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Summary: Structural vibrations excited by pressure loading which is random in space and
time are considered. Power spectra of generalized force and generalized coordinate vari-
ables are discussed in general linear vibrating systems. Vibration magnitude of generalized
coordinate variables and mode shapes are determined from simultaneous measurement of
vibration quantities at many points by summing up the results with variable weightings.
As an example, flexural vibration of thin beam, which is acted upon by pressure fluctuation

of air flow or random sound pressure, is measured by strain gages and real time spectrum
analyzer.

1. VIBRATION MODE, GENERALIZED COORDINATE
AND GENERALIZED FORCE

Structural vibrations excited by random force are considered. Vibration system
is assumed to be linear and displacement &(r, 1) is assumed to satisfy next equation.

%D 1 &, 5 1
L[&(r,0]+ b o + & arz&(", =p(r,?) (1)

where b and c are constants, r is a position vector, p(r, f) is random load and L[ ]
is a linear differential operator which is self-adjoint and positive definite. The
boundary conditions are assumed to be homogeneous. Then the eigenfunctions
¥s(r) of next equation are orthogonal

LIy(»] -—‘;’:—y(r)=o (2)

and solution of (1) is written as [/]

S(r, t):Z qs(t)ys(r)- (3)

These are general considerations and in the following, attention is focused to
bending vibration of thin structure in which L[ ] is a fourth-order differential
operator. Since &(r, t) represents vertical displacement of surface point r, the work
done by pressure load can be expressed as

[213]
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ow= [ 3¢, 0pr, D= [ {5 34,070} plr, 1A "
=3 [ 30.05,00p(r, 044 = 57 50,OL0
where
L= [ 30p, D, (5)

dA is surface element and integration is taken for all over the surface. Right hand
of (4) is the sum of works done to each mode, and each work is the multiple of
q,(t) and L(1). q,(1) represents the magnitude of mode y,(r) and can be thought
as one kind of displacement variable. Then L,(¢) can be regarded as one kind of
force, since it is a conjugate variable of g,(f). Actually g,(t) and L,(f) are known
as generalized coordinate and generalized force [2]. Since p(r, ) is random, g,(7)

4
and L/(¢) are also random, and it is the purpose of this paper to discuss the power E d
spectra of them. :
On the other hand, vibration magnitude of the structure as a whole would be
expressed by
V(= [0r, ndA (6)
where
0i(r,f)= [ "G, DG, 177) cos 2afeds (7)
is power spectrum of displacement &(r,t). Then V(f) is calculated as
Vo= [ [ T a0 5 4+ 99, cos 2efededA
- _______ '@
=f 22 {q,,(t) q.(t+1) fys(r)y,,(r)dA} cos 2xfrdr
Y 8 8 ( 8 )
= [ 2 90aGT ) cos 2efede
=29,
In this deduction, orthonormality of eigenfunctions is used. (8) represents that
vibration magnitude V(f) as defined by (6) is the sum of power spectra of generalized
coordinates which are written as follows.
?,.()
D, (f)=—ts (9)
’ |Z(DF
Where @, (f) is the power spectrum of the generalized force and Z,(f) is the gener- °
L 28
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Measurement of Structural Vibrations Excited by Random Force 215
alized impedance of the system. These quantities are discussed in the following

articles.

2. POWER SPECTRUM OF GENERALIZED FORCE

Power spectrum of L,(¢) is calculated as follows.

o, (= f mif,(t)L,(t +17) cos 2xnfrdr

- f ) f y(Pp(r, HdA f YD, t+ VA’ cos 2afrde

(10)
= f mf f pr, Op(r', t+ 1)y (Ny,(r)dAdA’ cos 2znfrdr
- f f CU, r, ¥')y,(P)y,(r)dAdA’
where
Clf,r,¥)= f " (e D p(r’, 1+ 7) cos 2nfede
J an

=R, (N}

is the real part of the cross power spectrum of pressure loads at two points r and r’.

As an example of C(f, r, r’), a number of point sound sources which are distributed
randomly are considered. From the n-th source, sound travels to two detection
points with delay time r,, 7/, and strength a,, a,. Then sound pressures at two points
are

Pl(t) = Z ansn(t— Tn)a pz(t) = Z a:zSn(t”" T:z) (12)

S,.(?) is the n-th source function and when n:n’, it is assumed that §,(¢) is uncor-
related with S,.(¢). Then cross-correlation function of p,(¢) and p,(?) is

PP IFH= T ¥ G, Syli— 1) Suli—1n 4 0)

= a,d, 5.0 — )8, (t—7, + ) (13)

=2} Qullp s, (Th—T2—7)
n

where ¢ (z) is the autocorrelation function of sound wave from the n-th source.
Now C(f, 1, 2) is written as

C(fa 1 ’ 2) = Z a, a;f w¢sn(f; — Tn— T) Cos ZTEde‘L'
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=5 a,d, f " s, (—1) cos 2afle—1, + L)de

— 00

] (14)
= ; ana;[f $s,(z) cos 2xnfr cos 2nf(r, —17})dr

+ fmﬁﬁsn(r) sin 2zxfz sin 2xf(c, — %) dr]

Since ¢ (7) is an even function and sin 2zfz is odd, the second term vanishes.

C(f,1,2)= 3] a,a,95,(f) cos 2af(r,—1}). (15)

Model experiment is performed in the case of single sound sourcz. Real part of
cross power spectrum of noise signal X(¢) and its delayed signal Y(t)=X(t—D) is
computed by digital electronic spectrum analyzer [3] as shown in Fig. 1 (a). Power g
spectrum of X (¢) and the ratio C(f) /@ 4(f) are shown in Fig. 1 (b) and (c). In this ‘T ®
case, (15) is reduced to ‘

C(f, X, Y)=ad,(f) cos 2zfD (16)

which means C(f) /@ ,(f) is cosine function as shown in Fig. 1 (c).

y _clt)
12} () e

AAAN

100} feool [roo% | aoo
-04} (Hz)
-08}
-1.2f

Fic. 1. Example of real part of cross power spectrum.
(a) Real part of cross power spectrum of X(f) and
Y()=X(t—D). D=10.6 ms.
(b) Power spectrum of X(¢).
(c) Ratio of C(f) to @x(f).
Horizontal axes are in Hz and vertical axes are in
arbitrary unit.

@
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Measurement of Structural Vibrations Excited by Random Force 217

3. GENERALIZED IMPEDANCE
Generalized impedance Z,(i) is defined as

L{L(1)}
Z{q,n}

where #{ } means Laplace transform. To obtain (17), solution (3) is substituted
to system equation (1).

amn

Z (iw) =

L|z 2,030 +b6-2 |y 2,037}

+ 1

CZ

i (18)
7 {5 0050} te0

Since L[ ] is linear operator,
; a,OLy N1+ X by (g, )+ X %;ys(r)i?s(t):p(r, ) (19)
From (19) and (2),

Z —-vqs(t)ys(r)+ Z bg,()y,r)+ Z qs(t)ys(r) p(r, 1) (20)

Multiplying both side of (20) by y,(r) and integrate all over the surface,

—Aqs(t) + bqs(t) + 5(t) L (t) (21)

in which orthonormality of modes are considered.
Laplace transform of (21) is

O}=2{L,} (22
Z{LW0} _ 5 K ’V
Z(s)=—"1""1 Zla) @ tbs+t (23)
s(tw)—mf —‘-”—2-.+ibw (24)
C

4. MEASUREMENT OF GENERALIZED COORDINATE
VARIABLES AND MODE SHAPES

In the above discussions, vibration magnitude of each mode and effective pressure
load to build up that specified mode are considered. In this section, measuring
methods of mode shapes and magnitudes will be discussed. First, next quantity is
considered.
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G (1) = f £, Dy (NdA= 5 4, f YDy n(dA 25)

where y,.(r) is a test function of weighting, which is assumed to be normalized as

f Y2 (PdA =1 (26)

When damping of the structure b in the equation (24) is small, generalized imped-
ance becomes small when o=w,, and @,(f) shows sharp peak at this resonant
frequency w,, if @, (f) covers this frequency.

Then power spectrum of (25), @, (f) consists a few number of peaks on the fre-
quency axis, whose magnitudes equal to

a0 | [iryada)

When y,.(r) =y,(r), from orthonormality of modes, the n-th peak shows its maximum
value ¢%(¢) and other peaks vanish. If we can adjust weight of integration so as to
make the n-th peak highest and others disappear, we get both mode shape y,(r) and
its magnitude ¢2(?).

In practice, vibration quantity is measured at finite measuring points. They form
vector as '

e(xla t) ys(xl)
&= = Z qs(t) . = [? qs(t)ys 27N
§(xe, D) Ys(Xe)

where & is the number of measuring points and measurements are made simultane-
ously. Weight function also forms k-dimensional vector

y:u:[yml’ "t yn.k] (28)

where prime means transpose. Then y,(r) and y, () in (25) are replaced by vector
y; and y,..

qm(t) = Z qs(t)y;yns - qn(t)y:z Ya. + ; qs(t)y;ym (29)

Since y, consists of finite number of sampling values of y,(r), orthonormality of {y,}
would be incomplete, but when sampling number is sufficiently large, orthonormality
would be correct approximately and above expression stands. Then if y,, is made
to be equal to y,, the first term of (29) becomes maximum and others almost zero.

For that purpose, components of y,, are adjusted one by one as follows. y,,; is
assumed to be k-dimensional vector whose first i components are parallel to those
of y,, and other components are zero. Then the (i+ 1)-th component of y,, is de-
termined as to make

m (./V:;.Vnsiu)z (30)

Yaeiv1Vnei+1
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Measurement of Structural Vibrations Excited by Random Force 219

maximum, which makes the first i+ 1 components of y,,;,, parallel to those of Yn-
Continueing this process k — 1 times, starting with arbitrary value of first component,
Y. can be made to be parallel to y,, and normalization can be made if necessary.

To do these processes, real time spectrum analyzer is very adequate to make (30)
maximum by adjusting the weight of summation, for g%(t) (y/,p,....)* is the magni-
tude of the n-th spectral peak.

5. EXPERIMENTS

Measurement of thin structure vibration by strain gage is considered. Surface
elongation is expressed as

a1
p+h/2 p

(31)

where p is radius of curvature and 4 is thickness of structure as Fig. 2 shows. On
the other hand, radius of curvature is expressed by transverse displacement £ as

l+al

FiG. 2. Relation of radius of curvature
p and surface elongation 4l.

L )]

where x-axis is taken in the direction of strain gage. From (31) and (32), assuming
(d§/dx)’< 1,

a_h
l 2 dx?

(33)

(33) shows that the output signal of strain gage is proportional to the second order
differentiation of displacement by space variable.

As a simple example, one dimensional clamped-free beam will be considered in
the following. For bending motion of uniform beam whose length is I, mass per
unit length is m, area moment of inertia is I and Young’s modulus is E, (2) reduces to

d'y(x) _ _ _o'm
o By)=0, =% (34
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where y(x) can be not only displacement variable but also its first, second or third
space differentiation, though boundary conditions are different forms for each case.
This assures that the twice differentiation of mode function which is measured by
strain gage can take place the mode as discussed in the preceding chapters. In

- fact, set of twice space differentiated functions of modes of this case are shown to

be orthogonal by simple calculation as follows.

L s(x) dzy ™) 4 [dzys(x) dy,(x) ]‘_ Pdy(x)  dy,(x) o

X dx? dx dx® dx
d’y(x) dy,(x) d3() d'y(x) 39
:[ Yelx Y. (x ] [ RGN )] f Jx S (dx
dx dx lo
Since the boundary conditions of clamped-free beam are
y,(0)=0 _dy,(x) =0 )
dx =0
‘ (36)
Ay (x) —0 d’y(x) -0
ax?  |z=t dx®  lz=t

the first and second terms of (35) vanish. Then if sr,

LN A g (AN ) e (Y 0n@=0 3
dx’ dx? dx‘_[ dxt y,(x)dx__g: ! Y2y, (x)=0 (37)

Thus the set of functions {d’y,(x)/dx*} makes orthogonal set when {y,(x)} is ortho-
gonal. Furthermore in this special case fhere is more intimate relation between
{d*y,(x)/dx?} and {y,(x)}. Let

1 &
BB dZ

Z()=— ——y,(I—x) (38)

then z,(x) is shown to satisfy (34) and (36) as

d'z,(x) _ s
g P ﬁ’ d - Ly —n— —Fi ys(l x)
(39)
ﬁz d 2 ‘B:y:( "‘x) ﬁ
— & _ ’
z,(0)= ‘32 E—z—ys . =0 ; (40)
dz ) _ 1 & R S 7GR S
dx lz=o 2 dx® ye(l=2) z=0 B dx’ le= 4
d’z(x) 1 4 2 _
dx2 le /92 d 4y3 _Bs et --—0 (42)
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d*z(x) 1 a&
ottt = ——y. (- = g2 (- =0 43
R Wiy dxby( x| Bl y( 0 (43)
Now by the uniqueness of solution of homogeneous differential equation,

2,(x) =Cy,(x) (44)

Explicit form of y(x) is
¥s(x)=(sin B/ —sinh B,J)(sin B,x —sinh g.x) 45)
+ (cos B0+ cosh g,l)(cos B.x--cosh g,x)

where
cos B,l cosh gl=—1 (46)

N -
L
25 25mm

Fi16. 3. Clamped-free beam whose length is 254 mm,
width 30 mm and thickness 1 mm. Strain
gages are attached on both sides at ten

r—-———— 254 mm

points.
—Hwn—
B e e
J/;:"_ |}] , E./‘E'w ' * ;Il> 4 M wggé‘
a ouT J}l/ OUT
DIS ’

Fi6. 4. Strain gages and electronic circuits. Three outputs are
available. OUT DIS is for the weighted sum, OUT VEL
is for the first order time differentiation of OUT DIS
and OUT ACC is for second order time differentiation
of OUT DIS.

Vibration of aluminium strip excited by air flow or sound pressure is measured
by high sensitivity semiconductor strain gage. Configuration of the test specimen
and the electronic circuit are shown in Fig. 3 and 4. Outputs of strain gages are
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FiG. 5. Power spectra of weighted sum of strain gage outputs when clamped-free
beam is excited by air flow. 1Ist, 2nd, 3rd or 4th means the sort of
weighting vector and D, V or A means DIS, VEL or ACC OUT. One
step of frequency axis is 5.3 Hz.

summed up with weights which can be adjusted by rotary switches in step-wise.
The summed signal is analyzed by a real time spectrum analyzer [3]. Since in
many cases low frequency modes are overwhelming, two stages of time differentiat-
ing circuits are attached to emphasize high frequency components. Thus three
kinds of outputs are available, OUT DIS for original signal, OUT VEL for once
differentiated and OUT ACC for twice differentiated signal.

Results of spectrum analysis when the strip is excited by air flow are shown in
Fig. 5. The weighting vectors of summation are [5, 4, 4,3,2,2,1,1,0,0], [5, 3,0,
—2,—3,—4, —4, -3, -2, —-1},[5,1, -2, —4,-2,0, 3,4, 3, 1] and [5,0, —4,
—2,2,3,2, —2, —4, —2], which are the quantized values of calculated mode func-
tion (second order space differentiated) of 1st, 2nd, 3rd and 4th resonances. For
each weighting, three kinds of output, OUT DIS, OUT VEL and OUT ACC are
analyzed. Their peak heights are tabulated in Table 1 after necessary corrections.
Each column represents four kinds of weightings, and frequencies of observed peaks
ate in the row. If the weightings are completely equal to the mode shapes, all but
diagonal elements would disappear. Three measurements of DIS, VEL and ACC

4"! @

0 e
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Measurement of Structural Vibrations Excited by Random Force 223

; TaBLE 1. Corrected peak heights of Fig. 5

Ist 2nd J 3rd 4th
- Ce | PO [ L T —— U
: D 257,000 191,000 | 664 95,000
37‘3 \Y 294,000 336,000 — 151,000
D — — 1,370 -
79.5 \" 6,080 20,200 3,220 2,050
A 6,110 — 3,140 1,520
D — —_ 169 | —
225 \% } — - 287 —
A — —- 99 17
» ¢ R R B " L .
D — — - I —
440 v — — | - } —
(a) .
AR (b1)
(b2) Fi6. 6. The power spectrum and the real part
2 of the cross power spectrum of pressure
fluctuation in air flow.

(a) Power spectrum detected by 2 mms¢
probe microphone.

(b) Sum of (b-1) and (b-2) is the real
part of the cross power spectrum

(c-1) of pressure fluctuation detected at
two points separated 5 mm.

(¢) Sum of (c-1) and (c-2) is the real
part of the cross power spectrum
of pressure fluctuation detected at

(c2) two points separated 20 mm.
I ]
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F1G. 7. Power spectra of weighted sum of strain gage outpu
clamped-free beam is excited by sound pressure.

TaBLE 2. Corrected peak heights of Fig. 7
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79.5 \% 131 449 — o
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P . : L
1 i

(b-1)

(a)

(b-2)

(b)

(c1)

(c2) _J? ; i« r——r——— (4)

FiG. 8. The power spectrum and the real _F1G. 9. Power spectra of weighted sum of

o

part of the cross power spectrum of strain gage outputs when clamped-free

sound pressure. beam is excited by air flow. The fourth

(a) Power spectrum measured by 1/8 weight is adjusted to make 225 Hz peak
inch condenser microphone. maximum.

(b) Sum of (b-1) and (b-2) is the real

: part of the cross power spectrum

ﬂﬂ‘ of sound field measured at two
points separated 5 mm.

(¢) "'Sum of (c-1) and (c-2) is the real
part of the cross power spectrum
of sound field measured at two
points separated 20 mm.

should be equal for the same weighting and frequency, but as Table 1 shows, devia-
tion of a few decibels exists, which seems to be caused by unsteadiness of air flow.
As a rough estimate, strength of 1st mode is about 15 dB higher than that of 2nd
mode, 30 dB higher than 3rd mode and 36 dB higher than 4th mode.

The power spectrum and the real part of the cross power spectrum of pressure
fluctuation in air flow are measured by 2 mm* probe microphones and shown in
Fig. 6. (a) is the power spectrum, (b-1) and (b-2) are the cross power spectra
measured by two probes S mm separated and (c-1), (c-2) are the cross power
d}%’ spectra measured by two probes 20 mm separated. Sincz the Fourier transform of
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this spectrum analyser is made only positive side, the real part of the cross power
spectrum is the sum of (b-1), (b-2) or (c-1), (c-2). (See Appendix)

As the separation of probes increases, the low frequency components of cross
spectra become large. (The decrease in extremely low frequency is due to the
probe characteristics. Measurements by a hot wire anemometer show that there
exists large power in extremely low frequency.) From these facts, the generalized
force (10) is estimated to have only low frequency components.

As a second example, the power spectra when clamped-free beam is excited by
sound wave are shown in Fig. 7. Beam is placed near the loudspeaker and exposed
to 100 dB(C) noise, whose power spectrum and cross power spectra are shown
in Fig. 8. Corrected peak heights are shown in Table 2. In this time, strength
of 2nd, 3rd and 4th mode are in the same order and 1st mode is almost zero.
These are consistent with the power spectrum and cross power spectra of exciting
sound pressure shown in Fig. 8.

In Fig. 9, an example of adjusting the weight is illustrated. The beam is excited L 2
by air flow and weight of summation is [0, 1, —2,2, —2,0,0, 0,0, 0] for (a), [0, 1,
-2,0,-2,0,0,0,0,0] for (b), [0,1, —2, -2, —2,0,0,0,0,0] for (c) and [0, 1,
—2,—4,-2,0,0,0,0,0] for (d). Only the fourth weight is varied and when it
takes the value —4, the peak at 225 Hz grows to be maximum.

6. CONCLUSIONS

Vibration analysis using power spectrum of generalized coordinate is performed.
Since the calculation of generalized force (10) is difficult, estimation of vibration
strength from exciting force is not attempted. Analyzing the weighted sum of
strain gage outputs, it is shown that the measurement of mode shape and vibration
strength is possible for simple cases.

'The author wishes to express his great thanks to Professor Juichi Igarashi and
Dr. Yasushi Ishii for their valuable advices and encouragements.
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APPENDIX

Real part of the cross power spectrum of x(t) and y(¢) is given as

ct)= f XY+ 1) cos 2afede
On the other hand, the spectrum analyzer used in this study performs next operation.

f Tx(t)y(t + 1) cos 2xfrdr

0

When power spectrum is measured, which means x(f) = y(¢), autocorrelation function
is even function of z, so two times of above equation equals the power spectrum
function, if the autocorrelation can be considered zero outside the region — T <t <T.
When cross spectrum is considered, cross correlation function is not even function,
so some techniques must be used. C(f) is rewritten as

Ch= f “XOY(E ) cos 2nfede 4+ f XYL cos 2afeds
~ f “XOWEF0) cos 2afrde + f “XOYE=7) cos 2xfrde

Replacing x(1)—y’(¢), y(¢) —x'(1)

Cf)= f XY ¥ 1) cos 2nfrdr+f°°x'(t Dy () cos 2rfrde

0

- f "Xy F71) cos 2nfrde 4 f YOy G+ 1) cos 2nfrde

This means by changing input terminals of spectrum analyzer and making two
measurements, real part of the cross power spectrum can be measured as a sum of
them. When the cross correlation function is restricted only in the positive side,
as in the case of Fig. 1, the measurement is enough for one time.
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