existence of the term 4/2s in the above
equation.

6.3.3. Estimation of Cooling Effectiveness with Several Mass Injection Parameters

Let the mass injection parameters be taken as
(a) total injection mass flow; I,
(b) position of injection slit; 8 (polar angle of mass injection station),
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Fig. 10. Continued. Fig. 10. Concluded.
(€) x1=0.1250, x,==0.4236, (d) x;=0.1250, x,=0.5984,
x3=0.4486, m,=1.849, x3==0.6234, 7;=1.849,
Tjr=T;5=0.492. Tjr=T;s=0.492.

(c) width of injection slit; d.
Then, there seem to exist several criteria for representing the cooling effectiveness
for an adiabatic wall such as
(1) maximum adiabatic wall temperature; T Ymax?
(2) adiabatic wall temperature at a specified station; T,,,
(3) surface area kept below a specified wall temperature; Ar,.
However, the first criterion seems to be less significant in actual results, so that the
second and the third criteria are to be adopted in discussion on cooling effectiveness.
First, consider the second criterion. The total mass flow is written as

W=mA (6-3-2)

where normalization quantities for W and A are W*=m*4* and A*=2zR:,
respectively. It is seen in Fig. 9(b) that the small coolant mass flow rate (para-
meter (a)) is favorable both for the first and the second injections in the sense of
cooling effectiveness.

The effect of the slit width (parameter (c)) may be discussed as follows. Fig. 12
presents the relation between the adiabatic wall temperature and the slit width for
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Fig. 11. Temperature profiles in boundary Fig. 12. Variation of adiabatic wall tem-
layer. perature with slit width of second
x1=0.1250, x,=0.4286, x3=0.4436, injection. W=0.0249.

i ;=1.849, 7i2,=2.00,
T;7=T;s=0.492.

the case of W =0.0249. The figure clearly indicates that the effect of the slit width
is small under the condition of the constant total mass flow. This leads to the use-
ful conclusion from the engineering viewpoint that the slit width can be lessened
without loss of cooling effectiveness.

Now, consider the third criterion. The nomenclature Ar, means the surface
area where the wall temperature is kept below some critical value T,,. It can be
connected with the corresponding streamwise distance x, as illustrated in Fig. 13.

Under the condition of the constant total mass flow (W =0.0208), the adiabatic
wall temperature distributions due to the various location of the second injection
are obtained as in Fig. 14. Cooling effectiveness for an adiabatic wall is defined as

A,=Are (6-3-3)

W

and the results are shown in Fig. 15 with the critical wall temperature T,,,=0.862.
In the figure it is seen that the second injection (parameter (b)) should be located at
the point where the wall temperature T, is as high as the critical wall temperature
T,,, and that the effect of the slit width d/R, (parameter (c)) is also small.
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Fig. 13. Illustration indidating cooling ef- Fig. 14. Effect of position of second in-
fectiveness for adiabatic wall case. jection on adiabatic wall tempe-

rature distribution. M. =8,
T;r="T;5=0.492, d/Ry=0.015.

In Fig. 16 is shown the adiabatic wall temperature distribution associated with
the various mass flow of the first injection where the total mass flow is kept constant.
The corresponding cooling effectiveness is shown in Fig. 17, where the optimum
mass flow ratio is seen to exist at about W,/W =0.3.

6.4. Heat Transfer Distribution

Heating rate is calculated under the assumption of an isothermal wall condition.
It is defined as

— = (m a? ) , (cal-cm~%-sec™?) (6-4-1)

and is further reduced to

(6-4-2)

where
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Fig. 15. Cooling effectiveness for adiabatic Fig. 16. Effect of mass flow of second in-
wall case: Effect of position of jection on adiabatic wall temper-
second injection with constant total rature distribution. M. =8,
mass flow. . x5=0.4361, T;;=T;s=0.492,
W=0.0208, W,=0.0144, d/Ry=0.015.

W;=0.0064, T;;=T;=0.492.

cﬁ*:w. (cal-cm~2.sec™!) (6-4-3)
NR,

6.4.1. Downstream Effects of the First and the Second I njection

Results of the numerical calculations with 'T' »w=0.492 and m;=0.0, 0.915 and
1.849 are shown in Fig. 18 where the heat transfer rate increases rapidly behind
the slit. Comparing Fig. 18 with Fig. 9(a), it is seen that the maximum local heat-
ing appears upstream of the position of the maximum adiabatic wall temperature
for the same injection rate. This means that the influential region of the first injec-
tion is narrower for the heating rate rather than for the adiabatic wall temperature.
For the second injection of four computational models the results of r;=1.00 and
2.00 are shown in Figs. 19(a) and (b). Present results obtained for no injection
are also compared with the analytical ones proposed by Lees [33] in the same figure.
It is seen that the error of the present calculation is about 8% at x=0.8 which can
be considered to be allowable.
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T;p=T;5=0.492.

6.4.2. Estimation of Cooling Effectiveness

_Integration of the heat transfer rate over the body surface is equal to overall heat
input. Heat transferred per unit time onto the body surface within the region from
the stagnation point to the point x=x, is given as

0= f “(—§)dA. (6-4-4)
0
Let 0,, and O, be denoted by the heat inputs without injection and with local in-

jection, respectively, then, (Q,,—Q;) is the heat shielded by the local injection.
Therefore, if the cooling effectiveness is defined as

Hoy=— 9u=Q (6-4-5)
(H.—H,) f “HidA

then, it is proportional to the heat absorbed in the unit mass of coolant per unit
time.
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Fig. 20(a) shows the cooling effectiveness thus calculated. Non-dimensional
distance x, is taken as 0.8283.

As to the effect of the cooling parameter (a), the results show the similar trend
to the coupled wall case. As to parameter (b), the results show that the position
of the second injection x,==0.4361 is superior to x;=0.6106. The peak point of
the heat transfer distribution without the second injection is located at about the
point x,=0.45, therefore, it is advantageous that the position of the slit should be
situated at slightly ahead of x,.

In Fig. 20(b) is shown the optimum width for the injection mass flow. The
trend involving the optimum values arises from the following reason; the total mass
flow W is represented by product of mass flow rate and the injection area, there-
fore, with W kept constant, the cooling effectiveness is determined by a coupling
of increase of the downstream influential region due to increase of 4 with reduction
of heat shielding due to decrease of 71, and vice versa.

6.5. Comparison of Cooling Effectiveness with T, ranspiration Cooling

In order to compare the effectiveness of the local injection cooling with that of
the transpiration cooling, the equivalent transpiration cooling is defined as an uni-
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form injection cooling over a finite range of the surface with the same total coolant
mass flow as that of the associated local injection cooling, that is,

meAr=m A, +mA,, (6-5-1)

where Ar denotes the area of the equivalent transpiration cooling and i, is the
associated coolant mass flow rate. Therefore, it must be noted that, if the total
coolant mass flow of the local injection is kept constant, the mass flow rate of the
equivalent transpiration cooling is a function of the transpiration area under
consideration.

With the definition, the effectiveness of the transpiration cooling defined up to
the point x=x, is written as

Hy— @n0=0r (6-5-2)
(H,—H,) f "Fidd

and by use of the corresponding effectiveness of the equivalent local injection cool-
ing, it can be rewritten as
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HcT —_ Qno "" Q‘: 9110 — QT — HcL QT , (6_5_3)
(ﬁe_ﬁw)f qﬁ'id/? Qno“QL QL

where O,/Q,, represents a ratio of heat shielded by the transpiration cooling to that
by the local injection cooling.

For the transpiration model equivalent to the central injection model, 0,/Q, is
shown in Fig. 21, where ‘

Xr=X: QT/QLZI,
Xp>x0070/0,<1.

Consequently, from Eq. (6-5-3), it is found that the local injection cooling is
always more effective than the transpiration cooling without loss of generality. This
is clearly due to the small heat transfer rate near the injection slit in the case of the
local injection cooling. This, in turn, leads further to the remarkable statement
that the concentrated injection at the stagnation point is the most effective.

7. EXPERIMENT

7.1.  Experimental Conditions and Models

For the purpose of confirming the accuracy of the present approach measure-
ment of the adiabatic wall temperature distribution over spherical models with local

injection was carried out by use of a hypersonic wind tunnel under the following
test conditions;

This document is provided by JAXA.



72 H. Kubota
free stream Mach number M_ =8,
total temperature T,,=485+15°C,
total pressure P=50+0.5kg-cm™?,

free stream Reynolds number Re=2.22 x 10° (R,=2cm).

Five hemispherical models made of FRP which are shown in Table 3 were
used to specify the slit geometry. Wall temperature was measured by use of
0.64mm? C — A thermocouples which are mounted on the model surface together
with 2 mm? X 2 mm copper calorimeters attached to the tips. Sizes of models and
temperature sensors are shown in Fig. 22. Thermal properties of FRP are

heat conduction coefficient £=6.4x10"*cal-sec™'-cm™'.-°K~!,
specific heat Cp=0.23~0.25cal-gr™*-°K~!,

so that the adiabatic wall condition may be satisfied fairly well because coefficient
of heat conduction of FRP is 0.003 times the steel value.

TaBLE 3. Dimensions of models.

Model X3 X X3 Zf ;4‘3 E 67 d_/Rb
dimension (cm?) (cm?) (deg) | (mm)
A 0. 1250 —_ — 0.1963 — — — —
B 0. 1250 0.4286 0.4436 0.1963 0. 1608 25 0.3 0.015
C 0. 1250 0.6033 0.6183 0. 1963 0.2185 35 0.3 0.015
D 0. 1250 0.4236 0.4486 0.1963 0.2650 25 0.5 0.025
E 0. 1250 0.5984 0.6234 0. 1963 0.3617 35 0.5 0.025

The first injection exit consists of porous plug made of 70 y sintered metal, and
ring slit is situated at the position of polar angle (6) equal to 25° or 35° as the
second injection exit. Coolant is injected independently out of them.

Mass flow rate was regulated by use of a float type flow meter. The temperature
inside the porous plug seldom changes and is kept almost constant equal to the
injectant value during the operation, because the coolant velocity is not so large.
Surface temperature was measured at 8 stations (see Fig.22). FRP material
changed its color slightly during the 10~20 operations and the surface was slightly
charred, but the roughness is not so serious as to induce boundary layer transition.

7.2. Reduction of Experimental Results

An experimental duration determined by the operation time of the wind tunnel
is about 90 seconds, and during that time, the transient wall temperature was
measured. Therefore, the equilibrium wall temperature was reduced in the follow-
ing way. Non-equilibrium characteristics of the surface temperature are considered
according to the transient heat flow from the boundary layer to the copper calo-
rimeter, so that, by estimating the heat flow, a relation between transient tempera-
ture T,,({) and the equilibrium temperature T,, was assumed to have a form
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T.=aexp(—bi)+T,, (7-2-1)

and the three unknowns (g, b, T.,) were obtained by use of the measured temperature
T,@) at 1=70, 80 and 90 seconds.

The current investigations have shown that the coolants having larger specific
heats and less molecular weights are more effective to reduce the heating rate and
the present experiment also shows the same trend, so that the data of the adiabatic
wall temperature obtained by use of air injection were compared with the numerical
calculations and the results are shown in Fig. 9(a) and Figs. 10(a) to (d). Itis
seen that the error between numerical and experimental results is about 10%,
while qualitative agreement seems to be fairly good.

It is remarkable in Fig. 10(b) that existence of the second injection has no
serious influence on the upstream data. This experimental fact seems to confirm
the characteristics of the solution of the boundary layer equations of parabolic type
indicated by the numerical results,

8. CONCLUSION

As a heat-shielding device for an axisymmetric blunt nosed bodies at hypersonic
reentry, the method of local mass injection cooling at multiple stations was investi-
gated and its cooling effectiveness was discussed in connection with a numerical
approach to the boundary layer flows with discontinuous boundary conditions.

For the purpose of obtaining the applicable difference method appropriate to the
modes of given discontinuity, one-dimensional heat conduction equation, which is
of parabolic type as well as the boundary layer equations, was solved by means of
the Hartree-Womersley method under the boundary conditions with several modes
of discontinuity, and an appropriate difference method to give accurate approxima-
tion in the vicinity of the discontinuity was presented.

It was shown that common use of 3-pt difference at regular point together with
particular use of 2-pt difference in the very vicinity of the singular point is appro-
priate to obtain numerical solutions of the boundary layer equations with discon-
tinuous boundary conditions. Moreover, it was emphasized that the difference just
ahead of the singularity should correspond to the left-derivative while it should
correspond to the right-derivative just aft of the singularity.

Based on these arguments, an appropriate difference method was applied for an
isothermal and an adiabatic wall conditions and the following results were obtained
in connection with mass injection parameters such as total coolant mass flow and
geometrical configuration of the coolant exit.

(1) The small coolant mass flow rate is rather favorable in the sense of the
overall cooling effectiveness.

(2) Position of the exit is especially important, and the downstream injections
should be appropriately located in the upstream vicinity of the peak point of the
adiabatic wall temperature or the heat transfer distributions.
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(3) 1If the total mass flow is kept constant, the effect of width of the exit is not
so large.

An experiment made under the adiabatic wall conditions indicates fairly good
qualitative agreement with the numerical results.

Comparison with the cooling effectiveness of the transpiration cooling showed
that the local mass injection is more effective under the condition of the same
coolant mass flow.

ACKNOWLEDGEMENT

The author would like to express his deep thanks to Prof. R. Kawamura and
Prof. K. Karashima for their cordial advices and instructive comments upon this
work. The author also wishes to thank Mr. K. Sato for his valuable advices on
the experiment.

Department of Aerodynamics

Institute of Space ond Aeronautical Science
University of Tokvo, Tokvo
Januarv 25, 1971

REFERENCES

'71 McMahon, H. M.: “An Experimental Study of the Effect of Mass Injection at the
Stagnation Point of a Blunt Body,” California Institute of Techneclogy., Guggenheim
Aceronautical Tab., Hvpersonic Project Memo. 42, 1958,

[21 Warren, C. H. E.: “An Exvperimental Investigation of the Effect of Fiecting a Coolant
Gas at the Nose of a Bluff Body.” Jonr. Fluid Mech. 8. 400-417. 1960.

[3]1 Tibby, P. A.: “The Homogeneous Boundary Taver at an Axisvmmetric Stagnation
Point with Laree Rates of Injection,” Jour. Aerospace Sci. 29, 48-60. 1962.

[4] Fox, H. and Libbv. P. A.: “Helium Injection into the Boundarv Laver at an Axisym-
metric Stagnation Point,” Jour. Aerospace Sci. 29, 921-934, 950, 1962.

[517 Kubota, T. and Fernandez. F. T..: “Boundary-Layer Flows with Large Iniection and
Heat Transfer,” ATAA Jour. 6, 22-28, 1968.

[61 Derienzo, P. and Pallone, A. J.: “Convective Stagnation-Point Heatine for Re-entrv
Speeds un to 70,000 fps Including Effects of Targe Blowing Rates.” ATAA Jour. 5, 192-
200, 1967.

[7]1 TLaganelli, A. L.: “A Comparison between Film Cooling and Transpiration Cooling
System in High Speed Flow,” ATIAA Paper No. 70-153, 1970.

81 Gollnick, Jr.., A. F.: “Thermal Effects on a Transpiration Cooled Hemisphere,” Jour.
Aerospace Sci. 29, 583-590, 595, 1962.

[9] Goodwin, G. and Howe, J. T.: “Recent Developments in Mass, Momentum, and
Energy Transfer at Hyper-Velocities.” NASA SP 24, 1962.

[10] Swann, R. T. and South, J.: “A Theoretical Analysis of Effects of Ablation on Heat
Transfer to an Arbitrary Axisymmetric Body,” NASA TND 741, 1961.

[17] Steg, L. and Lew, H.: “Hypersonic Ablation,” The High Temperature Aspect of Hyper-
sonic Flow, Pergamon Press, 629-680, 1964.

[72] Karashima, K. and Kubota, H.: “Aerodynamic Study of Stagnation Ablation,” Inst.
Space and Aero. Sci., University of Tokyo ISAS Report 413, 1967.

{131 Karashima, K., Kubota, H. and Sato, K.: “An Aerodynamic Study of Ablation Near

This document is provided by JAXA.



76

[74]

[15]
[16]
[17]
[18]

[79]

[20]
[21]

22

[23]

(241

[25]
[26]
[27}
[28]
[29]
[30]
[31]
[32]
[331

[34]

H. Kubota

the Region of Stagnation Point of Axially Symmetric Bodies at Hypersonic Speeds,” Inst.
Space and Aero. Sci., University of Tokyo, ISAS Report 425, 1968.

Pallone, A.: “Nonsimilar Solutions of the Compressible-Laminar Boundary-Layer Equa-
tions with Applications to the Upstream-Transpiration Cooling Problem,” Jour. Aero-
space Sci. 28, 449-492, 1961.

Rheinboldt, W.: “On the Calculation of Steady Boundary Layers for Continuous Suc-
tion, with Discontinuously Variable Suction Velocity,” NASA TT F 29, 1961.

Devan, L.: “Approximate Solution of the Compressible Laminar Boundary-Layer
Equations,” ATAA Jour. 6, 2010-2012, 1968.

Morduchow, M. and Libby, P. A.: “Class of Solution of the Axisymmetric Boundary-
Layer Equations with Mass Transfer,” ATAA Jour. 6, 2045-2046, 1968.

Bethel, H. E.: “Approximate Solution of the Laminar Boundary-Layer Equations with
Mass Transfer,” ATAA Jour. 6, 220-224, 1968.

Hartree, D. R. and Womersley, J. R.: “A Method for the Numerical or Mechanical
Solution of Certain Types of Partial Differential Equations,” Proc. Royal Soc. 161A,
353-366, 1937.

Smith, A. M. O. and Clutter, D. W.: “Solution of the Incompressible Laminar Boundary-
Layer Equations,” AIAA Jour. 1, 2062-2071, 1963.

Smith, A. M. O. and Clutter, D. W.: “Solution of Prandtl’s Boundary-Layer Equations,”
Douglas Aircraft Co., Engineering Paper 1530, 1963.

Clutter, D. W. and Smith, A. M. O.: “Solution of the General Boundary-Layer Equa-
tions for Compressible Laminar Flow, Including Transverse Curvature,” Douglas Aircraft
Co., Rept. LB 31088, 1968. :

Smith, A. M. O. and Clutter, D. W.: “Machine Calculation of Compressible Boundary
Layers,” ATIAA Jour. 3, 639-647, 1965.

Jaffe, N. A., Lind, R. C. and Smith, A. M. O.: “Solution to the Binary Diffusion Lami-
nar Boundary-Layer Equations with Second-Order Transverse Curvature,” AIAA Jour.
5, 1563-1569, 1967; also Douglas Aircraft Co., Rept. LB 32613, 1966.

Blottner, F. G.: “Chemical Nonequilibrium Boundary Layer,” ATAA Jour. 2, 232-240,
1967.

Fay, J. A. and Kaye, H.: “A Finite Difference Solution of Nonequilibrium Boundary
Layers,” ATAA Jour. 5, 1949-1954, 1967.

Marvin, J. G. and Sinclare, A. R.: Convective Heating with Large Favorable Pressiure
Gradient,” ATAA Jour. 5, 1940-1948, 1967.

Hayes, W. D. and Probstein, R. F.: “Hypersonic Flow Theory,” Academic Press, Inc.,
1960. '
Richtmyer, R. D. and Morton, K. W.: “Difference Methods for Initial-Value Prob-
lems,” Second Edition, Interscience, 1967.

Hilsenrath, J., et al.: “Tables of Thermal Properties of Gases,” National Bureau of
Standards, Circular 564, Nov. 1, 1955.

Nachtsheim, P. R. and Swigert, P.: “Satisfaction of Asymptotic Boundary Conditions
in Numerical Solution of Systems of Nonlinear Equations of Boundary-Layer Type,”
NASA TND 3004, 1965.

Jaffe, N. A.: Private communication.

Lees, L.: “Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight
Speeds,” Jet Propulsion, 26, 259-269, 274, 1956.

Gollnick, Jr., A. F.: “Blunt Bedy Experiments with Central Injection,” ATIAA Jour. 4,
374-376, 1966.

This document is provided by JAXA.





