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Electronic Polarization of Atoms in Charged-Particle Impact
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Summary: The dependence of the polarization of an atom in charged-particle impact on

the collision velocity is investigated by the impact-parameter method. An effective polari-
zation potential for the elastic scattering is proposed. It has the form

Vo)=Vaa )14 -5 ),

w?r?

where Vo4 ,(r) is the usual adiabatic polarization potential, » an adjustable parameter of
the order of an effective excitation energy of the target divided by #, and v the incident
velocity.

It is confirmed that the induced dipole moment calculated by using the time-dependent
perturbed atomic wave function and that given by the dynamic dipole polarizability are
equivalent,

1. INTRODUCTION

The elastic collision of a charged particle with a neutral atom is discussed in
this paper. When the incident energy is so low that the collision duration is longer
than the period of orbital motion of atomic electrons, the effect of polarization of
the target induced by the Coulomb field of the incident particle is expected to
play an important role in determining a single-particle wave function F(r,) of the
scattered particle. The wave function F(r,) may be defined by the projection of

the wave function of the total system ¥(ry, r,, -+ +,r,) on the target wave function
Ors by v v g5 1)
F(r0)=fgo*(r1,r2, MRS "o)gr("o, Fys - '9rz)drldr2' : 'era

where r, r,, - - -, r; and r, denote the position vectors of the atomic electrons and
the incident particle, respectively. This definition has an ambiguity, because the
target wave function ¢(r,, r,, - - -, r,; r,) can be one of the unperturbed states or one
of the perturbed states. Thus, the polarization potential is not uniquely defined.
Nevertheless, in the energy region where inelastic processes are less important, it
will be practically useful to consider such an approximate local potential as to be
able to account for the observed angular distribution of elastically scattered particles.

In the low energy region, there have been many investigations [1, 2] on the
polarization potential mostly based on the adiabatic approximation: the polariza-

[343]
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tion potential is calculated for each fixed distance between the target atom and the
incident particle, by neglecting dynamic effects. During the past decade, however,
there have been some investigations [3-72], which tried to take explicitly into
account the nonadiabatic effects.

If the incident energy is very high, the first Born approximation without taking
account of the polarization effect is expected to be applicable. In the intermediate
energy region where the deviation from the first Born approximation becomes
appreciable, the polarization potential should be taken into consideration [13, 14].

In most of the above-mentioned studies, the polarization potential does not
explicitly depend on the incident velocity. It is clear that much more elaborate work
than the usual adiabatic treatment is necessary to study the intermediate energy
region where the polarization effect might depend on the collision velocity. It is a
purpose of the present work to find out such an effective polarization potential.
The potential may be used to predict an approximate differential cross section. Our
discussions are restricted to distant collisions, in which the interaction between the
target atom and the incident particle is mainly the polarization potential, and
perturbation theory is expected to be a good approach to treat the problem. Several
attempts are made within these limitations in §§ 2 and 3.

It is confirmed in § 4 that the induced dipole moment calculated by using time-
dependent perturbed wave functions of the atom and that given by the dynamic
dipole polarizability are equivalent. An effective polarization potential which
depends on the incident velocity, and is primarily applicable to the small-angle
scattering, is proposed in § 5.

2. DERIVATIONS OF THE POLARIZATION POTENTIAL THROUGH
A REINTERPRETATION OF THE STUDY OF MASSEY AND MoHRr

As stated in the Introduction, our discussions are restricted to distant collisions.
This means that the polarization potential may be the main part of interaction.
Although the wave length of slow electrons is longer than an atomic radius, the
semi-classical treatment may be permitted even in this case as long as distant colli-
sions are considered. The concept of impact parameter may be introduced approxi-
mately when it is larger than the dimensions of the wave length of electrons.
Furthermore, in such a distant collision, the incident wave of electrons may not be
much distorted and thus the following discussions may be applicable approximately
even to the electron scattering. The exchange between an atomic electron and the
incident electron will be ignored. The atomic units will be used in the following
equations.

It is assumed that the nucleus of the target atom has a charge Z and a sufficiently
large mass and is fixed at the origin of our coordinate system. It is also assumed
that an incident particle has a charge Z’ and a mass m,, and the target atom is neu-
tral. The position vectors of the ith atomic electron and the incident particle are,
respectively, denoted by r, and r,. For brevity r and r;* will be used to denote
symbolically all the position vectors and those except r,, respectively. Spin coordi-
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nates of the incident particle need not be explicitly considered, because the effect of
exchange is ignored and the spin-dependent term does not appear in our non-relativ-
istic Hamiltonian. The reduced masses of the ith atomic electron and of the incident
particle are denoted by g, and g, respectively. The wave equation for the system
of the atom and the incident particle is as follows

HW®)¥(r)=E¥(r), (1)

where H is the total Hamiltonian

HP=Hrs)— L 72+ v, (1-a)
24
zZ zZ
Ho<n;l>=z(— Lp_ 2,5 J~-), (1-b)
i=1 2u ry 71 ry
/ Z 7
vin=2% _$ 2" (1=¢)
¥y i=1 Fy;
ry=|ry, Tij=|ri—r;/, (1-d)

and E is the total energy of the system. The eigenstates of atom are determined
by the equation

H(rs )0, (ry ) =E,D,(r; ), (2)

where the spin coordinates of atomic electrons should be explicitly considered. Here
the function @, and the quantity E, are the eigenfunction and the eigenvalue of the
nth state of the atom, respectively., The suffix n collectively represents a proper set
of quantum numbers completely defining the state. Assuming that the eigenfunc-
tions form a complete orthonormal set, we expand the total wave function ¥'(r) into

V()= 3 Falr), (). (3)

The coefficients of the expansion F,(r,) should represent asymptotically an incident
wave and scattered waves.

The first Born approximation becomes less satisfactory as the incident energy
decreases from a high value to the energy region under consideration. This is
because the distortion of the incident plane wave and the polarization of the target
atom are not taken into account in this approximation. If we proceed to the second
Born approximation, it is expected that these defects are somewhat removed. These
effects are first considered by Massey and Mohr [13] forty years ago. They derived
the following equation for the elastic scattering, to the second Born approximation,

[Vg -+ k?]F1(ro) = Un("o)em]"“'ro
eiknlro—r'l

— 0 Z Uatw | Un)® 2" ey (4)

4r =1 Fo—F |
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Here k, and k, are the wave number of the incident particle and that of the scattered
particle, respectively, and

k2 =2pu(E—E,), (4-2)
Unm(ro) = zﬂoVnm(ro) s (4_b)
Vo) = f D= (re YV (1) Dy Dy (4-<)

and n, is a unit vector in the incident direction which we take in the direction of the
z-axis. Using the fact that the wave function @,(r;?) may be chosen to be real, the
matrix elements V., (r,) are always real. If the right hand side of Eq. (4) is approxi-
mated by U,,,(r)F,(r,), the quantity U, (r,)/(2¢,) may be called the effective po-
tential in the elastic scattering. The scattered particle feels it as an average field.
Therefore Eq. (4) is rewritten as follows

72+ K3F (1) = Ues [ (ro) Fi(ro). (5)

By replacing F,(r,) on the right hand side of Eq. (5) by the plane wave exp (ik,n,- r,)
and comparing with the right hand side of Eq. (4), the explicit form of U, Ary) is
determined. The correction terms to the static potential U,,(r))/(2u,) in U,z £(ry) /(210
approximately contain the effect of the distortion of the incident plane wave, repre-
sented by the term n=1, and that of the polarization of the target atom, arising
from the others. As given by Massey and Mohr, the polarization potential V (1)
is thus obtained as follows
2 . o0 etknlro-rl ,
Vo) = — 2t emers 32 V() Vi) S e rde. - (6)
47 nxl lrp—r|
The approximations used above would be fairly good, when the effective potential
obtained is small as compared with the incident energy. The polarization potential
derived here is a complex potential. It seems that such a potential contains some
clements other than the polarization potential in the elastic scattering. We discuss
this inference in the following.

The total cross section for an excitation obtained by making use of the nth Born
approximation is known to be practically equal to that obtained by the impact
parameter method when the collision energy is sufficiently high [15, 16]. 1t is
expected, therefore, that a formula equivalent to Eq. (6) may be derived by using
the impact parameter method. This is done in § 3.1. We here rewrite Eq. (6) into
a form which can be directly compared with the result of calculations in § 3.1. Itis
convenient to write (see Fig. 1)

ro=b+nz,z=vt, and b -n=0, (7)

where the incident particle is assumed to move along a straight line running parallel
to the z-axis, the origin of time ¢ is taken at the point of closest approach, and the
velocity of the incident particle v and the impact parameter b are assumed constant
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Fic. 1. Coordinates for the collision of a charged-particle and an atom.

throughout the collision process. In the same way as done by Moiseiwitsch [/6],
we assume that the approximation,

L e—pe) = @m (g

k= k, = yv d (kmy—k,n)-n, =
1 #v and  (km, n)-n, 2k, 7)

are permitted. Making the Fourier transformation of the factor exp (ik, [r,—r'|)/
|r,—r'| in the integrand in Eq. (6), substituting Eq. (7) into the transformed expres-
sion of Eq. (6), and making use of the well-known relations of d-function and step-
function, we obtain the complex polarization potential

Vid=—i 5 [ dt V.V, (t)e-iomt-w. (9)
nxl

-0

The real part and the imaginary one are more easily separated from the complex
polarization potential in Eq.(9) than in Eq.(6). In general, as Mott and
Massey [/7] have shown by the wave mechanical method, the negative imaginary
part of a potential in a scattering equation means that the equation takes an explicit
account of the occurrence of an inelastic scattering. This will be shown, if the time
variation of the probability amplitude is considered by the impact parameter
method.
As usual, we start from the following time-dependent equation

i_a%_¢(r(;1, D= (r;", (rs?, 0). (10)

It has been shown by several authors [78] that the equation (10) is approximately
equivalent to the equation (1). By the transformation of Eq. (), V() and H()
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in Eq. (1) are now regarded as V(r;*, 1) and A#(rg", 1), respectively. The function
¢(ryt, 1) is a time-dependent wave function of the atom. It is expanded in terms of
the unperturbed atomic wave functions @,(r;?) into

B, 0= 3 ColDD,(r e, (11)

Here, as is well-known, C,(2) is determined by

d
dt

i

Cn(t): i Vnm(t)cm(t)eiant’ (12)

where
wnm:En—Em~ (12—-3)

The solution of Eq. (12), to the first approximation, is given by

t
COW) =3,y —i f AtV (t)em s, (13)

The diagonal term V,,,(¢) on the right hand side of Eq. (12) contributes to the elastic
cross section, while the nondiagonal terms V,,(¢) are mainly effective in those of
the inelastic scattering. Instead of solving Eq. (12), we take into account the effect
of inelastic scattering on the elastic scattering by adding the matrix element of a
negative imaginary potential {—i77(#)} for the nth state of target atom to the diagonal
term V,,(f). From Eq. (12) the probability amplitude of the ground state channel
satisfies the following equation

i%cl(o:(m—imcl(o, (14)

where 77,,(f) is the matrix element of the 7°(¢) for the ground state target. The
solution of Eq. (14) with the initial condition C,(—c)=1 is given by

C () =exp {—- f ‘At (1) —i f ‘dtlvu(tl)}. (15)

— 0

In this approximation,

Cwr=1-2 [ ar ). (16)

To determine the form of ¥",,(f), we make use of the conservation of probability

=<3

IC(OF=1= 3 |C.(OF 17

nxl

Comparing Eq. (16) with Eq. (17), and substituting C,(¢) from Eq. (13), we obtain
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® ¢
—O)=—i 3 dtV i, (OV n(t,) cos 0n(E—1)).
n¥xl

—co

This is exactly the imaginary part of the complex polarization potential V,(¢) in
Eq. (9). As seen from Eq. (16), the existence of this potential reduces the proba-
bility that the target atom is in the ground state. Thus the imaginary potential
should be excluded from the effective polarization potential for the elastic scattering.
Furthermore, when the real excitations occur, the energy of the atom gained through
the excitation contributes to the real part of V(@ in Eq. (9). It is not known how
this contribution of the excitation can be removed in an unambiguous manner. This
may limit the validity of the concept of the effective polarization potential.

In the low energy region, where the real excitation does not take place, it is
shown that Eq. (6) reduces to the usual adiabatic polarization potential in the limit
of the infinitely slow motion of the incident particle relative to the target atom.
Even in such a low-energy collision, the distortion of the plane wave is not so
remarkable as long as distant collisions are considered. We can obtain the scatter-
ing equations by the well-known procedures

i+ KIF(r) = 3 Unn(m)Fo(r), (18-2)
i~ IFur) = 3 Unn(r)Fu(ry), (18-b)
where
E:"_'“l""k%+El:__}"‘ﬁi "i—Ena for nil (18—0)
2 21

We are able to conclude, to the second order approximation, that the form of the
complex polarization potential ¥,(r,) in Eq. (6) remains valid, but the wave number
k, should be replaced by —ix, for nx1.

o —xnllo—717|
Vp(ro): — 24#“,e*’“1"0'=‘o Z.: Vln(ro)anl(r,) 7(:' e eik;no‘r’dr/' (19)

via nxl “‘0—" |

As we have assumed r,>> 1, the order of magnitude of V..(p) is

V)~ (19-2)
This is the behavior of the dipole interaction for the allowed transition between
the nth state and the ground state. As, in the integrand of Eq. (19), the matrix
element V,,(r) is a slowly varying function of r and the factor exp (—=«, [ro—r))/
|r,—r| contributes to the integral mainly in the vicinity of r,, it will be permitted to
approximate the latter as follows

e *n Iro—r|

AT ), (20)

[ry—r| 54
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with the normalization factor. For an incident energy which is negligibly small as
compared with the lowest excitation energy, Eq. (19) reduces to the usual adiabatic
expression

ad p(ro)"’ - [El |an(rgl (21)

where the approximation Eq. (20) has been used. Because «, is nearly zero for the
incident energy near the threshold of the first excitation energy, the approximation
Eq. (20) is not permitted in such a case. The adiabatic approximation may get less
satisfactory for such incident energy region. Further discussions are given concern-
ing the validity of the adiabatic potential in § 5.

As stated under Eq. (17), the complex polarization potential defined by Eq. (6)
generally contains the effect of excitations. It is anticipated that such effect may
be separated into several terms, say the excitation energy and the permanent multi-
pole interaction, in the asymptotic form. We investigate the asymptotic form in
the following. The asymptotic form for a moderately low incident energy is derived
in the limit of +— — co from the real part of Eq. (9) by integrating by parts and by
using the condition V(& o)=0 as follows

72 2772 o
Vi~ — e+ S52 5 o ), 22)

2r; 2ry 2wl @l ry

where

(—r)|n (—r)

a=i%=i2@ §, (22-2)

nxl nx1
is the dipole polarizability of the atom. In the limit of +— + oo, the permanent

dipole potential and so forth are added to Eq. (22). The term due to the dipole
interaction has the form

= P,
2r} 2r; + 2r}

(22-b)

Z'P. Z'b Z’ b®
Pr Pz<0— )

2r,

When a hydrogen atom is considered as the target, the asymptotic forms of the x-
and z-components of dipole moment are given respectively by

o0 /

P. ~ =3 _%Z“an le( ”‘;’)m )sin o, (22-c)
o /

P. ~ % z_?i_ K, (EEZLLL) cos wnt, 22-d)

where K, and K, are the modified Bessel functions of the second kind. The second
term in Eq. (22) well represents the physical situation. As the incident velocity v
becomes large within the restriction (v/w,,)<r,, the target atom is less polarized.
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Thus the polarization potential becomes smaller, as the velocity of incident particle
increases. For a high incident energy, where the approximation k, =k, is permitted,
when we consider a hydrogen atom as the target, the asymptotic form of Eq. (6)
is represented by

2(1—3cos ) cos 2k.r } (1)
14 ~— 1— 1o o(=). 23
o) o G oS (23)

0

This is obtained by excluding the imaginary parts from the asymptotic expression
which Massey and Mohr have already shown. The main term of Eq. (23) is posi-
tive for the scattering angle § which satisfies cos 8> 1 /3. This expression is valid
when k,=k,. This peculiar behavior which is quite contrary to the usual adiabatic
polarization potential may be due to the nonadiabatic effect.

3. OTHER DERIVATIONS OF THE POLARIZATION POTENTIAL

3.1.  The Second Order Approximation in the Impact Parameter Method

Let’s directly derive Eq. (9), which, in the last section, is given by the reduction
of the wave mechanical equation (6), by making use of the impact parameter treat-
ment. The solution of Eq. (12) for the elastic scattering is obtained, to the second
order approximation, as

t w ¢
Cl(.z)(t):]- + (_"l)f dtl,:Vll(tl) + (——i) Zl Vln(tl)f d[z an(tz)e_iwnl(il—ta):l

=1+(=d [(ay,, @), (24)

where V., is the effective potential corresponding to U,;,(r,)/(2y,) in § 2. As noted
under Eq. (5), the correction terms to the static potential V() in V,,(¢) represent
the effect of distortion of the orbital motion of the incident particle by the target
atom and that of polarization of the target atom. The complex polarization potential
is given by

Vo) =—i ¥ f AV (O (1) e om0, (25)
nxl

This expression is exactly the same as Eq. (9). This equality is a particular case of
the Moiseiwitsch’s conclusion.

For the incident energy lower than any excitation energy of atoms, we are able
to show that Eq. (25) is also reduced to the usual adiabatic polarization potential.
Integrating Eq. (25) by parts, we obtain

=3 2 o t
V,0)=—3 Vu®F 5 Vi) poionee f dt, OV wt) gions (25-2)
Ax @y, 1wl @y, J ot

We transform the integration variable ¢ into z according to Eq. (7). As the factors
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oV . (v/z)/dz and exp (iw,z/v) in the integrand are, respectively, a slowly varying
function and very rapidly varying function of z, the contribution of the second in-
tegral term to the V,(¢) in Eq. (25-a) is negligibly small as compared with that of
the first term. Equation (25) is thus reduced to the usual adiabatic polarization
potential

~_ 5 [Vuf 25
COCEN R AL (25-b)

where the variable is transformed by making use of Eq. (7).
As the imaginary term should be excluded in Eq. (25), the polarization potential

is given by

Vo= — 3 [ 0V ) sinw,—1). 26)

nxl
When excitations occur, the asymptotic form of Eq.(26) in the limit t— + oo
includes the dipole potential and so forth as mentioned before. Thus the effective
polarization potential for the elastic scattering is not unambiguously defined
throughout the scattering processes.

3.2. The Expectation Value of Energy of the System

The change in the internal energy of target atom (denoted by V.») induced by
the interaction with the incident particle is regarded as a sum of the energy due to
the polarization of the atom and the excitation energy gained through a real elec-
tronic excitation. It is defined by

Viulr) ={pGs s 1) |H| ¢, 1)) — < D(rg D [H [ D1(r 7)), 27

where ¢(r;', r,) is the wave function of the atom perturbed by the incident parti-
cle. The effective polarization potential for the elastic scattering is the internal
energy temporarily increased of target atom under scattering processes. If the
incident energy is lower than the lowest excitation energy of atoms, an effective
polarization potential is given by the definition Eq. (27). When the incident energy
is so high that electronic excitations occur, an effective polarization potential may
be obtained by the subtraction of the excitation energy from Eq.(27). As the
expected value of the excitation energy is constant in the asymptotic region, it is
possible to subtract its value from the asymptotic form of Eq. (27) to obtain the
polarization potential. In the short and intermediate distances from the origin, the
distinction between temporary excitations and real excitations is not possible. We
restrict our discussions to distant collisions. We may therefore use the perturba-
tion method in the impact parameter treatment. The wave function ¢(r;?, #,)
and Hamiltonian H in Eq. (27) are approximated by ¢(r;', #) and 5 (r;", 1) as intro-
duced in § 2, respectively. Equation (27) is represented, to the second order with
respect to the interaction potential V(r;?, ), by
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V=3 0, |COW)P

nal

+ 3|0

n¥xl

dCu (t) 1 an (t) .
di Co@) + [( );‘Eﬁ C¢ )(I)} ]

n¥ 1

oo | . 14 . 2
=3 on |~ f AV, (1)ewonn

+2Re[f} (—i)ftdthm(t)Vm(tl)e—wm(z—m:l+O(V3)_ (28)

n¥l

The first term on the right hand side of Eq. (28) is the expectation value of the
excitation energy.

When real excitations occur, we have to investigate whether the effect of excita-
tion can be separated from V,,(r,) or not. We shall start from the wave mechani-
cal treatment. We first consider the incident energy that is higher than any
excitation energy of atoms. Which terms then should be removed from Via(r) to
obtain the effective polarization potential? We try to answer this question as
follows.

If the distortion of the incident plane wave and the polarization of the target
atom are unable to neglect, as mentioned by Massey and Mohr, we need to proceed
at least to the second Born approximation:

Wi+ k1F(r) = 11("0)eikm°'r0
ez nlro—r’|

T Z Uln(ro)f Unl(r/) I - eikl"u'r'dl’,, (29)

4;;,- o1 ro—r

73+ K F,(r) =U ()e
thmlro—r'|
— T Unnl) [ Unte ')i’i_. ey, (30)

4z m=1 ro—r'|
A state of scattered particle under collision processes is described by the wave func-
tion of relative motion F,(r,) or F,(r,). Although the incident particle is scattered
by the target, the direction of scattered particle would not be much deflected from
the incident direction and the scattered wave functions would be represented by the
plane waves with a slowly varying amplitude as long as the high incident energy is
assumed. Thus we put

F](ro) :Cl(ro)eihnmro and Fn(ro)zcn(ro)eiknn'm,

in the right hand side of Egs. (29) and (30), respectively, and rewrite them as
follows

=] 48 3
- - (29-a)

elknll‘o

X2, Vntavae®

e““"" rdy JF (ry),

ro—r|
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,zknn ro P 2#0
73+ Ki1F o (r) = zﬁﬂl:wnl’*" = { wi(rp) efmoro— ZL0
n("o) 41
”bmlro r| (30—8)
X 3| VanlrdV i€ e }]Fn(,o),
ro—F

We assume C,(r,) as a slowly varying function of r,. There is no guarantee for the
relation 32, |C.(r)f=1. We are able to regard the function C,(r,) as the ampli-
tude corresponding to the excitation of the atom to the nth state. These amplitudes
may be approximated by C®(¢) given in Eq. (13). This is because the wave function
F,(r,) is the coefficient of eigenfunction expansion of the total wave function as in
Eq. (3). It is expected from the above discussions and Egs. (29-a) and (30-a) that
the effective interaction acting on the scattered wave will be given as follows

V (r) e*ikl'm'ro 2;1 , e’bknlro r| - ,
C 2{ 1u\ro/ 0 V n )Vn elk1n0 r d
R Y P S Y e nZ )Vl g
tkpn-To . 2
Cn [ n a T { n gtfmoTo _H'O“
+ Z | ("o)l Wn+ C ("o) W(ry) dr

tkmiro—r'| ,
X Z Vnm(ro) le(r/)elg__}_ e'zkmo-r dr/} ] .
—F

The terms due to the polarization of atom in the above expression are given by

Y ’ top1(t—-t1)
[CP@| { C<1> 0 f anV OV (t)e" }
+ 3 [CPOF [wm TR {Vm(l‘)eiwmz
" Y@

o ¢
—i Z dthnm(t)Vm1(t1)eHi‘”m‘(5“tl)}:l
m=1

— 00

= i (——i)ftdthl,L(t)Vm(tl)e lopa(t— t1)+ Z W1 1 _lf dt an(t )e“’nltl

nxl

{ (—i) f ALV (DY ) eiom m} +O), 31)

where C,(r,) is approximated by C®(#) in Eq. (13), the transformation Eq. (7)
and the approximation Eq. (8) are used, and the same procedures that are made to
transform Eq. (6) into Eq. (9) are used. This expression Eq. (31) is exactly identi-
cal with Eq. (28). The first term on the right hand side of Eq. (31) originates from
the elastic scattering equation (29-a), and the second and third terms from the
inelastic scattering equation (30-a). It seems that the question at the beginning of
the last paragraph is answered. But these discussions are by no means sufficient.
As the first term on the right hand side of Eq. (31) that is the same form as Eq. (9)
contains the imaginary part, such term involves the effect of the inelastic scattering
as discussed in § 2. The question how any excitation energy is removed from
Egs. (27) or (28) for the elastic scattering still remains to be answered in the short
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and intermediate regions. The effective polarization potential based on the asymp-
totic form is discussed in § 5.

For the incident energy lower than the lowest excitation energy of atoms, we are
able to show that V,,(¢) is reduced to the adiabatic polarization potential, if we
apply the same procedures that are used to transform Eq. (25) into Eq. (25-b).

For an intermediate incident energy, we may define the polarization potential by
V.n in Egs. (27) or (28) as long as distant collisions are considered, because the
effect of excitations is negligibly small. That this is permitted is seen from the dis-
cussion about the adiabatic limit and also from Figs. 2 and 3. The discussions
about Figs. 2 and 3 are given in § 3. 4. The asymptotic form of V,,(?) in Eq. (28)
is derived in the limit of #— — co by using the integration by parts

Vp(ro)"’ - +

2r; 2ry  nwm1 @l

7
0

aZ? | 477 2 a, +0( 1 ) ’ (32)

where a= )., @, is the dipole polarizability of the atom defined by Eq. (22-a).
If we replace 1/w?;, by an average value 1/0® and take it out of the summation in
the second term of Eq. (32), Eq. (32) is written as

aZ’ (1__ 4?)2)
2r;

Vo (r) ~ — o) (l) . (32-2)

o'r} r

In the limit of t—+ o, the excitation energy, the permanent dipole interaction,
and so forth are added to Eq. (32). But the difference in the definition of the
polarization potential brings the numerical factor 4 in the second term of Eq. (32)
instead 6 in that of Eq. (22).

3.3. The Work Done by the Induced-Dipole Interaction on the Incident Particle

The polarization of the atom due to the Coulomb field of the incident particle is
mainly reficted by the induced dipole moment P, provided the induced quadrupole
and higher multipole moments are negligibly small as compared with the induced
dipole moment. The potential field produced at a point r, by a point dipole P at
the origin of the coordinate system is given by

Vi="L", (33)
rO

The strength of the electric field at r, is
F(r)= —grad V(r,), (34)

where P(r,) is regarded as constant in performing the ‘grad’ operation.

To move a particle with charge Z’ from r,= — oo to any point r, along a straigh
line running parallel to the z-axis against the electric field F(r,) (see Fig. 1 for the
coordinate system), a work

W(r)=—2' f "F(z) - kdz, =2 f 5?2_ {_fﬁ%)_i} dz,, 35)

- 00
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is needed. Here k is a unit vector in the direction of z-axis. In differentiating
{P(2) - r/r*} with respect to z in the integrand of Eq. (35), P(z) is regarded as constant.
After the differentiation, the dependence of P(z) on z must be retained. Equation
(35) is thus reduced to

W(r _ZLP@:ry g f 1 {,.l ._‘iplfi}dzl. (36)
r r dz,

0 —co

It is shown below that this work is equal to the V;, given in Eq. (28).
The induced dipole moment is defined by

PO=[ 5 (-rlgat ordr— [ 3 (=m0 dr, (37

where ¢(r;%, #) is determined by Eq. (10). The second term of Eq. (37) is always
zero, provided the target atom is in the ground state. Making use of Egs. (11) and
(13), P(2) is represented by

P(H=2 Re[ % (—(1 !i(_u' n> f tdtlVm(tl)e""""l(““)]. (37—a)

n*1

Taking account of this expression, each term on the right hand side of Eq. (36)
is reduced to

__ZLIL(?:IQ_Zz Re [}oi (—10) tdthm(t)Vm(n)e—f'“’n“““’} +0?), (38)

r() nxl
and

Lo, (39)

1( d ﬁ
o J‘ F{,I.JTEE;)_} dz, =3 o,
1

nxl [

t
—i f dn,V, (t)eent

-0

Inserting Egs. (38) and (39) into Eq. (36), the latter is transformed into

W) =2Re| 3 (=) [ a0 Vteionc=o|

n¥xl

- 00

Lo

o ) ¢
+ Z Wy i "if dtl an(t‘) elonty

n¥x1

— o0

This is exactly the same as V;, Eq. (28). The same discussions as in § 3.2 can be
made to define the polarization potential.

3.4. Numerical Examples

In order to see semi-quantitatively the dependence of the polarization potential
on the incident velocity, we consider a hydrogen atom as the target and take into
account only the first excited p state. This is because about 66% of the polariza-
bility of hydrogen atom comes from this state as reported by Castillejo ef al. [2].
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In §§ 2 and 3 we eventually defined two types of polarization potential. Equation
(26) is derived from the second Born approximation and it is named “nonadiabatic
potential of type I” in figures. Equation (28) is defined by the energy expectation
value and is named “nonadiabatic potential of type II” in figures. Resulting poten-
tials for 7<0 are plotted in Fig. 2 and those for £>0 in Fig. 3. The value evaluated
from Eq. (26) are shown by dots for some combinations of the incident velocity v
and the impact parameter b (say inverted triangle W for v=0.10 and »=28). The
values of v=0.10, 0.49, and 4.9, correspond to the incident energy 0.3, 6.0, and
600 keV for incident protons, and correspond to 0.16, 3.26, and 326 ¢V for inci-
dent electrons, respectively. The values evaluated from Eq. (28) are represented
by lines (say solid line for v=0.10 and b=8). The behavior of the calculated
polarization potential in Fig. 2 agrees reasonably well with our expectation. That
is, when the value of v/b is small, the polarization potential defined by Egs. (26)
and (28) is identical with the usual adiabatic polarization potential. As the value
of v/b becomes large, the absolute magnitude of the polarization potential becomes
smaller than the adiabatic one. These results reflect the difficulty of polarization
of the target atom in faster encounter as compared with the case of adiabatic
approach. The results in Fig. 3 contain an effect of excitations, because such con-
tribution to the polarization potential defined by Eq. (28) has not been removed.
When excitations occur, that is, the value of v/b is large, the values evaluated from
Eq. (28) become positive. This is because the excitation energy or the first term
of Eq. (28) dominantly contributes to the potential. These results tell us that the

o laul
8 10 12 14 16 18 20

0 T T T r a1
I.._”—vnh_
O‘X’M/
2
g v
,.'x /-/
S
3 P
2 Ja O.10{ for nonad. pot. of type I
—_ - - 8 v for nonad. pot. of type I
©
= 049 [ ===-=--
= 70 { .
-2r 49 (—-—
6 [ ]
- 49 { R
v 10 X
—3l adiabatic pol. pot.
x10™

F1c. 2. Polarization potential given by Eqs. (26) and (28) before passing the
point of the closest approach. Dots (say inverted triangle W for
v=0.10 and b=8) represent the results of the calculation of Eq. (26)
named ‘‘nonadiabatic potential of type I'’, while lines (say solid lines
—for v=0.10 and b=8) represent the results of Eq. (28) named
‘“nonadiabatic potential of type II’.
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Fic. 3. Polarization potential given by Egs. (26) and (28) after passing the
point of the closest approach. Dots and lines are as in Fig. 2.

contribution of excitations to Eq. (28) must be removed to obtain the effective
polarization potential for the elastic scattering. We take into account these and
discuss the effective polarization potential in § 5.

4. EQUIVALENCE BETWEEN THE INDUCED DIPOLE MOMENT
UNDER COLLISION PROCESSES AND THAT REPRESENTED
BY THE DYNAMIC DIPOLE POLARIZABILITY

In this section we confirm the equivalence of the induced dipole moment P(f)
given by Eq. (37-a) with that derived by using the dynamic dipole polarizability.
The following discussions are again limited within the validity of perturbation
theory. We treat only the dipole polarization for simplicity, since dipole transitions
will most easily take place. The generalization to other transitions will be straight-
forward. In the collision problems the interaction between the atom and the inci-
dent particle is written in the dipole approximation as follows

Vet 0= — 3 (—r)-F), (40)
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where

F)=——2 ¢, (40-2)
Iz

The induced dipole moment P(¢) given by Eq. (37-a) is reduced to

PO=2Re 3 {i f a1 ‘if;l(—ri)‘?n><n é(-—ri)i 1>-F(tl)e~“m“-“>}. (41)

nil

When the time-dependent electric field F(¢) is given, we can calculate the induced
dipole moment P(f) in another way. Namely, the induced dipole moment, as shown
by the following equation (44), is represented by the dynamic dipole polarizability.
We first analyse the field F(¢) into the Fourier component F(w) as follows

F(t)z—;; fw " doe=* F(w), (42-2)

and define the inverse transformation of this expression by

Flw)= f " dte F(1). (42-b)

The dipole moment of the atom induced by the monochromatic wave e~ F(w) is
represented by

P(w)e it =a(w)F(w)e ™, 43)

where &(w) is the dipole polarizability tensor of the atom defined by this equation,
and is called the dynamic dipole polarizability tensor. Then the dipole moment
P(f) as well as F(f) may be obtained as the superposition of the component induced
by the monochromatic wave by

oo

" dowe 1 P(w) = .2.1_ f " dwe-"'&(w)F(w). (44)
T

We take here and hereafter the coordinate axis along the principal axes of the
polarizability tensor.

The induced dipole moment defined by Eq. (37) should be equivalently repre-
sented by the dynamic dipole polarizability. We confirm this statement in the
following. The dynamic dipole polarizability, as is well-known, is given by

n)(n

where w is not in the neighbourhood of any of excitation frequencies of atom. In
integrating the right hand side of Eq. (44) the form of @(w) defined over all the value
of w is needed. To obtain such dynamic dipole polarizability (denoted by a.(w)), we

Hw)=3 {1

n¥xl

Zi(ﬂri) é(_’i); 1> 200 45)
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take into account the finite breadth of excited states of atom as {E,—(Grl',/2)} for
nx1and I',=0. The required form is obtained as follows

. <1'5ﬂ —r | m)(n] %3 (- m>11> (46)

nﬂcl ——a)——lf /—«

(?e(w) =
The usual dynamic dipole polarizability is given by
Jim, (@) + (o). (46-2)

Inserting Eqgs. (42-b) and (46) into the right hand side of Eq. (44), and integrating
with respect to w, we obtain the expression of P(f) as follows
1)

P()=2Re (;‘: i[fan 1% (=) my(n ]fj (—r)

. F([l)e{—i(wm + (I'rnFn/Z))-(Rnpn/z))(t_h)jl .

(44-a)

To make the expression (44) fit the real dipole moment as the response to the real
perturbation force, we take here twice the real part of Eq. (44). The contribution
to the integration of Eq. (44-a) mainly comes from the time interval shorter than
the life time of excited states of atom. In general, the life time of excited states of
atom is very long as compared with the collision time. For example, the life time
of the 2P,, for hydrogen atom, as shown by Heitler [19], is about 6.5X10° a.u.,
and the collision time is the order of several atomic unit even for incident protons
with energy of several hundred eV in the case of distant collisions. We may neglect
the factor exp[(—(Rel",/2)—i(ImI",/2))(t—t)] in the integrand of Eq. (44-a).
We obtain the induced dipole moment as

n)(n

This is the same as Eq. (41). Thus the induced dipole moment P(f) under colli-
sion processes is represented by the dynamic dipole polarizability which has been
investigated previously in detail. As shown in § 3. 3, we are able to obtain approxi-
mately the dynamic polarization potential from the information of the dynamic
polarizability [20].

When the real excitations occur, the induced dipole and multipole moments of
the target oscillate with the finite amplitudes even after the collision. This is seen,
for example, from the asymptotic forms Egs. (22-¢c) and (22-d) of the induced
dipole moment Eq. (37-a) for a hydrogen atom as the target atom. We are able to
know the excitation probability from the magnitudes of the induced dipole and
multipole moments. The induced dipole and multipole moments, as is shown
above, are represented by the dynamic polarizability. Thus the excitation proba-
bility may be inferred by making use of the dynamic polarizability. We shall again
confine our discussions to dipole transitions. The excitation probability, to the

) 1>-F(z1)e—iwm<v~w}. 47)

5

nxl

P()=2Re 3 |i f ‘dzl<1
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first approximation, is given by Eq. (13). By adopting the dipole approximation
Eqgs. (40) and (40-a) and using Eq. (42-a), the probability amplitude of excitation
is given by

@ w___i_, -
CO(o00) = zﬂi dt1<n

=i<n
Here we change the order of integration with respect to time ¢ and the one with
respect to frequency o and make use of the well-known relation of s-function. As the
dynamic dipole polarizability, as seen from Eq. (46), has the remarkable value near

the excitation frequency w= w,,,, the square of the matrix element |{n| X2, (—r,)| 1>}
may be expressed by

<

i(——ri)

). f “doF(w)e-iw-emn,

21(""'1)

1>'F(wm>. (48)

PN I il )\
i>:~"1 (=r) 1>t ) [w-'(wml—l(rlrxlnrn/z)) (wm— 2 —")) &(w)
(49)

w 1-%‘+w)ae(—w)].

lim ”
o——(op1—(ImI'5/2))

+

The dynamic polarizability having a physical meaning is a real quantity, and the
relation Re &, (—w) =Re &,(w), in general, holds. Furthermore, the level shifts of
the excited states of atom are fairly small as compared with the level intervals of
the atom. Equation (49) may be approximated by

j<n Ygl(“‘ri)

1)/’ lim, (@n—0) Re &(0). (49-2)

Using Eqs. (48) and (49-a), we obtain the excitation probability as follows

|CP(0) P= Jim (0 —0) Re @ (@) | Flon) P, (50)

where F(w,,) is represented by Eqgs. (7), (40—a), and (42-b). Thus we are able
to estimate the excitation cross section of a neutral atom by a charged particle im-
pact, provided the dynamic dipole polarizability of the atom is known with a suffi-
cient accuracy in the neighbourhood of w,,.

5. DISCcUSSIONS

We have defined the polarization potential in §§ 2 and 3 by Eq. (6) (the real
part of Eq. (6) is denoted by V1) and in § 3 by Egs. (27) or (28) for sufficiently
low incident energy (denoted by V). Unfortunately, they are not identical to
each other. Which definition is more appropriate for the polarization potential?
The complex polarization potential Eq. (6) is defined as an effective potential in the
scattering equation (4), and has an imaginary part. Such imaginary term must not
be contained in the effective polarization potential for the elastic scattering. When
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the incident energy is sufficiently high, the asymptotic form of V} is given by
Eq. (23). As mentioned just under Eq.(23), it is positive for the scattering angle
for which cos#>1/3. This peculiar behavior only holds in the case of k,=k;, and
disappears as the incident energy decreases. In the intermediate energy region the
asymptotic form of V', is given by Egs. (22) and (22-a~d). As seen from Eq. (27),
we do not know the role that the V' plays in the scattering problem. The asymp-
totic form of V%, Eq.(32), is derived from Eq. (28) in the limit of #—— oo for
an intermediate incident energy. In the limit of #— 4 oo the excitation energy,
the permanent dipole interaction, Eq. (22-b), multiplied by 2, and so forth are
added to Eq. (32). In the adiabatic limit both definitions Egs. (6) and (27) are
identical to each other. When the real excitations occur, both V7, and V) contain
the effect of excitations as is noted above. In the short and intermediate distances
from the origin, we can not separate such effect into the part contributing to the
elastic channel and the others. Both this fact and the ambiguity included in the
scattered wave function mentioned in the Introduction prevent us from uniquely
defining the polarization potential. The asymptotic forms Egs. (22) and (32) in
the limit of +— — o agree with each other except the numerical factor in the second
term of their expressions. The difference of numerical factor comes from the dis-
tinction between definitions of the polarization potential. It is unable to decide
that one of VL and VY is more suitable than the other as the effective polariza-
tion potential.

We thus infer the effective polarization potential for the elastic scattering on the
basis of the asymptotic forms Egs. (22) and (32). We adopt as the asymptotic
form

Vp(r)"’ -

aZ" (1 _avt

r4

o) ols) 629
where a is 6 for V%, and 4 for V3. The correction term for the adiabatic potential
explicitly depends on the incident velocity. The dependence of the polarization
potential on the incident velocity was shown by Garrett [11], but a drastic approxi-
mation introduced in the course of his calculations is hard to be admitted. The be-
havior of the correction term as 1/r° has been obtained by several works [3, 4, 5, 6],
but all of their correction terms does not depend on the incident velocity. The
character of the correction terms of this work and that of works just mentioned are
quite different. Castillejo et al. [2] have concluded that in the asymptotic region the
polarization potential which behaves (—a/2r*) is independent of the velocity of the
incident electron, so long as it is insufficient to excite the atom. But Eq. (32-a) does
not contradict with their conclusion to the order of 1/7°.

The factor in Eq. (32-a), {1—(av*/0’r")}, is equal to the first two terms of the
Taylor expansion of some functions, say exp (—av*/’r?) or 1/{1 4 (av*/’r*)}. Thus
we first propose the following two expressions as the effective polarization potential
over wide range of the incident energy

Vo(r) =V qq p(r)e= v« (51-a)
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and

-1

Vo) =V (1) (1 +%”r—) : (51-b)

where V,, ,(r) is the usual adiabatic polarization potential. The values evaluated
from Eqgs. (28), (51-a) and (51-b) are plotted in Fig. 4. The ratios of the values
of Eq. (51-b) to those of Eq. (28) vary from about 1.0 to 0.4, and those of Eq.
(51-a) to Eq. (28) extend from about 1.0 to 0.001, when v/b increases from
0.49/10t0 4.9/6. In evaluating Eqs. (51-a) and (51-b) we choose w,, as the value
of w and a=4. If the value of w is larger than w,,, the differences between the values
of Eqgs. (28) and (51-a) and those of Egs. (28) and (51-b) become somewhat smaller,
but much improvement is not expected. Then we compare the values of Eq. (28)
with those of the expressions for a=1 in Egs. (51-a) and (51-b). The results are
plotted in Fig. 5. The difference between these values and those of Eq. (28) are with-
in 20 percents, even if v/b increases from 0.49/10 to 4.9/6. As seen from these
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—% " for Eq.(51-a)
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I5F o
x10 _bv__=o1'49 A )
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—47‘39— A for Eq.(51-b)
49 A
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Fic. 4. Comparison between the polarization potential given by Eq. (28) and
those given by Egs. (51-a) and (51-b). The broken line represents
the adiabatic polarization potential, the dash-dotted lines the polari-
zation potential given by Eq. (28), the dotted lines that given by
Eq. (51-a), and the solid lines that given by Eq. (51-b). Here a and
o are chosen 4 and wy, respectively. For the combination of v=0.49
and =10, the values calculated from Egs. (51-a) and (51-b) are
almost coincident. We are able to make no difference between them
and the values evaluated from Eq. (28) for ry>15 a.u.
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Fic. 5. Comparison between the polarization potential given by Eq. (28) and
those given by Egs. (51-a) and (51-b). Here a and o are chosen 1
and gy, respectively. For the combination of v=0.49 and b=10,
the values calculated from Egs. (51-a) and (51-b) are coincident.
We are able to make no difference between them and the values
evaluated from Eq. (28) for 7,>15 a.u.

results, the nonadiabatic potential with the factor exp (—av?/w%?) as the correction
terms for the adiabatic potential is much more sensitively dependent on the numerical
factor a than that with the factor {1+ (av*/w?*®}~'. Thus we propose as the form
of the effective polarization potential for the elastic scattering

Vo) =V ) (1 ”) (52)
[ONA
or
Vo=V ea,(?) (1 + Az’i;;) (53)
o'

Here » is an average excitation energy, but it may be regarded as a parameter to
be suitably chosen. One way by which w is determined is that we make the differ-
ential cross section evaluated with the form of Eqs. (52) or (53) as polarization
potential fit the experimental value at any incident energy. The form of Egs. (52)
or (53), instead the polarization potential investigated thus far, well represents the
physical situation. As the incident velocity v becomes large within the restriction
(v/w)<r, the target atom is less polarized. Thus the polarization potential
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becomes smaller, as the velocity of incident particle increases.

In obtaining Egs. (52) or (53), we confine ourselves to the discussions in the
distant collisions, and make the assumptions, that is, both the perturbation theory
and the dipole approximation are applicable. The proposition Egs. (52) or 53)
with @ as determined above will be useful for discussing the differential cross sec-
tions, in particular in the small angle scattering, of the elastic scattering, provided
the limitation and assumptions do not cause much error in the problem considered.
Its validity may be tested by applying to real problems.
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