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Summary: Experiments have been made on the electrical conductivity of argon-potassium
and helium-potassium plasmas at atmospheric pressure. The gas, its container, and elec-
trodes are heated uniformly in an electric furnace to a temperature ranging from 1300 to
1700°C. Thermal ionization of the potassium atoms makes the gas electrically conductive.
Through the ionized gas an electric current of short duration is passed, the current density
ranging from 107° to 2 A/cm®. As a function of the current density, the electric field in
the plasma is determined with two electrostatic probes and effects of the sheath-voltages
on the main electrodes are avoided. The gas temperature is not disturbed by the current
because its duration is very short. With small current density the conductivity is inde-
pendent of the current density and the plasma is in a thermal equilibrium. From the
experimental value of conductivity the average cross section of a potassium atom for
electron-momentum transfer is estimated to be 2.3% 10~ cm®. For intermediate current
density the conductivity becomes lower than the equilibrium value. The electrons may not
be in Maxwellian distribution. The decrease in the conductivity is interpreted on the
bases of the non-Maxwellian distribution of the electron energy and the decrease in the
mobility of electrons at high electron temperature. The apparent conductivity at high cur-
rent density is large, but the current density in the plasma may not be uniform.

1. INTRODUCTION

Recent developments in the magnetohydrodynamic propulsion and power
generation stimulated interests in the flow of an ionized gas. Many theoretical
works have been done on the electric property of high-temperature inert gas
seeded with a material of low jonization potential, such as cesium, potassium, or
sodium. An inert gas atom has small cross sections for both momentum and
energy transfer with electrons, which lead to a high mobility of electrons and a
high electrical conductivity. Alkali atoms are easily ionized and yield a large
number of electrons at moderate temperature. When the ionized gas is subject
to an electric field, electrons are accelerated by the field and gain energy. The
energy transfer from electrons to atoms is hindered by the small cross section of
an inert gas atom for energy transfer with electrons. Consequently, electrons
have higher energy than neutral atoms on the average. For such a nonequilibrium
condition we define the electron temperature which is higher than the gas tem-
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84 F. Sakao and H. Sato

perature. If the ionization process is governed by electrons, we expect a higher
electron number density than that corresponding to the gas temperature. Since
the conductivity is proportional to the electron number density, the conductivity
is higher in the nonequilibrium state. There are many theoretical investigations
on the nonequilibrium conductivity, while experimental investigations are rela-
tively few.

Harris [/, 2] measured the electrical conductivity of various inert gases seeded
with cesium and potassium near thermal equilibrium. The temperature of the
gas was made uniform in his experiment. The conductivity is calculated from
the current and the voltage across electrodes with a small dc current. The voltage
across a sheath on the electrode was ignored in the calculation of the electric field
in the plasma. Although he claims that the sheath voltage is negligibly small at
a small current, it is not necessarily true, as will be shown by the present experi-
ment. The experiment by Harris was restricted to an equilibrium plasma. No
investigation was made on a nonequilibrium plasma. Kerrebrock, Hoffman, and
Dethlefsen [3, 4] and Zukoski, Cool, and Gibson [5, 6] made experiments on
the conductivity of a plasma at high current density. The conductivity of the
high-current nonequilibrium plasma was found to be much higher than that of
low-current equilibrium plasma. The experimental values of conductivity arc
in good agreement with the calculated values based on the “two-temperature
conduction theory” provided that cffects of radiation [7] arc taken into account
properly. Further, a consideration on the electronic heat conduction [8] made
the agreement more satisfactory. The electric field in the plasma was measured
with probes set between main electrodes so that effects of the sheath was excluded.
On the other hand, they employed a test plasma flowing in a cold passage in a
marked contrast to the isothermal experiment by Harris. The temperature of
the plasma is not uniform and there is some ambiguity in the value of gas tem-
perature. Thus, at low current where the gas temperature is one of the most
important parameters, their results may be subject to some uncertainty.

In the experiment by Kerrebrock and Hoffman [3] they noticed that at a certain
current density the conductivity of argon-potassium mixture sedmed to decrease
with the increase in the current density. This relation between the conductivity
and the current density can not be explained by the conventional two-temperature
theory. According to the theory, the conductivity should always increase when
the current density is increased. The unusual dependence of the conductivity of
the conductivity on the current density was not appropriately interpreted. More-
over, the range of the current density in their experiment was not wide enough to
cover the equilibrium region.

We may summarize results of previous experimental investigations on the
subject as flolows:

Some of them are accompanied by effects of sheath, and others by nonuniform
gas temeprature. Equilibrium and nonequilibrium conditions were not measured
in the same arrangement. An interesting phenomenon appearing in an inter-
mediate region between the equilibrium and nonequilibrium regions has not been
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Plasma Conductivity 85

fully clarified.

In the present investigation an isothermal condition of plasma is realized
experimentally. The temperature of the plasma and the test chamber is maintained
uniform and is measured accurately. The sheath voltage on the main electrodes
and the electric field in the bulk of plasma are measured separately by means of
electrostatic probes. The current density in the plasma covers a wide range from
the equilibrium to nonequilibrium conditions. At the lowest current, the plasma
is in thermal equilibrium. At the highest current the ionization is enhanced due
to the elevated electron temperature and the plasma is not in equilibrium. Be-
tween these two states there is a transient region, in which the conductivity shows
a minimum for argon-potassium mixture under certain experimental conditions.
Considerations on the microscopic processes in 2 nonequilibrium plasma led to
the conclusion that the energy distribution of electrons might deviate from being
Maxwellian. Based on the non-Maxwellian distribution, a plausible interpretation
for the dependence of the conductivity on the electric field is obtained.

Essentials of the results obtained here have been published elsewhere [9].
However, there still remain unpublished details. This paper presents more com-
plete informations.

2. EXPERIMENTAL ARRANGEMENTS

Typical experimental conditions are as follow:

Gas composition; argon seeded with potassium vapor (in some cases helium
is substituted for argon for comparison).

Gas temperature T,; 1400, 1500, and 1600°C.

Total pressure; 1 atm.

Mole fraction of potassium; 0.013 and 0.13% (in few cases 0.8%).

Current density; 10-5~2 A/cm2.

In order to realize such conditions, there are two methods. In some of the
previous experiments [3, 4, 5, 6] the heated plasma passes through a test section
where the electric properties are measured. By this arrangement it is possible to
keep the temperature of the test section low. A material suitable for the elec-
trically insulating wall is easily found. Since the plasma flows, the leak of gas
through the wall causes little trouble. Thus the wall may be slotted to permit
optical observation. On the other hand, the temperature is not uniform in the
plasma. The temperature is low near the wall. Since there is no radiation from
the cold wall, the radiation from the plasma to the wall may disturb the equilibrium
condition even in the absence of the electric current. Owing to the nonuniformity
in the temperature and to the presence of cooling by radiation to the wall, extreme
care is needed in the measurement of the gas temperature. Possible temperature
gradient in the streamwise direction might result in the number density of electrons
frozen to the value at upstream section, where the gas temperature is higher [4].
Finally, the leak of electric current can not be excluded completely, because a
conducting layer is formed on the wall by a reaction with the potassium vapor
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in the plasma [7].

In another scheme, the plasma is contained in a opaque vessel and heated from
outside, as adopted by Harris [/, 2]. The temperature is uniform over the plasma,
clectrodes, and the wall of the vessel. Hence, the thermal equilibrium in absence
of the electric current is secured. The gas temperature is easily determined. On
the other hand, the high-temperature wall becomes electrically conducting. The
leak of electric current through the wall is a source of error in the measured value
of the conductivity. In order to minimize the leak, the material for the wall
should be carefully chosen. Nevertheless, once a proper material is found, the
leak is small and can be corrected for.

From the comparison between the two methods, it is clear that the isothermal
experiment is preferable for a near-equilibrium experiment. ~Since we are to
investigate a plasma in the intermediate region between the equilibrium and non-
equilibrium region, we follow the isothermal scheme.

Figure 1 illustrates an outline of the experimental arrangements. Argon with
impurity less than 0.1% 1is supplied from a 50 litre bottle at the pressure 150
kew/cm? Through a series of pressure reducing valves, the pressure of argon is
made slightly higher than the atmospheric at the entrance of the flow meter. A
safety vent prevents the pressure from rising too high. A flow of argon with the
flow-rate of 1 to 2 cm3/s (at 1 atm, room temperature) passes the potassium boiler
and is mixed with the potassium vapor. The mixing is based on the vapor satura-
tion at a prescribed temperature. In the potassium boiler argon is first heated up
to the prescribed temperature in passing through a 50 cm-long, 4 mm-i.d. tube of
stainless steel immersed in a bath of molten tin-lead mixture. Then, the argon is
led into a bubble pot immersed in the same bath. The pot has an inner height of
105 mm and an inner diameter of 25 mm. At the bottom of the pot there is a
pool of liquid potassium. Argon is introduced as bubbles in the potassium pool.
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Fic. 1. Experimental arrangements.
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In order to provide enough vapor the temperature of the pool is kept deliberately
higher than the prescribed value by a small sheathed heater at the bottom of the
pot. In the bubble pot above the potassium pool, copper chips are packed. The
wide surface area of those chips wet with potassium ensures the saturation with
the vapor at the prescribed temperature, The chips also screen off liquid drops
of the potassium which might come out of the surface.

The tin-lead bath is heated by a sheathed electric heater immersed in it. The
temperature of the bath can be kept between 250°C and 450°C, the corresponding
saturation pressure of the potassium vapor being between 0.1 and 10 Torr., The
temperature is measured with a chromel-alume] thermocouple and is controlled
automatically to be constant, Initially, pure tin bath was used. The liquid tin
severely corroded the Inconel sheath of the heater in the bath. Then pure lead
Wwas tested, but no improvement was found. The higher melting point of lead
gave additional difficulties in operating at low temperatures, Then, a mixture of
tin and lead was used. The corrosion of the sheath of the heater still took place.
We decided to allow a moderate rate of corrosion. The corroded heater and the
bath are periodically replaced by new ones. Because of its low melting point,
a mixture of tin and lead is used throughout the experimental work.

Figure 2 illustrates the test chamber in detail. The mixture of argon and
potassium is led into the test chamber through tantalum tubing, where the gas is
heated up to the desired temperature. The test chamber is composed of a thoria
tube of 23 mm-i.d. with electrodes at both ends. The electrodes are made of two
parallel molybdenum plates 40 mm apart. In the test chamber ,two parallel
screens of tungsten wires of 0.3 mm-diam. are inserted normal to the current at a
distance of 20 mm. They are electrostatic probes. The whole test chamber is
enveloped by a large tantalum container of 43 mm-i.d. The space between the
test chamber and the outer container is filled with pure argon for electrical insula-
tion. The argon-potassium mixture in the test chamber and the pure argon around
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Fic. 2. Test chamber and electrical wiring,
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the test chamber are gradually replaced by new gases. This replacement eliminates
effects of absorption and evaporation of potassium to and from the walls of the
test chamber and tubings. The mixture and the pure argon are exhausted through
a common tube, so that the pressure in and around the test chamber is maintained
exactly the same. In this way the leak of gas from or into the test chamber is
prevented. The gases arc vented out to the atmosphere through a potassium trap
and a water-flush.

The test chamber and tubings are first cvacuated to a pressure less than 1072
Torr. They are filled with pure argon at the atmospheric pressure and then
evacuated again. This procedure is repeated a few times. The pure argon is
kept flowing from that time. The temperature of the test chamber is gradually
raised. Finally the temperature of the potassium boiler is raised and the whole
system is ready for measurements.

The test chamber is heated in a vacuum electric furnace. In order to protect
the tantalum container from any damage due to the residual gases, the furnace
was kept at a pressure below 104 Torr. A 150 mm-diam. oil diffusion pump,
a 50 mm-diam. oil ejector pump, and an oil rotary pump with capacity of 300
!/min are used in series for the evacuation. The furnace uses a hollow cylinder
graphite heater of 50 mm-i.d. The highest temperature of the heater is 2000°C
at 20 kw-power input. The temperature of the furnace is uniform over the length
of 8 cm. The test chamber and the outer container was placed in the uniform-
temperature region. The gas in the test chamber, the electrodes, and the wall of
the test chamber are at the same temperature. The temperature at the test
chamber is measured by tungsten-tungsten rhenium thermocouples. 1t is found
that the temperature difference between the bottom and the middle of the thoria
wall of the test chamber is less than 25°C.

The gas in the test chamber becomes electrically conductive due to the thermal
ionization of the potassium atoms. An electric current with a short duration is
supplied to the plasma through the two disk electrodes. The instantaneous values
of the electric potential at several points in and around the test chamber are
recorded on an oscillogram as shown in Fig. 2. From these oscillograms the
following quantities are known: (1) current 1,, (2) electrode voltage V,, and
(3) voltage difference between the two electrostatic probes, V,. Two probes are
operated at the floating condition, and only the difference of the potential between
two probes is measured, so that effects of sheaths on two probes cancel out with
each other. A probe together with the sheath around it blocks at most several
percent of the cross sectional area of the plasma. The effect of this blocking on
the overall characteristics of the plasma should be small.

The voltage between probes or clectrodes may include thermoelectric voltage
in the plasma. Although temperatures of the plasma and electrodes are quite
uniform, it might be impossible to make the thermoelectric voltage less than 10 #V,
which amounts to a few percent of the smallest value of measured V,. The
cancellation of the thermoclectric voltage in the plasma was accomplished by
measuring value of [(voltage with the pulse on) minus (voltage with the pulse off) ]
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instead of voltage with the pulse on itself. By this method of measurement,
thermoelectric voltage in the wiring is also cancelled out.

There remains two possible sources of error. One is the change in the gas
temperature due to the Joule heat. To minimize this effect, a pulsed current was
used by Zukoski et al. [5]. We also use the pulse current. The duration of a
pulse is 200 ps. A pulse is triggered manually and the duty ratio is very small.
A maximum temperature rise during a pulse can be estimated by the ratio (energy
input) / (heat capactiy) for a unit volume of the plasma. Based on experimental
data, it will be shown later (§ 3) that the temperature rise is very small. At a
very small current, heating is negligible even with a continuous current. A few
results of measurcments with small continuous current are included in the experi-
mental data.

The other point is concerned with the leak current through walls. At high temper-
ature paractically any solid material does not remain to be a good insulator. In the
present arrangements, the thoria wall of the test chamber is at the same temperature
with the plasma, and the leak current through the wall can not be ignored. The
current /, in Fig. 2 is a sum of the leak current through the thoria wall, I,,, and the
current through the plasma, I; thatis, I,=1,+1. The value of I,, at an operating
temperature was measured as a function of V,, with pure argon in the test chamber.
The results are illustrated in Fig. 3. It is worth noting that the value of I, is not
proportional to V.. The data presented in this paper have been corrected for J » DY
using the experimentally determined values of 7,,.

The current pulse is supplied from a circuit shown in Fig. 4. The circuit is
composed of following parts; (1) a condenser which discharges through the
plasma, (2) a mercury switch to turn on the current manually, (3) a silicon-
controlled-rectifier which terminates the current by short-circuitting the condenser,
and (4) transistors which cut off the residual current after the pulse (such
residual current could disturb measurements immediately after a pulse). The
output resistance of the circuit ranges from 13.5 ohms at the highest current
to 1 Meg-ohm at the lowest current. Most of the source voltage is consumed
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FI1G. 3. Voltage-current relation of the thoria wall. Measurement with dc current.
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in the attenuater and the current is kept constant regardless to changes in the
plasma conditions during a pulse.

Attempts were made to inquire into the plasma decaying after a pulse. The
plasma is brought to highly ionized state by a current pulse (main pulse) of a
large amplitude and of 200 us. After the main pulse is turned off, electric
properties of the plasma is measured with repeated pulses of a small amplitude
and of very short duration (auxiliary pulses). The magnitudes of main pulse
and auxiliary pulse are about 10 A and 1 mA, respectively. In order to display
these two pulses of quite different magnitude in one common oscillogram, the
circuit shown in Fig. 5 is used. Its essential function is to change the value of
the resistance R in Fig. 2 according to whether the pulse is the main or the
auxiliary. A main pulse is passed through a low resistance, and auxiliary pulses
are passed through a high resistance, resulting in voltages of the same order of
magnitude to be displayed on one oscillogram. With such circuit some preliminary ‘
results have been obtained. Unfortunately, there remain some difficulties and
questions in results, so in this paper results on decaying plasma are not presented.

3. EXPERIMENTAL RESULTS

Fig. 6 shows typical features of oscillograms. Traces represent the voltage
(V.+RlI,), the electrode voltage V., and the probe voltage V,, as stated in §2.
Thus the difference between the first two divided by R gives the value of the total
current, I, which after correction for the leak current, I,, gives the current through
plasma, I.

In Figs. 6(a) and 6(c) the duration of the current is 200 us. Traces in (a) show
no change during the pulse period. On the other hand, in (c) a timewise change
during the pulse period is remarkable. Only I,, remains nearly constant during the
pulse. The nature of the timewise change in V', and V', depends on the current, 1.
When I is small, V, and V, do not change during the pulse as shown in figure (a).
When [ is large, V, and V', change with a relaxation as shown in figure (c). They
change rapidly at first then slowly and finally level off. When I is of an intermediate
value, V, and V, appear to be constant as in (a); but an oscillogram with a faster
sweep reveals that V', changes as in figure (b). What is meant by those timewise

IR R i B A
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g »
T Va
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= “/Ve Cl:
I - - Ve~
a) Small Current . b) Medium Current c) Large Current
1=10"A, Regionl I=10"A, Region I I=1A, Region II

FiG. 6. Schematic voltage oscillograms. Argon-potassium. Confer Fig. 2 as
for traces V,, V4 etc.
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changes will be discussed later. Here, we plot the finall values of V, and V', as
functions of I as shown in Figs. 7~ 14.

Figs. 7~12 illustrate results for argon seeded with 0.013 and 0.139, potassium
at three different temperature, 1400, 1500, and 1600°C. Those data have been
corrected for the wall leak current, /,, using experimentally determined /,,— V', curves
(§2). In the case of potassium-seeded argon, the amount of the correction is less
than 10% of the apparent value. When the test chamber is filled with argon-potas-
sium mixture, due to the absorption of potassium on the wall the I,,—V, relation
may be different from that in purc argon. But modcrate change in /,, which is
usually less than 109 of I does not affect the value of I too much. Effects of the
leak current through the thoria tubes around the probe-leads (Fig. 2) are estimated
from the apparent resistance between two probes. It is found that the error in the
measured value of electric field in the plasma caused by the leak is less than several
percent. In the figures, data of V', in different runs are marked with different
symbols. Data on V, show less run-to-run scatter.

The temperature rise of a plasma during a pulse is estimated from experimental
values of I and V,. The amount of encrgy given to the bulk of plasma by one
pulse is at most 0.001J/cm®. This leads to the change in the gas temperature of
7°C, even if whole Joule heat is used for heating the atomic species of the plasma.
Thus the change in the gas temperature can be neglected.

In Figs. 13 and 14 illustrated are results for helium seeded with 0.139% potassium
at temperatures of 1400 and 1500°C. Those data also have been corrected for 1,,.
Owing to the low conductivity of helium-potassium plasma, the value of I, in some

x
102 | e
| j + xi#'/'*@ W H
Ar+0013%K My "o e
1400°C ¥ A e B
Tatm.
10
>
=
w
o
§10
K
2
107
If
107 107 107 1072 107 1 10

Current , I (A)
Fic. 7. Voltage-current relation of argon-potassium plasma. 1.
T,=1400°C. Potassium concentration 0.0139%.
V.; voltage between electrodes (40mm apart), and V,; voltage be-
tween probes (20 mm apart).
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Fic. 8. Voltage-current relation of argon-potassium plasma. 1I.
T,=1500°C. Potassium concentration 0.013%.
Ve; voltage between electrodes (40 mm apart), and
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V.; voltage between electrodes (40 mm apart), and
Vp; voltage between probes (20mm aper).
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T,=1400°C. Potassium concentration 0.13%.
Ve; voltage between electrodes (40 mm apart), and
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Ty=1500°C. Potassium concentration 0.13%.
Ve; voltage between electrodes (40mm apart), and
Vp; voltage between probes (20 mm apart).
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cases, is as large as the current through the plasma, I.

FiG. 13.

Voltage-current relation of
helium-potassium plasma. I.
T,=1400°C. Potassium con-
centration 0.139%.

V.; voltage between elect-
rodes (40mm apart), and

V p; voltage between probes
(20 mm apart).

Since I=1,—1,, if I, is of

the same order of magnitude as I, then the relative error in I caused by an error or

change in the I,,—V, relation is nearly the same as the relative error in I,,.

The

reliability of the results is low. Here presented are only two cases of a relatively
high reliability, although experiments were made for many other cases. The larger
symbols in Figs. 13 and 14 denote data of higher reliability among those in the same
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figure. The reason for the higher reliability is that for those runs the correction
could be made more precisely. For an argon-potassium plasma the amount of cor-
rection is small, and the reliability is high for all data.

Hereafter discussions will be made on the prove voltage, V,, or equivalently, the
electric field in a plasma as a function of current, I, or current density, i. Other
subjects e.g., the sheath voltage will be discussed later. Although there is some
run-to-run scatter in the absolute values of V,, the functional dependence of V, on
I is reproduced rather well in different runs, as is seen from figures. The result
shows several interesting features.

For an argon-potassium plasma in Figs. 7~ 12, the V', —I relation may be divided
into three regions. At small current, ¥, is proportional to I, in other words, the
ratio V', /I is constant. This region is hereafter referred to as “region I’. In this
region, oscillograms of type of Fig. 6(a) are obtained. When I is increased beyond
some critical value, V', increases rapidly so that the ratio ¥, /I becomes larger than
that in region I.  This second region is named “region 11”. In region 1I, oscillo-
grams of V', as shown in Fig. 6(b) are obtained. Inspecting data in Figs. 7~ 12,
one finds that the value of I at the boundary between regions I and 11, is not con-
stant but depends on the temperature and the composition of the gas. On the other
hand, the value of ¥, at the boundary is nearly constant. The value is 0.1 to 0.2V,
and the corresponding value of the electric field is 0.05 to 0.1V /cm. When [ is
increased further, V', increases slowly, becomes constant, and then decreases, so that
the ratio V', /I becomes smaller than that in region I. This third region with smaller
V,/1is called “region III”. In region III oscillograms as shown in Fig. 6(c) aro
obtained. The value of I at the boundary between regions II and III, i.e. the
value of I at which the value of the ratio ¥,/ is equal to that in region I, is not
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constant. The value of V, at the boundary is not constant, but is dependent on the
gas temperature and the gas composition, and ranges from 3 to 20 V.

The fact that V, does not increase with I makes it impossible to maintain a con-
stant current with a constant-voltage power supply. This is the reason why we use
the constant-current pulse generator as shown in Fig. 4. Even with a constant-
current power supply, it is difficult to maintain a stable, uniform distribution of the
current in a plasma in region I1I, because V', deos not increase with /. The in-
stability of the current distribution is suggested by oscillographic traces of V', and
V ,, which often show sudden jumps or irregular flactuations during a pulse.

In each of Figs. 7~ 14 a faired curve for V,—1I relation is shown. In construct-
ing the curve the following points are considered; (1) the curve should reproduce
the functional dependence of V', on I for each run, and (2) data of a run with less
scatter are weighted more.

For a helium-pottassium plasma, it is not clear whether “region II”” exists or not.
In Figs. 13 and 14, the value of V,/I is constant at small value of I, and then
decreases with increase in 1. It does not become larger than that in region I, as far
as the data in Figs. 13 and 14 are concerned. However, owing to large correction
for I,, data are less reliable, and no definite conclusions are possible.

From data on ¥, versus I, the electrical conductivity of a plasma, ¢, is calculated
as a function of the current density i. Figure 15 presents the results for an argon-
potassium plasma, based on the faired curves in Figs. 7~12. In the ¢-i relation the
three regions appear as follows. When the current density, i is small, ¢ is inde-
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pendent of i. This is the region /, and the value of ¢ in region I is denoted by ¢;.
The value of g, is a function of the gas temperature, 7', and the potassium concen-
tration. At somewhat larger value of i, ¢ becomes smaller than ¢;. This is the
region II. The value of ¢ in this region is dependent on i, T, and the potassium
concentration. At large current density ¢ becomes larger than ¢;. This is the
region III. In this region, ¢ is dependent on i and the potassium concentration,
but is weakly dependent on T,.

In Fig. 16, ¢ is presented as a function of the electric field, E. Again three
regions appear, in a similar manner as ¢—i curve.

Fig. 17 illustrates the conductivity of a helium-potassium plasma as a function
of the current density, i (Fig. (a)) and of the electric field (Fig. (b)). These data
are deduced from faired curves in Figs. 13 and 14. The conductivity of a helium-
potassium plasma is much lower than that of an argon-potassium plasma at the same
temperature and current density.

It is well known that in a plasma adjacent to an electrode there is a thin sheath.
Across the sheath usually appears a voltage drop which is called the sheath voltage.
In the present experiment, the sum of sheath voltages on the two main electrodes,
V,, is obtaind by a relation V,=V,—(D,/D,)V,. Here D, denotes the distance
between two main electrodes (=40 mm), and D, is the distance between two probes
(=20mm). Hence (D,/D,)=2. The sheath voltage is obtained from experimental
data as a function of / or i.

Faired curves of V,—i relation are illustrated in Fig. 18. It is seen that V', does
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not vanish at small i. The value of V' at small i is proportional to i. This fact
may be seen also directly from V,—I and V,—I diagrams in Figs. 7-12. For in-
stance, in Fig. 8 at I=107'4, the value of V, is 4 to 5 times ¥V, so that V, is 1 to
1.5 times V,. This example shows that the sheath voltage can be as large as the
voltage across the bulk of plasma under some of the present experimental conditions.

4. EQUILIBRIUM CONDUCTIVITY

In the present experiment, the temperature is uniform over the plasma and the
test chamber. The wall of the test chamber is opaque to the radiation. There is
no flux of energy between the plasma and the wall. The plasma is in a thermal
equilibrium. When there is a small electric current, the plasma is still in equili-
brium. In region I, the conductivity does not depend on the current density. The
conductivity in region I should be the same as in the complete thermal equilibrium,
i=0. Oscillographic observations indicate no change in ¢ due to the current. The
conductivity in region I, ¢;, is to be compared with the value calculated by the
equilibrium theory.

The fraction of ionization of atoms in a thermally equilibrium state is given by
the Saha equation [10, 11] as,

nn; _ 29,Qem kD" (_e¢)_
n, g kT

Here n,, n;, and n, are number densities of electrons, ions, and neutral atoms,
respectively. Factors g; and g, are statistical weights of ionized and neutral states
of an atom. Other symbols are as follows; m, and e denote mass and electric
charge of an electron, respectively, ¢ is the ionization potential of an atom, T denotes
temperature, A is the Planck constant, and £ denotes the Boltzmann constant. Since
a plasma is electrically neutral, and usually, doubly charged ions are few, we have
n;=n,. Then, knowing the relevant physical quantities of the atom and the
temperature, one is able to determine the ratio, n?/n,. Futher, the knowledge of
either of ny, n,+n,, n,4ny,+n,;, or the corresponding partial pressure enables us to
determine values of n,, n;, and n,.

In the temperature range of the present experiment, i.e., up to 2000 K, only the
potassium atoms are ionized significantly. For an alkali atom, the ratio g,/g, is
equal to 1/2. The potential for double ionization is very high, i.e., 32V, from
the singly ionized state. This value should be compared with the ionization poten-
tial of 4.34V for single ionization. Thus, the number of doubly charged ions is
negligibly small. The ionization fraction of argon is extremely small.

The electrical conductivity, ¢ is given by ¢=n,ey, where p is the mobility of an
electron in the gas. The contribution of ions in ¢ is neglected because the mobility
of an ion is small. The value of p is calculated by the Allis formula [12].

e T4 L)
= 3T Fiv) © (= _\dv,
# 3m 1 ( )d?) v, (V)

e
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where v is the speed of an electron, and v,(v) is the total frequency of the diffusive
momentum transfer of an electron with all atoms, ions and molecules. The function
F(v) denotes the spherically symmetrical term in the expansion of the distribution

function of the velocity of electrons. In region I, the distribution of electrons is
Maxwellian, and F(v) is given by Ref. 13 as

3/2 2
Flo)= (e ) (_ l"e”_) .
@) ( 2okl | P\ T o

The value of v,(v) is calculated by (Ref. 11),
v(V)=v 3 n;Q0,) ,
J

where n; is the number density of the j-th species, and Q,(v) is the diffusive
momentum-transfer cross section of j-th species with an electron of speed v.
Quantities F(v), v,(v), and Q,(v) are written as F(e), v,(¢) and Q ;(e) when they are
given as functions of the electron energy e=(1/2)m,v*. In the present experiment,
the plasma is composed of argon atoms (indicated by a subscript “Ar”), potassium
atoms (indicated by “K”), singly charged ions of potassium (indicated by “i”’), and
electrons (indicated by “e”). Cross sections of argon, potassium, and helium atoms
for an elastic collision with an electron in references 14 ~29 are illustrated in Figs.
19~21. Both the total scattering and the diffusive momentum-transfer cross
sections are shown. The total scattering cross section are usually obtained from
electron beam experiments and the diffusive momentum-transfer cross sections are
obtained from electron swarm experiments.

In Fig. 19 a profound minimum is seen in the cross section of an argon atom. It
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is due to the well-known Ramsauer effect. Of the several data on the cross section,
we choose the data by Frost, Phelps and Engelhardt [14, 15] for the calculation of
the conductivity. The reason for this choice is that only their values are the dif-
fusive momentum-transfer cross section as a function of ¢. Besides, they were
obtained through an elaborate experiment and analysis. They do dot contradict
with the latest results for the total scattering cross section by Golden and Bandel
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[19]. The cross section of a helium atom is almost constant in the range of electron
energy from O to 4elV (Fig. 20).

Data on the cross section of a potassium atom are few. In Fig. 21, continuous
lines are results by Brode [26] and Phelps [25] as functions of ¢. Data by Harris
[2], Shioda [27], and Solbes and Kerrebrock [28] are averaged cross sections for
electrons with Maxwellian energy distribution at 7,. For those data ¢ is taken as
(3/2)kT, (mean thermal energy of an electron). In the present calculation of the
conductivity a simple expression by Phelps [25] is used, which is

Ve x(V) =v0(W)ng=1.6 X 10"*ny(sec™?)
(ng; number density of potassium atoms in cm~?).

This is the only data for Q.(v) as a function of v at low electron energy as far as
known to the authors.

Collisions between electrons and ions are quite different from the electron-atom
collison. The Coulomb interaction is effective up to a very large distance, and the
total scattering cross-section would be infinitely large. A method of connecting the
ion-electron collisions with the electron-atom collision is not established. There are
two schemes for this. One is “mean-free-path mixing rule”. In this scheme the
conductivity ¢ is put ¢-'=¢ '+ ¢!, where o, is conductivity in the absence of elecron-
ion collisions, and ¢; is that in the presence of electron-ion collision only. The
other is “integral mixing rule” to which we follow here. In this scheme electron-
ion collisions are included in v,(¢), by suitably chosing value of v,_,(¢). This scheme
gives better results when “mean free path” depends strongly on the electron energy
as shown in references 30~ 32. The cross section of an ion to be used in this scheme
is given by Frost [11] as,

Ve_i(0) =vQ(v)n;=0.476K [ (m v* | (2kT)),

K:[ 2n.e*1nA ]( 2e )”2( e )3/2
(4rey)? m, kT
. 3 ( drekT )3/2
T Qany) et ’

in which

and ¢,=8.854 X 10~**Farad/m (in mksa units). In reference 33, effect of the electron-
electron interaction on the conductivity was shown. The effect has been included
in the above expression for v,_; by Frost.

The value of ¢ calculated by the above scheme is shown in Figs. 15 and 16 by open
triangles at the ordinates. Measured values are higher than the calculated. Although
there is a scatter in experimental data, the discrepancy is more than just experimental
errors. The saha equation might be valid. The temperature of the plasma was
measured within few degrees. The value of the ionization potential is well-established.
Only possible cause is the value of the cross section.

The value of Q,,(e) would be of high reliability. Besides, it is the lowest of all
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known so far (Fig. 19). It might give the highest value of o, i.e., the nearest to the
experimental. The value of Q.(e) is not so accurate, but the frequency of electron-
ion collisions is less than one tenth of other collision frequencies. Therefore, the
contribution of Q,(¢) in the calculated value of ¢ is small. Even if the value of
Q,(e) is put to be zero, the calculated value of ¢ increases only by 10%. On the
other hand, the value of Q,(¢) used in the calcutation has been derived from results
of experiments in the positive colum and may be correct only for electrons with
moderate energy. Under the present experimental conditions, most of electrons have
energy less than lel/, that is, F(e) has appreciable value only for e<<1eV. The in-
tegrand in the Allis formula is large where v, is small there. The value of y,(e) is
determined mainly by the maximum one of »n,,Q,,, nxQf, and n,Q;. Since Q ()
has a profound minimum at ¢=0.3eV, the value of Qx(¢) near ¢=0.3eV is im-
portant in determining the mobility in an argon-potassium mixture. It is probable
that the used value of Qx(¢) might be too large for low energy.

The value of Qx(e) affects also the functional dependence of ¢ on the potassium
concentration, cg. Fig. 22 illustrates the ¢—cy relation. Data for ¢, =0.8% are
obtained with a small, continuous current through plasma instead of a pulse. Each
culculated curve for a fixed temperature has a maximum. The reason for the
maximum can be explained as follows. We consider a gas mixture of neutral main-
body particles (indicated by “m”) and a seed (indicated by “s”’) to be ionized. Cross
sections and the fractional concentrations of two gases are denoted by Q,,, Q,, and
Cms Cs, Tespectively. For convenience, cross sections are assumed to be constant.
If the ionization fraction is not too high, n, is proportional to (c,)"/?, and the con-
ductivity is proportional to (¢,)"*/(c,Qn +c,Q,) With neglection of electron-ion colli-
sions. This has a maximum at ¢,=Q,,/(Q;—Q,). Actually, cross sections are
not constant, but the qualitative conclusion remains unchanged. The larger cross

10
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section of the seed atom results in the smaller ¢, for the maximum conductivity.
Then, Fig. 22 suggests that the assumed value of the cross section of a potassium
atom might be too large.

An average value of the cross section of a potassium atom may be obtained from
the present results by making a best fit to measured values of ¢. To do this, we sub-
stitute the cross section of an argon atom, Q,.(¢), with a constant Q,, which gives
the same mobility as Q,,(). The procedure of determing Q,, is as follows. In-
tegrating the Allis formula by part, one has,

_ Are f v F(v)dv.
3m, ) v, (V) dv

In the present case, electrons are in a Maxwellian distribution at temperature, T,.
Introducing the expression for F(v) given by Ref. 13,

3/2 2
F —_ me ) ( _— mev _)
) ( 2okl ) CP\T okt

into the above formula and changing the independent variable from v to the
normalized energy y=m,v*/(2kT,), one has an expression for the mobility,

y= 4e * ye v dy
3y2imkTon;d Q)

The value of Q, is obtained by putting

e vd
#= 3¢2nkanj Q,fy Y

in which the last integral is equal to 1. Thus, one has

o= 2w

or,

Q — 4e
’ 37 2zm kT, pn, )

Obviously, O ; is dependent on the functional form of F(v) and in the case of Max-
wellian distribution Q; is a function of T,. With Q,,(¢) by Frost et al., the value
of Q,,(T) for a temperature T=1500°C is determined to be 2.3 10""cm?. For
ions, it is found, Q;=4x 10"*cm?. Then, the value of Qx=2.3x 10" cm? gives
the ¢—cy relation shown by the full lines in Fig. 22, which are in good agreement
with the experimental results. Strictly speaking, the value of averaged cross
section Q can be used only for present experimental conditions; the composition
of the working gas and the temperature. Nevertheless, the experimentally
determined value of average cross section Oy gives a correct estimation for the
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magnitude of Qx(e) for electron energy of a few tenth of lel'. The value of O
is illustrated in Fig. 21. It compares well with other experimental data on cross
section.

Nighan [29] made an experiment for determining the cross section of a cesium
atom with slow electrons. Since cesium and potassium atom are alike in the atomic
structure, the cross section might be alike. His result also seem to support the
present value on the effective cross section of a potassium atom.

5. NONEQUILIBRIUM CONDUCTIVITY

In region 1I the conductivity of the argon-potassium plasma is lower than that in
region I. A similar result was obtained by Kerrebrock and Hoffman [3]. In their
experiment on an argon-potassium plasma ¢ increased with the decrease in the current
in a certain current range. Such a behavior is not expected from the conventional
two-temperature conduction theory. There was no satisfactory explanation for the
result. The equilibrium value of ¢ at small current was not measured in ther ex-
periment [3]. Zukoski, Cool, and Gibson [5, 6] found a high value of ¢ at a
small current. Later, by Cool and Zukoski [7] the cause of the high value was
traced to the existence of a thin, poorly conducting film which buids up on the test
section wall and shunts the voltage probes. (p. 758, Ref. 7). Kerrebrock and Deth-
lefsen [4] found that ¢ of an argon-potassium plasma decreases with the increase in
the current density i, although the extent of the decrease in much less than that in
Ref. 3. The gas temperature in the experiment of Kerrebrock et al. is lower than
that of Zukoski et al. Such a phenomenon may be absent at high gas temperature.
Kerrebrock and Dethlefsen [4] pointed out the ambiguity in the number density of
electrons in their experiment [3,4]. However, the unexpected dependence of ¢
on i can not be explained by the number density of electrons.

In the present the dip in ¢ is clearly observed. Moreover, the conductivity data
show smooth transition from region I to 1I, as the current is increased. As discussed
in § 2, the leak current through the wall of the test chamber was measured and cor-
rected for. Leak current between probes was also measured, and the amount was
found to be small. The dip in ¢ can not be attributed to an experimental error.

The conductivity ¢ is a product, en,u. A decrease in ¢ implies that p and/or n,
decrease. Since the current density in region 11 is higher than that in region I, more
energy is given to electrons. The increased energy input to electrons means more
heating of electrons. It is unlikely that heating of electrons results in the decrease
in n,. Accordingly, in region II the value of ; must decrease.

In Fig. 19 the electron momentum-transfer cross section of an argon atom is
shown. The cross section is minimum for an electron energy about ¢=0.4¢}V/, and
rapidly increases as ¢ increases. The electrons moving in a gas under an electric
field are not mono-energetic, but have distributed energies ranging from 0 to infinity.
The mobility y is not determined by the cross section at a single value of ¢, but is
determined by an integral over the whole range of ¢; i.e., by the Allis formula.
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In Fig. 23(a) the value of x in argon is illustrated as a function of the electron
temperature, T for electrons with Maxwellian distribution. The cross section Q,,(c)
by Frost et al. (Fig. 19) has been used for calculating . The averaged cross
section Q,,(T,) determined from the value of w is shown in Fig. 23(b). The change
in p(T,) for constant value of the cross section is illustrated for comparison. This
is also a decreasing function of T, because of the relation, poc1/(QTY?). This curve
represents the dependence of x on T, in a gas with an approximately constant cross
section, like helium.
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In Fig. 24, n, is plotted against 7,. The value of n, is calculated with the Saha
equation at T,. The increase in n, is much more than the decrease in u, when T,
is elevated. The conductivity should not decrease if thermal equilibrium at T,
prevails, i.e., if the energy distribution for electrons is Maxwellian and the ionization
fraction is the equilibrium value at 7',. In view of the experimental results showing
the decrease in ¢, there must be a deviation from equilibrium.

There are many processes in the ionization and recombination in a plasma. Im-

portant ones are;
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the Saha ionization equilibrium at T, assumed. Number
density normalized by that at gas temperature.

1. e+Mz2et+e+M* electronic collisional ionization
(electronic three-body recombination)
2. M 4+MaM +e4M*  atomic collisional ionization
(atomic three-body recombination)
3. M +Mzet+(MM)* associative ionization
(dissociative recombination)
4. hv+M=et+M* photo-ionization
(radiative recombination)

5. M**z=e- MY internal conversion ionization
(di-electronic recombination)

Moreover, the “neutral atoms” to be ionized can be in excited states. There are
not many electrons or other particles with sufficient energy for ionizing a ground
state atom by a single collision. Thus the process of ‘“ionization” is actually a
multistep process of excitation, final step being the ionization. Populations of
ionized and excited states in a plasma are determined by a balance among a large
number of elementary processes. Rates of those processes depend on the distribu-
tion functions of electrons and atoms, which in turn depend on rates of elementary
processes. Thus the problem is a very complicated one. If the whole system is
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in thermal equilibrium, the distrbiution function of each species in the plasma is
Maxwellian, and the temperature is common for all species. Moreover, each
elementary process is balanced with a respective inverse process and populations
in jonized and excited states are in the Saha-Boltzmann equilibrium. In region I
of the present experiment the plasma is in such a state.

When a large current exists in a plasma, the Joule heat is given first to electron.
If the rate of energy exchange is large among electrons themselves and among heavy
particles themselves, and is small between electrons and heavy particles, there may
be two temperatures in the plasma; the electron energy distribution is Maxwellian
at an “electron temperature”, T, and the distribution of the translational energy of
heavy particles is Maxwellian at a “gas temperature”, T ¢+ In an electric field, T,
becomes higher than T,. When n, is sufficiently large, the ionization and the ex-
citation are mainly governed by collisions with electrons, because they are very effec-
tive for ionizing and exciting atoms in comparison with collisional processes with
heavy particles. In that case, the fraction is given by the Saha equation with T,.
Such a state is assumed in the conventional two-temperature conduction theory.
Estimations show that the state mentioned above is realized if, n,>10"cm? in an
argon-potassium plasma at atmospheric pressure [34].

If n, is low, radiative processes and collisional processes among atoms are
significant. Hiramoto [35] calculated the ionization fraction of a helium-cesium
plasma with consideration of six different processes of ionization and recombina-
tion. The energy distribution of the free electrons was assumed to be Maxwillian.
The ionization of an atom was assumed to occur through one of those six processes.
A combination of processes of different kinds, e.g., an excitation by a collision
with an electron followed by an ionization by a collision with an atom, is not
considered. His results show that n, becomes lower than the equilibrium value
at T,. A similar procedure can be applied for the present plasma. Considerations
to his results, with account to differences in gas temperature and composition in
his calculation and in the present plasma, however, show that the dip in the
conductivity can not exceed 10% at a most favorable estimation. In order to
explain the large amount of decrease in ¢ in region II, the assumption of Max-
wellian distribution of electrons should be re-examined, rather than introducing
various ionization processes.

The validity of the assumption of Maxwellian energy distribution for free
electrons may be examined by comparing the rate of energy exchange among
electrons with that between electrons and other particles. In order to do this, we
consider a reference state which is represented by;

number density of argon atoms, n,,=4x 10*cm™*

(corresponds to 1500°C, 1 atm.);
number density of potassium atoms, 7, =35 10"~6x 10% cm~?

(corresponds to potassium concentration 0.013~0.139% in mole-fraction);
number density of electrons, #n,=8.5x10~1.4x 102 cm™?

(equilibrium value at temperature of 1400~ 1600°C with the value of 7, above).
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Of the collisional processes including electrons followings are to be considered;

electron-argon atom (e-Ar) elastic collisions,

electron-potassium atom (e-K) elastic collisions,

e-K inelastic collisions,

electron-ion (e-i) elastic collisions,

electron-electron (e-e) elastic collisions.

Inelastic collisions of electrons with argon atoms are neglected because the
threshold energy is very high (11.6 eV) compared with the mean thermal energy
of electrons. On the other hand, the threshold energy for the e-K inelastic collision
is comparatively low (1.61¢eV).

The e-e collisions tend to establish a Maxwellian distribution of electrons.
Collisions between electrons and other particles tend to disturb the Maxwellian
distribution if the mean energy of electrons differs from that of other particles.
Among them, the e-K inelastic collisions are important. They are possible only
for electrons with energy higher than the threshold value, 1.61eV. An electron
loses most of the energy after an inelastic collision. Thus the inelastic collisions
serve to decrease the number density of high-energy electrons and to increase
low-energy electrons. Since the rates of those collisions are dependent on the
electron energy, e, they must be evaluated at different values of . We compare
the rates for two groups of electrons, one of which is with relatively low energy,
and the other with relatively high energy.

Low-energy electrons

As the group of “low-energy electrons” we take electrons with energy less than
1.61 eV, which is the threshold energy for an inelastic collisions with a potassium
atom in the ground state. Thus, for low-energy electrons inelastic collisions with
a ground-state potassium atoms are absent. Since the number density of excited
potassium atoms is low, inelastic collisions with the excited potassium atoms can
be ignored. Rates of energy transfer by e-Ar, e-K, and e-i elastic collisions are
compared with that of e-e collisions by estimating the following ratios for an

electron;

(rate of energy exchange with argon atoms)/(rate of energy excange with
other electrons)

= [nArQAr(e)/(neQe(e))]meae_Ar/mAH

(rate of energy exchange with potassium atoms)/(rate of energy exchange
with other electrons)

= [nKQK(e)/(neQe(e))]mege—K/mK’

(rate of energy exchange with ions)/(rate of energy exchange with other
electrons)

= [niQi(e)/(neQe(e))]meae—i/mi'

In these expressions m,, m,, My, and m; are masses of an electron, an argon atom,
a potassium atom, and an ion, respectively. Factors J,_,, etc are coefficients for
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the energy transfer through an e— Ar collision etc. Values of §,_,, etc are depen-
dent on the nature of the force acting between colliding particles.

As the value of Q,,(¢), that of Frost et al. [14] is used. The cross section for
e—e collisions, Q,(c) is assumed to be equal to Frost’s value of Q,(c) [11] (see § 4)
since e—e and e—i collisions are both due to Coulomb force. The fact that col-
liding electrons are faster than ions requires only minor modification in the evaluated
value of Q,(e), and for the purpose of an order-of-magnitude discussion the modifi-
cation is not necessary. For the value of Qx(c) the averaged cross section of a
potassium atom obtained in the present investigation (§ 4) is used. The value of
d.- 4, 18 nearly equal to 2, and values of §,_x and §,_, are taken to be equal to 5,_,.
We put n,=n,, and m;=my. Values of m.,,_,,/m,,, m,,_x/mg, and m,,_;/m,
are nearly the same, and is equal to 1/40000 (the ratio, m,,/myg is equal to
39.3/39.1, i.e., nearly 1).

For a typical value of energy ¢e=0.5 eV, the following results are obtained;

Under all conditions of the reference state,

[nArQAr/(neQe)]meae-Ar/mA'r <001

(largest for the smallest n,)
[nxQx/(n.Q)Im5,_x/mg<0.004

(largest for the largest n, and the lowest T)*
[n,Q;/n.0.)Im.0,_;/m;<0.0005

(nearly constant under all the conditions)

Therefore, the distortion of electron energy distribution due to e—Ar,e—K, and
e—I elastic collisons is negligible.

When an electric field is applied to a plasma, electrons are accelerated. This
acceleration distorts the energy distribution. The amount of energy given to an
electron from the field during a time interval between two successive e — e collisions,
4e is, on the average, given by

de= iE/ (neve_e) = UEz/(ng/veQe(e))’

in which v, _, is the frequency of the e—e collisions for an electron. If Je is small in
comparison with the energy of the electron, ¢, the distortion of the distribution func-
tion of the electron energy due to the field is small. In the above expression v, is
proportional to ¢/? and Q,(¢) is nearly proportional to ¢~¥ as shown in the expression
for v,_; (§ 4). Therefore, Je is proportional to e and the ratio de/¢ is independent of e.
The ratio Je/e is large at small n,. For ¢=0.5¢V and ¢;=0.06 mho/cm corres-
ponding to the smallest value of n,, one obtains de/e=0.8 EE in V' /cm). Here
o; is the conductivity in region I. At E=1V/cm, ¢ is 0.02 mho/cm, hence the
value of Je/e is about 0.25. Thus, it is concluded that the distortion of the distri-
bution function due to the acceleration by a field is negligible up to E=1V/cm.
Although the electric field in region II could be higher than 1V /cm, the ratio

* It should be remembereﬁcriwtii;twne is proportional to v ng.
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de/e is less than 1 for most cases. Thus in regions I and II the energy distribu-
tion is Maxwellian for low-energy electron in spite of collisions with other particles
and the acceleration by the electric field. We introduce an electron temperature
T,, which characterizes the distribution of low-energy electrons.

It should be noted that the majority of electrons belong to the class of low-
energy electrons, and the mobility of electrons as a whole is determined exclusively
by the mobility of low-energy electrons.

High-energy electrons

Next, electrons with energy more than 1.61 eV are considered. Such electrons
experience inelastic collisions with ground-state potassium atoms. The collisional
processes to be considered are e-Ar, e-K, e-i elastic collisions and e-K inelastic
collisions. The first three of them, along with the same line of argument as in the
case of low-energy electrons, do not seriously distort the energy distribution of
high-energy electrons. For a typical value of energy, e=2eV, the following
results are obtained;

(nArQAr/(neQe))meae_Ar /mAT <07
(nKQK/(neQe))meae—K/mK <003
(n,Q;/(n.0))m.s,_;/m;<0.0005

The e— Ar collisions seem to be of some importance; however the e—K inelastic
collisions are by far more important as shown in the following estimation.

The cross section of e—K inelastic collision, Qg in.(e) is zero for low-energy
electrons and is of a finite value for electrons with energy more than 1.61eV. The
value of Qg na(e) for e>1.61eV is not known. Therefore, the value of cross
section by Witting and Gyftopoulos [36] for inelastic collisions with a cesium
atom is used, and the cross section at energy e=2eV is taken as Qg (2 V)=
1x 10" cm?. Since n, is proportional to (ng)"* and n, increases with the increase
in temperature, ng/n, would be smallest (largest) for the smallest (largest) ny at the
highest (lowest) temperature. The ratio, nxQx 1.a(2 €V)/(1.0.(2 €V)) is estimated
to be between 28 and 550 under the present experimental conditions. Since
Ox.ma(e) is the energy exchange cross section, this is the ratio of the rate of energy
exchange.

An inelastic collision does not necessarily mean the loss of energy from free
electrons. By an inelastic collision an electron loses energy and an atom is excited.
The excited atom is de-excited by some process. If the excited atom is de-excited
through a collision with an electron, the energy of excitation is given back to the
electron (super-elastic collision). The energy lost from an electron is gained
by another electron, and electrons as a whole lose no energy. On the other hand,
if the excited atom is de-excited through a radiative de-excitation or through a
collision with another atom, the energy lost from electrons is not recovered. It will
be shown in the following that the radiative de-excitation is dominant over the
super-elastic collisions.
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The probability of a super-elastic collision is estimated from the cross section.
Since no data are available for potassium, we again use the value for a cesium atom
in Ref. 36. The cross section of the superelastic collision of a secium atom in the
lowest excited level is 50 x 10~ cm?. If it is multiplied by n, and the mean thermal
speed of electrons at T,=2000K, =3.0x 10"cm/s, the probability of the super-
elastic collision for an excited atom is estimated as 1.5% 10-7 n, s ! (n, in cm™%),
which becomes 2.1 10°s~! at the largest eletron number density, 1.4 x 10 cm™2.
The probalility of the radiative de-excitation in the net account is given by [(number
of atoms de-excited by the radiative de-excitation per unit time) minus (number of
atoms excited by absorption of radiation per unit time)] divided by (number of
atoms in the excited state). The net probability is calculated as

(radiant energy loss from unit volume of plasma)
(energy of one photon) X (number density of excited atoms) -

Because the temperature is not so high, we can assume that the whole radiation
comes from the transition from the first excited state to the ground state for an
order-of-magntitude estimation. Then the energy of a photon is 1.61eV. For a
plasma under somewhat different conditions, Zukoski et al. [5] calculated the
radiant energy loss considering effects of reabsorption with the assumption of the
Boltzmann equilibrium distribution of excited atoms at the electron temperature.
From their results, the radiant energy loss under the present experimental condi-
tions can be estimated. The procedure is given in the Appendix. With estimated
value for the radiant energy loss from unit volume of plasma, and the number
density of excited atoms on the assumption of the Boltzmann distribution, the
following results are obtained;

At T,=2000K, the net probability of radiative de-excitation is 1.3 x 10°s-!
for potassium concentration of 0.13% and 4 x 10°s~! for potassium
concentration of 0.0139%,.

These values are to be compared with the probability of super-elastic collision
at the same T,, which is smaller than 2.1x10%s! under all conditions in the
reference state. The probability of the radiative de-excitation is smaller for higher
potassium concentration because the reabsorption becomes significant. The de-
pendence of the probability on the temperature is weak. From the comparison
between probabilities of two kinds of de-excitation processes it is found that the
radiative de-excitation is the dominant process. Thus, most of the energy of
electrons given to atoms through inelastic collisions is lost as the radiation. The
ratio of collision frequencies, nzQy,ina(e)/(7.Q0.(c)) is the ratio of the prob-
ability of losing energy by inelastic collisions to the probability of exchanging
energy among electrons. The ratio is, according to the above estimate, 28 to
550. Since the high-energy electrons are created only through e-e- collisions, the
number density of high-energy electrons must be reduced very much by the in-
elastic collisions. As a result of this loss of high-energy electrons, the value of the
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electron distribution function at high energy should be less than the Maxwellian
distribution with T,;. The acceleration by an electric field does not serve much
to restore Maxwellian distribution. As shown in the discussion on the low-energy
electrons, the effect of acceleration on the distribution is smaller than that of e-e
collisions. This reduction of high-energy electrons suppresses the increase in total
number of electrons, when electrons are heated by the Joule heat in an electric field.

Next, the number of excited potassium atoms is considered. Fig. 25 gives a
diagram of the energy levels for the valence electron of a pottasium atom. The
widest gap between energy levels existing between the ground state and the first ex-
cited state is 1.61eV. Transitions across this widest energy gap serves to absorb
energy from high-energy electrons and emit it as radiation. As the ratio of energy
exchang, nxQx 1...(e) /(n,0.(e)) for high-energy electrons is more than 28, an electon
loses its energy by inelastic collision as soon its energy reaches a value more than
the threshold value, 1.61 eV, through e—e collisions. Therefore, the number of
excited atoms in the first excited state is determined by the balance between the
rate of creation of high-energy electrons through e—e collisions and the rate of
radiative deexcitation. The number of atoms in the first excited state is thus be-
tween the equilibrium value at T, and that at 7,,. The number of high-energy
electrons is less than the equilibrium value at T,;, but is more than that at T',; T, is
the lowest temperature of all that are present there.

Energy gaps are narrower among higher energy levels. Transitions between high
energy levels are caused more easily by a collisional process with an electron or
atom. On the other hand the probability of the radiative de-excitation is smaller
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F1G.25. Energy level structure of a potassium atom.
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for the higher levels. Transitions among higher levels and the ionization from high
energy levels are caused by collisions not only with high-energy electrons, but with
some of low-energy electrons and atoms and by radiative transitions. As stated
before, low-energy electrons are at T,;, atoms are at T,, and the number of high-
energy electrons and the density of radiative flux may correspond to some temper-
atures between T, and T,. The populations at ionized state may also lie between
two equilibrium values at T, and T,,.

6. CALCULATION OF CONDUCTIVITY OF NONEQUILIBRIUM PLASMA
AND COMPARISON WITH EXPERIMENTAL RESULTS

In this section, a method is proposed for calculating the conductivity of a
nonequilibrium plasma as a function of the applied electric field. The number
density of electrons and the mobility are separately calculated by using two
temperatures, T'; (defined in § 5) and T, (to be defined in this section).

In plasma in region I or II, electrons with sufficient energy for ionizing a potas-
sium atom in the ground state by single collision, i.e., ¢>4.34 eV, are very few.
Most of the ionization may occur through a multistep process, in which various
processes of excitation, ionization, and their inverse processes take place. If one
knows the distribution function of electrons and cross sections for these processes,
one might be able to calculate the ionization fraction. However, for a nonequili-
brium plasma the distribution function is to be determined simultaneously with
the number of ions and excited atoms. The calculation of the distribution function
is difficult because we do not have enough information on cross sections of various
processes. Therefore, we use a simple method for determining the ionization
fraction of a nonequilibrium plasma.

As a model to start with, we assume that numbers of atoms in the ground state,
in various excited states and in the ionized state are given by the Saha-Boltzmann
equilibrium at a temperature, T,,, which lies between T',;, and T,. Once the value
of T,, is determined by some means, the number density of electrons is calculated
by substituting T, in the Saha equation (§4). On the other hand, the mobility of
electrons as a whole is determined by the Allis formula (§4) for Maxwellian
electron distribution at T,;. From the number density and the mobility we calcu-
late conductivity. The problem is how to determine 7,, and T,,.

The amount of energy input to electrons per unit volume per unit time is equal
to the Joule heat, /E. Most of the Joule heat is given to low-energy electrons,
because they constitute most of electrons. They lose a part of the energy by
clastic collisions with atoms, and the rest of the energy is given to high-energy
electrons through e-e¢ collisions. High-energy electrons, which receive energy
partly from the electric field and partly from low-energy electrons, in turn, consume
the energy mainly in exciting potassium atoms through inelastic collisions. The
energy given to potassium atoms is lost mainly by the radiation from excited atoms.
A schematic flow chart of the energy is given in Fig. 26. The direct energy transfer
from the electric field to high-energy electrons is small and is neglected for sim-
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plicity. The total amount of the energy given to low-energy electrons is /E. The net
energy flux from low-energy electrons to high-energy electrons is put to be xiE.
This, in other words, represents the rate of the increase of high-energy electrons by
collisions among low-energy electrons. Since we retain only radiant loss for high-
energy electrons, the amount of the lost energy should be equal to the net energy
flux from low- to high-energy electrons, xiE Therefore, x is considered to be the
fraction of the radiation loss in the energy given by the Joule heat. The value of
x should be between 0 and 1. The rate of energy transfer from low-energy ele-
ctrons to heavy particles through elastic collisions is (1 —x)iE. An extreme cases,
x=0 corresponds to the situation in which no high-energy electrons are created
and consequently there is no radiation from the plasma. On the other hand, x=1
means that all the input energy are converted into radiation and there is no energy
loss through elastic collisions.

Since we assume that populations of excited and ionized states are given by the
Saha-Boltzmann distribution at a temperature T,,, the radiant energy flux from
plasma is determined by T.

A relation between the electron temparature and the radiant energy loss is derived
in the Appendix. The relation is for a cold, blackbody enclosure. In the present
experiment the enclosure is at the same tempearature as the gas, i.e., at T,. When
T,=T,, there should be no net flux of radiation from plasma to wall. Wall of the
test chamber radiates the same amount of energy as that from the plasma at T',.
Thus the net energy flux from the plasma should be the difference of the flux from
plasma at T,, and the flux from plasma at T, as indicated in Fig. 27. The net
flux from unit volume of plasma is xiE=(xg)E?. The value of T, is determined
as a function of the radiant loss. This T,, determines n,. Thus there is one-to-
one correspondence between n, and xgE®. The value of ¢ is proportional to n,.
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(1) x0p=0.01 mhos/cm, (2) x0,=0.001 mhos/cm.

We consider a plasma of which conductivity is g, in a vanishingly small E, and specify
a value of x. Then for each value of n,, one value of E is determined. The n,—E
relation is illustrated in Fig. 28 with a parameter ¢,x, where n, is normalized by its
value in a vanishingly small E, n,,.

The mobility of electrons is calculated by the Allis formula with the assumption
that low-energy electrons are in a Maxwellian distribution at T,,.

The ratio of frequencies of e—i and e— Ar collisions is given by,

n,0,/(n4,04,)<(1.4X 10%)(4 X 10-2) /[(4 X 10")(2.3 X 10-1)] =0.06

in which Q; is taken as 4 10-?cm? at T,=2000K. Since in the above estimation
the maximum value of n; was used, the value of 0.06is the maximum value of the
ratio. Thus the e—i collision is negligible in comparison with the e— Ar collision.
By a discussion similar to the above we have

nKQK/(nArQAr) =0. 1’

for potassium concentration of 0.013%. The e—K collision is also negligible. For
potassium concentration of 0.13%, nzQ, and n,,0,, are in the same order of
magnitude. As mentioned earlier, reliable data on Q(¢) are not available at small
e. We take as Qx(e) the recent result for cesium atom by Nighan [29]. Then, the
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tatal frequency of momentum-transfer collisions of an electron with argon and
potassium atoms, v, is given by

v, = ()N, Q4 (e) + N O r(e]l=2(In,, QO (e),

where

Q&) =Q4,(e) + (ng /N4, )Qx(e).

The value of of Q,(¢) for the case of 0.139% potassium, that is,
Qt(e):QAr(E) +0-0013QK(5)

is illustrated in Fig. 29, together with Q,,(¢).
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F16.29. Cross section of an argon-potassium mixture.
Q4r; cross section of an argon atom by Frost et. al. (Ref. 14),
Q;; assumed cross section of argon+0.139% potassium mixture,
0:=04,+0.0013Q¢; (Qcs; by Nighan, Ref. 29).

The temperature T, is determined by an equation of energy balance in elastic

collisions,
A—xIE=(—x)oE’= 3, (m,0;/monse,(3/2)k(Te,—T,).
J

The left-hand side of the equation is a part of the Joule heat given to electrons and
the right-hand side is the energy transferred to gas atoms per unit time and volume.
The right-hand side is the sum of two terms, which correspond to argon and potas-
sium atoms, respectively. For argon and potassium, the value of m, (mass of an
atom) is nearly the same, and § is almost the same. Temperature T, is assumed to
be the same for all kinds of atoms and ions. So the right-hand side is equal to
(m8/mn,(3/2)k(T,,—T,) > v.;. Values of § and m, are put equal to those for
argon. The value of }] v,; is given by
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S 50 (To) = (T )O(T0)

j=1

where 7 is the mean thermal speed of electrons and Q is the averaged cross section
calculated from Q,(e) just like Q,, in § 4. A simple expression for 2. ey is derived,
by the use of

Q=4e/(3v2zm,mkT, n,p).
One can combine this equation with the relation
mel_iz: 3kT€L’

to obtain

% 5ey=0n,Q, = 4eYSkTufme _ 2y 2e
3V2rmekT o v/ 3emyp

Both sides of the energy balance equation is divided by
(I—x)o=(1—x)n.ep,

and the expression for }; p,, is introduced. The result is,

1 6 4
E'= il KT, —T,),
l—x\/rc uy'mg, Ta=To)
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in which g is known as a function of T';. This is combined with the y—T,, relation
to eliminate T,;, so as to obtain p—E relation. Results are illustrated in Fig. 30,
with x as parameter. For instance, if x=0.2, low-energy electrons in an argon
with 0.013% potassium at T',=1773 K (1500°C) are heated to T,,=2770K by an
electric field E=0.25V/cm, and p decreases to 70% of the equiblium value.

The last step of calculation is to combine x—E and n,—E relations to obtain
o—E relation. For a particular gas temperature, gas composition, and value of x,
we first assign a value to E. The value of y is given by the p—E curve. The valne
of n, would be given by the n,—E curve with a value of ¢,x. It must be noted
here that we should not put ¢,=¢;. The reason is as following. The n./(o,, E)—E
relation is for a constant . Actually p decreases as E is increased. The value of
¢ with the reduced p is a;n,/n,, multiplied by u(E)/y;. Thus we should put g,=

Ar+0.013%K
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Fic. 31. Comparison between calculated and experimental results; conductivity
versus electric field. I. Atmospheric argon+0.013% potassium.
Conductivity is normalized by its value in region I, ¢; of each run.
x; distribution parameter, (T) two temperature theory, (N) non-
Maxwellian electron energy distribution with constant z,.
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Ar+ 0.13%K
10 I :
Tg = 1600°C
1  S—
[ X J
[@]
O
B |
1O1O'= 1072 107 1 10 10°
&
~
® |
=
=
b
o |
Rel
o
o
(@]
e t
g‘) |
£ o |
5 10,67 1072 107" 1 10 10°
Pz

107 107 107 1 10 108
Electric Field , E (V/cm)

Fi6. 32. Comparison between calculated and experimental results; conductivity
versus electric field. 1I. Atmospheric argon+0.13% potassium. Con-
ductivity is normalized by its value in region I, ¢; of each run.
x; distribution parameter, (T) two temperature theory, (N) non-
Maxwellian electron energy distribution with constant n,.

o:1(E) [ p1;, because g, is the value of ¢ the plasma would have when n,=n,, and
p=constant=x(E). Combining x from the p—E rejation (with the parameter x)
and n, from the n,— E relation (with the parameter o,x=0;xu(E)/p;), we obain ¢=
eun, for the assigned E. For a set of value of E, the corresponding values of o
are known. The locus of the points (g, E) for a particular x is obtained.

The final result is a set of ¢—E curves for various values of the parameter, x.
Calculated results are compared with the experimental data in Figs. 31 and 32.
The conductivity is normalized by the value in region I, ¢; of each experiment.

If x=0, heating of electrons in an electric field does not result in an increase in
the number density of electrons, n, at all, while the mobility is decreased, in other
words, T,,=T, and T,, is raised. On the other hand, if T,,=T,,;, the result of
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the present calculation is the same as that of the conventional two temperature theory
[34], in which Maxwellian distribution of electrons and the Saha-Boltmann equili-
brium at the electron temperature are assumed. The ¢—E relation by the two
temperature theory is shown in Fig. 31 and 32 by (7). The result is very close to
the present result with x=1.

Curves indicated by (N) represent ¢—E relation at another extreme, in which the
number density of electrons is assumed to be unchanged regardless of the applied
field. The e—e collision is neglected in comparison with the e— Ar collision.
The distortion of the electron distribution function due to the electric field is deter-
mined by the Boltzmann equation. Frost and Phelps [15] give a solution neglect-
ing inelastic collisions as

() =A exp [_Of(aﬂn%%ﬁ +kTg) _1]515

where f(e) is the spherically symmetrical term in the expansion of the energy distri-
bution function. Suffix “a” denotes atoms, and other symbols have their usual

1.0 ’ l
o |
(o) 8?3103/0/"} Potassium Concentration
3
s 05
S
[8)
£
e
£
c ¢ % $
% 0 Q 3
= 1900 1500 1600
2 10
S
o
&
Ke)
- (o)
=
0.5 ]
oLt ‘
1400 1500 500

Gas Temperature , Ty (°C)
Fic. 33. Distribution parameter x determined by comparison with experimental
results. x,; determined at the minimum of o—E curve, x;; determined
at the boundary between regions II and III.
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meanings. Calculations are made by putting m,=m,, and

naQa(e) - nKQK(E) + nArQAr(E) .

The mobility is calculated as a function of the electric field E by substituting f(e)
into the Allis formula. The value of ¢ is obtained as a function of E. The decrease
in ¢ with the increase in E is more rapid than that in the calculation with Maxwellian
distribution for low-energy electrons.

It is obvious that such a calculation (N) does not agree with experimental results.
The curve (T) does not agree either. Experimental data lie between these two ex-
treme cases.

The value of x is determined from the comparison between the experimental data
and the calculated ¢—E curves with various values of x. The value of x differs
under different conditions of plasma. Fig. 33 presents a correlation between x and
T,. One value of x denoted by x, is determined from comparison with the experi-
mental values at the minimum of ¢. The other, x,, is determined at the boundary
between regions II and III, where s=g¢,;. Fig. 33 indicates that the value of x in-
creases with the increase in T, and potassium concentration. Moreover, x, is larger
than x, at the same value of 7,. Directly from Figs. 31 and 32 one can see that
x increases with the increase in ¢. Those features of depencence of x on the plasma
conditions may be explained by a model culculation, which is now being worked
and will be reported later.

7. NONEQUILIBRIUM CONDUCTIVITY AT HiGH CURRENT DENsITY

In region I1I the conductivity is higher than the equilibrium value, i.e., o;;;>0;.
An oscillogram of V, (proportional to the electric field) shows that the conduc-
tivity increases with time during a pulse. This is because the increase in the number
density of electrons overcomes the decrease in the mobility. As discussed in the
preceding section, the best fit value of x increases with the increase in the current
density. This means that more fraction of energy is transferred to high-energy
electrons. As a result n, increases. When the rate of the electron-electron energy
transfer is much more than that of the electron-atom energy transfer throughout
the whole range of electron energy, electrons are in a Maxwellian distribution and
the conventional two-temperature theory is valid. If one takes electrons of energy
2eV as an example, the ratio of probabilities of electron-atom energy transfer and
electron-electron energy transfer becomes 0.5 at an electron number density of
10 cm3. At higher density of electrons, the two-temperature theory is certainly
valid.

In the present experiment n, is not high enough and the two-temperature theory
is not applicable as shown in Figs. 31 and 32. On the other hand, the present
method of calculating conductivity should give good results over the whole range
of current density and n,. In the experiment, however, there is a possibility of
spatial non-uniformity of the plasma in the nonequilibrium state. When the
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nonequilibrium ionization takes place the electric field in the plasma does not
increase much with the increase in the current density or even decreases (see, e.g.,
Fig. 11). This fact is verified also by experimental results by Kerrebrock and
others [3—6] in a nonequilibrium plasma. If the field decreases as the current
density increases, the current in the plasma may not be evenly distributed. The
current might concentrate in a narrow channel of high conductivity and high
current density. An increase in the total current may not change the current
density but may result in the increase of the cross sectional area of the high-
conductivity channel. The nonuniformity of the current density may be caused
also by the difference in the radiant energy loss. The inner part of a plasma is
shielded against radiant loss by the outer part and loses energy less than the
outer part. Thus the inner part may have more electrons than the outer part and
has the larger current density.

In the present experiment with isothermal arrangement the gas temperature
is quite uniform over the whole plasma and enclosure. The hot enclosure emits
radiation back to the plasma. Nevertheless, at an elevated electron temperature
a nonuniform current distribution due to the negative voltage-current character-
istics may still exist. The nonuniformity may arise from the presence of a sheath
near the electrode. The sheath voltage can be as high as 50% of the total electrode
voltage. In addition, the ratio of length to diameter of the plasma is only 1.7, i.e.,
the plasma is relatively fat in shape. Consequently, the sheath voltage is important
in determining the current distribution. If the sheath voltage increases as the
current density increases, the sheath has a stabilizing effect and the current con-
centration will be prevented. In regions I and 1I, this is the case, as seen from
Fig. 18. On the contrary, in region III the sheath voltage decreases with the
current density. This enhances the nonuniformity of the current density. In view
of several points discussed above, it is doubtful that the cross sectional distribution
of the current density should be uniform in region III. Perhaps there are several
high-current spots on the electrodes. In fact, in region III the value of probe
voltage V, (i.e., E) sometimes showed fluctuation or sudden change during a
current pulse. Such behavior was never found in regions I and II. We conclude
that even with the present experimental arrangements the current density is not
uniform in region III. We do not think it meaningful to discuss on the details
of the experimental values of the conductivity in this region.

In the experiments by Kerrebrock et al. [3, 4] and by Zukoski et al.[5, 6]
n, reaches a value high enough for applying the two-temperature theory. Good
agreements between experimental and calculated results at high current density
were demonstrated [3-8]. However, in those experiments the gas temperature
was not uniform. The wall of the test section was cold and the amount of the
radiation was larger. These conditions are unfavorable for the uniform distribu-
tion of the current. There is no experimental proof that the current density was
uniform. Perhaps the situation for the current distribution is even worse than in
region III of the present experiment. Detailed discussions on the conductivity
does not seem to be meaningful also in their experiments.
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8. CONCLUSIONS

Electrical conductivity of an argon-potassium mixture at a gas temperature
about 1500°C is a function of the current density. When the current is small,
the plasma is in thermal equilibrium at the gas temperature and the conductivity
does not depend on the current density. When the electric field in the plasma
exceeds a certain value, which is about 0.04 V/cm, the conductivity starts to
decrease with the increase in the current density (or electric field), shows a
minimum at a certain current density and increases with further increase in the
current. For a helium-potassium mixture, the presence of a minimum of the
conductivity is not clear.

The sheath voltage on the electrodes is not negligible in comparison with the
voltage across the bulk of plasma of 4 cm-length.

The average cross section of a potassium atom for momentum transfer with
electrons is determined from equilibrium conductivity to be 2.3x10°'¢ cm2, for
electrons with Maxwellian energy distribution at 1500°C.

When there is an appreciable electric field in a plasma, electrons are accelerated
and thermalized by mutual collisions. This is the Joule heating. The plasma is
not in equilibrium because electrons are selectively heated. From considerations
on various processes taking place in a nonequilibrium argon-potassium plasma it
is concluded that electrons are not in a Maxwellian distribution. Due to inelastic
collisions with potassium atoms, high-energy electrons lose their energy and their
number density is substantially less than that in a Maxwellian distribution. This
reduction of high-energy electrons results in the ionization fraction less than ex-
pected from the “temperature” of low-energy electrons. We propose to use two
temperatures for electrons, one T, representing the low-energy part and the other
T, for the high-energy part. The mobility of electrons is controlled by T,,, while
the number density of electrons is determined by 7,,. Both temperatures are
determined by the amount of energy received from the electric field and the energy
flux by elastic and inelastic collisions. By introducing a parameter for the ratio of
the two kinds of energy flux we can determined 7,, and T,,. Thus, the non-
equibrium conductivity is calculated as a function of the electric field and the parti-
tion parameter. The decrease in conductivity with increased current density is
shown plausible and functional features of experimental results are satisfactorily
interpreted.

When the current through a plasma is larger, the current distribution seems to
become nonuniform and unstable. No reliable data on the conductivity were
obtained in that case.

ACKNOWLEDGMENTS

We gratefully acknowledge invaluable advices of Professor Itiro Tani. Thanks
are extended to Professor K. Kuriki, Drs. Y. Nakamura, O. Okada, T. Hiramoto,
and T. Yamanishi who gave us informations and helpful discussions on the subject.

This document is provided by JAXA.



126 F. Sakao and H. Sato

Thanks go to Dr. L. S. Frost who supplied us with detailed informations about the
cross section of an argon atom.

We are indebted to technicians of the ISAS for support in preparing experimen-
tal devices, especially to Mr. S. Takeguchi who helped us with skilled and tireless
glass blowing.

This work was financially supported by the Toyo Rayon Science and Technology
Grant. Numerical works were performed at the Computer Room of Hiroshima

University.

Department of Aerodynamics,

Institute of Space and Aeronautical Science,
University of Tokyo

March 30, 1971

REFERENCES

[1] L. P. Harris: Electrical Conductivity of Cesium-Seeded Atmospheric Pressure Plasma
near Thermal Equilibrium. J. Appl. Phys. Vol. 34, pp. 2958-2965, 1963.

[2]1 L. P. Harris: Electrical Conductivity of Potassium-Seeded Argon Plasmas near Theér-
mal Equilibrium. J. Appl. Phys. Vol. 35, pp. 1993-1994, 1964.

[3] J. L. Kerrebrock and M. A. Hoffman: Nonequilibrium Ionization Due to Electron
Heating: II. Experiments. AIAA J. Vol. 2, pp. 1080-1087, 1964.

[41 1J. L. Kerrebrock and R. Dethlefsen: Experimental Investigation of Fluctuations in Non-
equilibrium MHD Plasma. AIAA J. Vol. 6, pp. 2115-2121, 1968.

[5]1 E.E. Zukoski, T. A. Cool and E. G. Gibson: Experiments Concerning Nonequilibrium
Conductivity in a Seeded Plasma. AIAA J. Vol. 2, pp. 1410-1417, 1964.

[6] E.E. Zukoski and T. A. Cool: Nonequilibrium Electrical Conductivity Measurements
in Argon and Helium Seeded Plasmas. AIAA J. Vol. 3, pp. 370-371, 1965.

[7] T. A. Cool and E. E. Zukoski: Recombination, Ionization, and Nonequilibrium Electri-
cal Conductivity in Seeded Plasmas. Phys. Fluids Vol. 9, pp. 780-796, 1966.

[8] M. A. Lutz: Radiation and its Effect on the Nonequilibrium Properties of a Seeded
Plasma. AIAA J. Vol. 5, pp. 1416-1423, 1967.

[9]1 F. Sakao and H. Sato: Nonequilibrium Electrical Conductivity of a Potassium-Seeded
Argon Plasma. Phys. Fluids Vol. 12, pp. 2063-2071, 1969.

[/0] M. N. Saha: Phil. Mag. Vol. 40, pp. 472-809, 1920. A more convenient source of the
present form of the Saha equation is found in Ref. 11.

{711 L. S. Frost: Conductivity of Seeded Atmospheric Pressure Plasmas. J. Appl. Phys.
Vol. 32, pp. 2029-2036, 1961.

[12]1 W. P. Allis: in Handbuch der Physik, S. Flugge, Ed. (Springer-Verlag, Berlin, 1965),
Vol. 21, p. 413.

[713] J. L. Pack and A. V. Phelps: Drift Velocities of Slow Electrons in Helium, Neon,
Argon, Hydrogen, and Nitrogen. Phys. Rev. Vol. 121, pp. 798-806, 1961.

[14] L. S. Frost, A. V. Phelps and A. G. Engelhardt: Private communication. Data of the
same origin but with slightly less details are found in Ref. 15.

[151 L. S. Frost and A. V. Phelps: Momentum-Transfer Cross Sections for Slow Electrons
in He, Ar, Kr, and Xe from Transport Coefficients. Phys. Rev. Vol. 136, pp. A1538—
A1545, 1964.

[16] M. A. Mazing and N. A. Vrublevskaya: Spectroscopic Investigation of the Elastic
Scattering of Slow Electrons by Cesium and Argon Atoms. Zh. Eksperim. i Teor. Fiz.
Vol. 50, pp. 343-348, 1966. (English transl.: Soviet Phys.—JETP Vol. 23, pp. 228-231,
1966)

[/7] V. S. Ramsauer and R. Kollath: Winkelverteilung bei der Streuung langsamer Elektro-
nen an Gasmolekiilen. Ann. Physik, Vol. 12, pp. 529-561, 1932.

This document is provided by JAXA.



Plasma Conductivity 127

[78] C. E. Normand: The Absorption Coefficient for Slow Electrons in Gases. Phys. Rev.
Vol. 35, pp. 1217-1225, 1930.

[191 D. E. Golden and H. W. Bandel: Low-Energy e-Ar Total Scattering Cross Sections:
The Ramsauer-Townsend Effect. Phys. Rev. Vol. 149, pp. 58-59, 1966.

[20] R. B. Brode: The Absorption Coefficient for Slow Electrons in Gases. Phys. Rev.
Vol. 25, pp. 636-644, 1925,

[2I] P. M. Morse and W. P. Allis: The Effect of Exchange on the Scattering of Slow Elec-
trons from Atoms. Phys. Rev. Vol. 44, pp. 269-276, 1933.

[22] V. C. Ramsauer and R. Kollath: Uber den Wirkungsquerschnitt der Edelgasmolekiile
gegeniiber Elektronen unterhalb 1 Volt. Ann. der Physik. Vol. 3, pp. 536-564, 1929,

[23] D. E. Golden and H. W. Bandel: Absolute Total Electron-Helium-Atom Scattering
Cross Sections for Low Electron Energies. Phys. Rev. Vol 138, pp. A14-A21, 1965.

[24] L. Gould and S. C. Brown: Microwave Determination of the Probability of Collisions
of Electrons in Helium. Phys. Rev. Vol. 95, pp. 897-903, 1954,

[25] A. V. Phelps: unpublished results referred in Ref. 11.

[26] R. B. Brode: The Quantitative Study of the Collisions of Electrons with Atoms. Rev.
Modern Phys. Vol. 5, pp. 257-279, 1933.

[27] Susumu Shioda: Mobility of Electrons in Potassium and Cesium Vapour. Bull. Inst.
Space and Aeronautical Sci., University of Tokyo, Vol. 1, pp. A1-AS, 1965 (in Japanese).

[28]1 A. Solbes and J. L. Kerrebrock: Condensation and Electrical Conduction in Metallic
Vapors. Phys. Fluids Vol. 10, pp. 2179-2198, 1967.

[29] W. L. Nighan: Low Energy Electron Momentum Transfer Collisions in Cesium Plasmas.
Phys. Fluids Vol. 10, pp. 1085-1094, 1967.

[30] L. C. Johnson: Electrical Conductivity of a Partially Ionized Gas. Phys. Fluids Vol.
10, pp. 1080-1084, 1967.

[311 S. Schweitzer: Tensor Electric Conductivity of Atmospheric Cesium-Seeded Argon.
AIAA J. Vol. 5, pp. 844-847, 1967.

[32] S. Schweitzer and M. Mitchner: Electrical Conductivity of a Partially Ionized Gas in
a Magnetic Field. Phys. Fluids Vol. 10, pp. 799-806, 1967.

[331 R. C. Hwa: Effects of Electron-Electron Interactions on Cyclotron Resonances in Gase-
ous Plasmas. Phys. Rev. Vol. 110, pp. 307-313, 1958.

[34] J. L. Kerrebrock: Magnetohydrodynamic Generators with Nonequilibrium Ionization.
AIAA J. Vol. 3, pp. 591-601, 1965.

[35] Tatsumi Hiramoto: Nonequilibrium Characteristics of the Working Plasmas for Mag-
netoplasmadynamic (MPD) Generators. J. Phys. Soc. Japan Vol. 20, pp. 1061-1072,
1965.

[36] H. L. Witting and E. IAS P. Gyftopoulos: An Ionization Process in a Low-Energy
Cesium Plasma. J. Appl. Phys. Vol. 36, pp. 1328-1337, 1965.

[371 M. A. Lutz: Radiant Energy Loss from a Cesium-Argon Plasma to an Infinite Plain
Parallel Enclosure. Avco Everett Research Report no. 175, 1963.

[38] T. Hiramoto, S. Yano, S. Matsunaga and H. Shirakata: Enhancements in the Electron
Temperature in Nonequilibrium-Ar Plasmas Seeded with Na. J. Phys. Soc. Japan Vol.
20, pp. 1910-1920, 1965.

This document is provided by JAXA.



128 F. Sakao and H. Sato

APPENDIX: RADIANT ENERGY Loss FROM LOow-TEMPERATURE PLASMA

In order to calculate the conductivity of a nonequilibrium plasma the amount of
the radiant energy loss from unit volume of the plasma should be known as a
function of the electron temperature. Calculation of the loss is complicated by
the fact that the radiation from a part of plasma is absorbed again by another
part of plasma. Zukoski, Cool, and Gibson [5] calculated the rate of the radiant
energy loss, considering the re-absorption processes for a potassium-seeded argon
plasma of a cylindrical geometry, with 1.91 cm-length and 1.29 cm-diam. The
total pressure is atmospheric, potassium concentration is 0.4% in mole fraction,
and the gas temperature is 2000 K. The amount of radiation from unit volume
is calculated for electron temperatures from 2400 to 3500 K. Populations of
excited states are assumed to be given by the Boltzmann distribution at the electron
temperature 7, Their results are shown in Fig. 34 with filled circles.

Conditions of the plasma in the present experiment are; pressure, atmospheric;
potassium concentration, 0.013 or 0.13%; gas temperature T,, 1673, 1773, and
1873 K (1400, 1500, and 1600°C respectively); geometry, a cylinder with 4.0 cm-
length and 2.3 cm-diam.; range of electron temperature T,, to be concerned,
from 1673 to 2400 K.

Since physical conditions of plasma are different from that of Zukoski et al.,
an appropriate reduction rule is necessary for estimating the amount of radiant

2
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FiG. 34. Estimated rate of radiant energy loss from unit volume. Atmospheric
argon+0.013 or 0.13% potassium enclosed in a cold, black-body
cylinder of 23 mm-i.d. and 40 mm-height. The rate is reduced from
calculated results by Zukoski et al. (Ref. 5) and extrapolated to
lower temperatures.
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energy loss in the present case from the values in Ref.5. Considering several
published results on the dependence of radiation on parameters of state, we conclude
that the rate of radiant energy loss from unit volume of a plasma is proportional
to; i) square root of the potassium concentration, ii) inverse square root of the
linear dimension, (or for different geometrical shapes, inverse square root of the
volume-to-surface area ratio), 3/4 power of the absolute gas temperture (T,). The
rules i) to iii) are deduced from equations (3), (5), (6) and (7) in the paper by
Hiramoto et al. [36]. Another support to the rules i) and ii) are found in equations
(3) and (4) of Ref. 34, with an assumption that the line breath of a resonance line
is mainly determined by collisions of a potassium atom with argon atoms. Validity
of the last assumption is, for instance, shown by Lutz in a sample calculation [37].

The values of radiation loss for potassium concentrations of 0.013 and 0.13%
are obtained with these rules, and presented in Fig. 34 denoted by open circles.
One needs values of radiation loss at lower electron temperature for the present
calculation of conductivity. We extrapolate the two curves down to 1650 K.
These curves are used for determining 7.
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