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Summary: A direct simulation Monte Carlo method is developed to solve the flow field
around a two-dimensional or axisymmetric body immersed in a hypersonic rarefied gas
flow. A steady solution is obtained as the non-stcady solution at the time of infinity by
the present method.

The method is applied to the flow field on a highly cooled flat plate placed parallel to
the direction of a uniform flow. Another case with a higher Mach number than in the
preceding case and the same body temperature is also calculated. The results in the
above-mentioned two cases show how the uniform flow Mach number affects the flow
field. 1In addition, physical properties concerning the body surface. that is, the pressure,
skin friction, heat transfer and slip velocity distributions are also calculated. Al the
present results are compared with other theoretical and experimental results and show
good agreements with them.

Flow fields around circular cylinders and spheres with highly cooled and near adiabatic
conditions are investigated in order to study the effect of the body temperature on the
flow field. The solutions for the bodies with different radii are also obtained so as to
study the effect of the Knudsen number. Physical properties concerning the body. that
is, the pressure and heat transfer distributions and the drag are calculated also in these
cases. The experiments of the surface pressurc distributions of the circular cylinder
and the sphere, and the drag of the sphere are performed in order to examine the Monte
Carlo results. The Monte Carlo results agree well with the present and other experi-
mental results and other theoretical results.

NOMENCLATURE

a constant in a cell, lower boundary of &
A nondimensional parameter defining flow ficld
b upper boundary of &

B representative value of Y,

¢, most probable speed

¢, specific heat at constant pressure

¢, thermal velocity component

thermal velocity component

¢, thermal velocity component

* Central Engineering Laboratories, Nissan Motor Company Limited.
*# This work was accomplished as the Doctor Thesis while the author was a postgraduate
student in the Institute of Space and Aeronautical Science, University of Tokyo.
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mean thermal speed

mean square speed

nondimensional thermal speed, Chapman-Rubesin coefficient
drag coefficient

skin friction coefficient

local heat transfer coefficient defined by (2-33)
local heat transfer coefficient defined by (2-35)
pressure coefficient defined by (2-27)

pressure coefficient defined by (2-28)
nondimensional thermal velocity component
nondimensional thermal velocity component
nondimensional thermal velocity component
skin friction, drag

error function

function expressing body surface, sample size in a class, probability
density function

rectangular random number, probability density function
function of M defined by (4-15)

function of M defined by (4-15)

ith-order Bessel function of first kind with imaginary argument
number of classes, index

constant

Knudsen number

characteristic dimension, number of classes

length of interval of aperiodicity

sample size, mass of a molecule

number of steps of sampling

sample size calculated by probability density function
Mach number of uniform flow, modulus

number density

constant

constant

number of molecules

number of molecules to maintain uniform flow

number of molecules initially generated

number of molecules involved by a volume of unity in uniform flow
pressure

integral of probability density function

probability of a collision

probability of a collision of any two molecules
Prandtl number

Maxwell-Boltzmann distribution function

heat flux to body

radius
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nondimensional radius, gas constant, rectangular random number in
(0, 1)

Reynolds number defined by (4-2) and (4-11)

Reynolds number defined by (4-12)

Reynolds number defined by (4-14)

characteristic area of body

speed ratio of uniform flow, random number with specified distribution
function

time, number of times of test

characteristic time

time when sampling starts

temperature

uniform flow velocity

velocity component of molecule

velocity component of molecule

velocity component of molecule

volume, voltage

standard voltage

nondimensional relative speed used to select collision pair
nondimensional slip velocity

nondimensional velocity component of molecule
nondimensional velocity component of molecule
nondimensional velocity component of molecule
nondimensional macroscopic velocity component
nondimensional macroscopic velocity component
nondimensional macroscopic velocity component
rarefaction parameter

coordinate, variable

x-axis with origin at leading edge of flat plate
nondimensional x

nondimensional x’

coordinate, variable

nondimensional y

coordinate

nondimensional z

apex angle of sector, level of significance
specific heat ratio

angle between tangent to body surface and center line
surface element

time interval of a collision cycle

sampling time interval

density ratio across Rankine-Hugoniot shock
direction cosine, random variable

direction cosine, random variable
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direction cosine

angle defining a position on body surface
mean free path

viscosity coefficient

collision frequency

density

molecular diameter

mean time necessary for a collision
characteristic time

angle, function of 3

hypersonic interaction parameter
variable defined by (2-40) and (2-42)
variable defined by (2-43)

variable defined by (2-44)

Chi-square distribution with 7 degrees of freedom
nondimensional relative speed

SUBSCRIPT

body

cell

free molecule value

i-th step, i-th class, inviscid
i-th step, j-th class
maximum value

in cell adjacent to body
stagnation

behind Rankine-Hugoniot shock
first step, first class

sccond step, second class
uniform flow

SUPERSCRIPT

nondimensionalized by quality in uniform flow
after collision

[. INTRODUCTION

The flow field around a body immersed in a hypersonic rarefied gas flow is dif-
ferent from that at ordinary densities, because the rarefaction of the flow causes
several characteristic phenomena, such as the thickening of the shock wave, which
can be neglected under normal circumstances.

It is difficult to solve the entire flow field with a single strategy, and then several
methods of analysis to deal with some specific regime of the flow have been pro-
posed. Investigations of the hypersonic flow past a flat plate and a blunt body are
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summarized respectively in § 1 and § 2 (an excellent review of these problems is
given in Ref. 1), and Monte Carlo studies are surveyed and the outline of the

present study is described in § 3 of this chapter.

sy 1. Hypersonic Rarefied Flow past Sharp-Leading-Edge I'lat Plate

The hypersonic rarefied flow past a semi-infinitc sharp-lcading-edge flat plate is
outlined below. There is a hypersonic interaction region on the upstream side of
the classical boundary layer region, where the thin shock wave and the thick boun-
dary layer interact through a narrow inviscid flow region, which is divided into
two subregions, that is, the weak and strong interaction regions, according to the
degree of the interaction. The weak and strong intcraction theories are applied to
these subregions, respectively [2, 3]. The solution of the weak interaction theory
coincides, of course, with that of the classical boundary layer theory in its down-
stream limit.

There is a merged layer, where the shock wave and the boundary layer are
merged and the inviscid flow vanishes, on the upstream side of the strong inter-
action region. Oguchi [4] proposed a viscous layer theory on the assumption that
the shock wave is still thin, and obtained a wedge-like solution as the upstream
limit, a strong interaction-type solution as the downstream limit and a locally similar
solution between the upstream and downstream limits. He also obtained a solu-
tion taking account of the effect of the velocity slip at the body surface [5]. The
thin shock wave assumption was removed [6-9] subscquently, because it was ex-
perimentally found that the incident gas is not compressed up to the density given
by the Rankine-Hugoniot relation and that the shock layer is no longer thin enough
to be treated as a discontinuity [/8, 20]. Recently Shorenstein ct al. [9] refined
Oguchi’s analysis, that is, they included the effects of the shock curvature, the
velocity slip at the wall and the finite Mach number. Their results agree quanti-
tatively well with the experimental results obtained in the same flow conditions.

The continuum flow theory can not be applied to the region upstream of the
merged layer regime, since the physical properties there are not so different from
those in the undisturbed rarefied flow. Therefore, the analyses of this regime are
performed by the kinetic theory of gases [10, 11].

The free molecule flow theory [/2, /3] may be invalid even at the leading edge,
since the effect of the body penetrates into the region somewhat upstream of the
body. However, the solution by the free molecule theory is often used to examine
the validity of the theoretical and experimental results.

Recently Huang et al. [/4] obtained a solution covering almost all the flow
regions cited above, integrating the B-G-K model equation by a discrcte ordinate
method in the case of a supersonic flow. Afterwards the solution in the case of
a hypersonic flow was also obtained [/5].

Numerous experimental studies with respect to the surface pressure, skin friction,
heat transfer and shock shape are reported [/6-29]. The technique of the electron
beam densitometry is considered to be desirable, because it enables us to obtain
informations of the wide flow field without disturbing it by a probe [24-29].
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§ 2. Hypersonic Rarefied Flow past Blunt Body

The hypersonic flow past a blunt body is difficult to solve even if the flow can be
regarded as inviscid, mainly because of the existence of the detached bow shock
and the subsonic flow region. The additional “rarefied” condition makes the
problem more complex [30], unless the frec molecule flow condition is satisfied.
(In the free molecule flow the problem is very simple and its solution can be easily
obtained [64, 65].) Consequently the subjects referred to subsequently have been
investigated.

Physical Properties along Stagnation Streamline

Ho et al, solved the Navier-Stokes cquations introducing a local similarity
scheme on the assumption of a thin shock layer, and found the changes in the
physical properties along the stagnation streamline between the shock wave and the
body wall [37, /11]. Cheng [32] removed the thin shock wave assumption and
found the solution in the shock layer. Qguchi ct al. [33] refined the Cheng’s method
so that the discontinuity between the solutions of the shock and boundary layers
was removed. Levinsky et al. {34] and Kao [35] solved the problem independently
by the integration of the Navier-Stokes equations from the forward stagnation point
of the body to the upstrcam of the shock layer. All works cited above arc on the
basis of the continuum theory. On the other hand, Ho [36] attacked this problem
from the kinetic theory side, that is, he used the B-G-K model equation with Kao’s
solution as the zeroth approximation. Recently Sugimura et al. [37] obtained the
density profile along the stagnation streamline with the kinetic theory by the mo-
ment method.

Experimental studies were performed by the electron beam densitometry [26,38,
39, 112-114]. Some of above references also dealt with the stagnation region off
the stagnation streamline.

Pressure at Forward Stagnation Point of Body

In a low density wind tunnel study it is very important to obtain the relation
between the pressure at the forward stagnation point of the body and the Pitot
pressure given by the Rankine-Hugoniot relation, since the flow properties are
determined by the latter (often referred to as the ideal impact pressure) and the
pressure measured by the Pitot tube is the former (often referred to as the measured
impact pressure), and they are in general not same.

The theoretical treatment is very laborious as pointed out in the preceding para-
graph and a near free molecule approach is reported [40] in addition to the refer-
ences cited above, and this problem mainly is experimentally investigated [4/—44].
Stagnation Point Heat Transfer

It is important to evaluate the heat transfer from the surrounding gas to the
forward stagnation point of the blunt body, since, for example, it is an information
necessary in designing a re-entry body.

Reshotko et al. [45] solved this problem by the potential flow and boundary
layer theories on the assumption of the existence of a thin shock wave, an inviscid
flow region and a boundary layer. Lees [46] obtained the solution of the equation
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based on the modified Newtonian theory and the boundary layer theory with the
local similarity. Ferri et al. [47, 48] took account of the vorticity which is one of
the second-order effects. Van Dyke [49, 50] used the second-order boundary layer
equation taking account of the seven second-order effects. Cheng et al. made use
ot a shock-boundary-layer matching scheme, that is, on the basis of the assumption
that the two layers are thick [32, 51].

Experimental results are reported by several authors [/7, 47, 48, 52, 115].

Surface Pressure Distribution

The pressure distribution on the body surface predicted by the modified New-
tonian theory (inviscid), though simple, is an excellent approximation in the front
part of the body even in the rarefied flow. The calculation by Gorislawsky et
al. [711] and several experiments [53-55, 116] confirm this fact. There is no theory
available to predict the pressure distribution in the rear part of the body except for
the free molecule flow theory, and the study in this part is made by the experiments.

Heat Transfer Distribution

The heat transfer from the gas to the body surface decreases monotonically from
the forward stagnation point to the separation point. Davis et al. [56] used the
first- and second-order boundary layer equations with thin shock layer assumption
and evaluated the second-order effects. Lees’s result cited above [46] is often used
to examine the validity of the experimental results because of the simplicity of his
formula. Experimental results are obtained by several authors [17, 54, 57, 58, 115].

Wake

Theoretical treatments [59] include many rough assumptions or empirical rela-
tions, since the flow field in the front part of the body is not perfectly solved as
shown above. Therefore the studies in this regime are mainly based on the experi-
ments [60—64] except those by the free molecule flow theory [63—65].

Drag

Drag force exerted by the flow on the body is calculated from the distributions
of surface pressure and skin friction. Therefore it is very difficult to evaluate it
theoretically, since there is no available theory about the surface pressure and skin
friction distributions, especially in the rear part of the body, as mentioned above.
Davis et al. [56] calculated the drag of a sphere by the first- and second-order
boundary layer theory, and a few investigations by the near free molecule flow
theory are reported [37, 66-68]. Recently Whitfield [69] obtained, by the kinetic
theory, an expression which is valid in a relatively wide regime between the con-
tinuum and free molecule limits. Many authors reported experimental results

covering wide Mach number, Knudsen number and temperature ratio ranges [70—
771.

§ 3. Monte Carlo Studies

Many studies by the Monte Carlo method about the rarefied gas dynamics have
been made since it enables us to treat problems which can not be otherwise solved
theoretically, and which are practically impossible to investigate experimentally.
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Relaxation phenomena [78-80], the relaxation of binary and ternary gas mix-
tures [81], shock wave structures [79, 82—-84], shock waves in binary gas mixtures
(85, 86], the formation and reflection of shock waves [87], Couette flows [80,
88, 89, 117], the heat transfer between parallel plates [80, 90, 91, 118] and the
rarefied flow through ducts or tubes [92, 95] are reported. Two dimensional and
axisymmetric problems, that is, flows past a flat piate, a wedge, a circular cylinder,
a cone and a spherc are mainly investigated by the technique developed by Bird
[94-97]. Recently Yoshizawa [95] obtained the results of the region very close
to the leading edge ol a liat piate on the assumption that the distribution function
defined in cach physical ceil is a product of function of ¥y component only and
that of ¥, component only. His method explicitly invoives the concept of the
evoiution of the probabiiity distribution, und so is distinguished from that of Bird.

The Monte Cario method is hard to be appiied to subsonic problems, since the
cifeet of the body extends far and wide, and then a very wide flow field is to be
considered. T herciore, the subsonic probicms treated by this method are restricted
o those with two symmetrical planes or the outer boundaries. Yasinsky [/79]
mvestgated the flow fields about the staggered cylinder and wing in subsonic flows,
and showed the appearance of a supersouic region in the latter case. Applications
of the Monte Carlo method to the reacting gas and the rarefied plasma were also
made [99, 100].

In the present paper the tlow fields over a flat plate, and around a circular cylin-
der and a sphere immersed in hypersonic rarefied tlows are calculated by a Monte
Carlo method which does not include the sampling in the velocity space and then
is similar to that of Bird, and the quantities are obtained which are important from
the practical viewpoint, that is, the pressure, the skin friction, the drag force and
the heat transfer. Experiments are also carried out in order to obtain the surface
pressure distributions of a circular cylinder and a sphere, and the drag of a sphere
in order to examine the Monte Carlo results.

The Monte Carlo method used in this study is discussed in chapter II, the ex-
perimental apparatus is described in chapter 111, the Monte Carlo and experimental
results are compared with those obtained by other authors and discussed in chapter,
1V, and the conclusion of this study is described in chapter V, respectively.

II. DESCRIPTION OF METHOD

One of the features of the Monte Carlo method is to directly simulate some
statistical process by generating the random numbers in obedience to the prob-
ability density function governing the process. Therefore, if the probability density
function is known, even if it is empirical and can not be written analytically, the
solution can be obtained. It is advantageous that it is unnecessary to write down
the equation system exactly describing the process.

In the rarefied gas dynamics frequently the gas is not regarded as a continuum
but is considered to be a set of gas particles in a so-called thermal motion obeying
some probability density function, in particular the Maxwell-Boltzmann distribu-
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tion function in the equilibrium, and is studied by the kinetic theory of the gas
particles. The application of the Monte Carlo method to the problem in the rare-
fied gas dynamics requires no effort to obtain the solution of the Boltzmann equa-
tion which is a nonlinear integro-differential equation and can not be solved easily.
Several works have been made by the aid of large electronic computers, and show
that the Monte Carlo method is of use in this field as described in the preceding
chapter. Of course the problem in the conventional gas dynamics can be treated
by this method in principle, which, however, demands a monstrous electronic com-
puter, and then is not practical.

The flow fields above a flat plate and around a circular cylinder and a sphere in
steady raretied supersonic lows are treated in this study, making use of a direct
sumuiation technique similar to that developed by Bird, which is more suitable for
the two-dimiensional and axisymmetric cases than others’. The method is proven
to be equivalent to the procedure to introduce the Bottzmann equation in Ref. 120.
I'ne steady solution is obtained as the non-steady solution at the time of infinity
by this method. ‘Iwo variauons of the method are used in the case of the two-
dimensional flow. One of them takes account of the etfect of the velocity com-
ponent along the third coordinate axis (Method A), but another does not (Method
B), the latter of which is applied to the cases where the Knudsen numbers are
small. (Suffix a is attached to the number of the formula for the Method A and b
tor the Method B in the following sections.) The minimum Knudsen numbers,
which are restricted by the total computer storage, are 0.025, 0.05 and 0.1 in the
cases of the flat plate, the circular cylinder and the sphere, respectively, making use
of a Hi1 AC 5020F computer with core memories of 65K words.

Before the calculation the following assumptions are made.

(1) Only binary collisions occur.

(2) Gas molecules are hard sphere molecules

(y=5/3,Acn™, yocy/ T, Pr=2/3).

(3) Molecules reflect fully diffusely from the body surface (fully accommo-

dated).

The procedure of the Monte Carlo calculation is explained in the following
sections.

§ 1. Introduction of Dimensionless Quantities

The x-axis is taken paralle] to the direction of the uniform flow, and the y-axis
perpendicular to it, and to the body axis in the two-dimensional case (Fig. 1).
Linear dimensions are nondimensionalized by the mean free path in the uniform
flow A,=(v 2 za*n.)"!, where ¢ and n_ are the diameter of the molecule and the
number density in the uniform flow, respectively, that is, the nondimensional
coordinates are defined as follows.

X=" y=2 z_Z
F A i,

Velocity components and speeds are nondimensionalized by the most probable
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‘Y

Uniform Flow

Two-Dimensional Flow

‘Y

Uniform Flow

Axisymmetric Flow
Fic. 1. Coordinate System

speed in the uniform flow c,_=+/2RT,., where R and T, are respectively the
gas constant for the gas considered and the temperature in the uniform flow,
for example, velocity components and thermal velocity components of a mole-
cule and the uniform flow velocity are expressed as follows.

v v v
Vy=-—02 V="V V= "2,

cmm Mo Cmoe

c c c u,,
Cy=-52, Cy=-v, C,= %, §= Y=

Moo cm°<> Cnoo Conoo

where S is the so-called speed ratio of the uniform flow, and is written in terms
of the uniform flow Mach number M as S=+/y/2 M.

Similarly, the number density, the temperature and the time are nondimen-
sionalized by the quantities in the uniform flow:

~ 5 t
5 T:**", =

oo oo tCoo
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where t,_=2,/Cn,. It is possible that the time is nondimensionalized by the
mean collision time in the uniform flow, which, however, can not satisfy the
relation that the linear dimension is equal to the product of the speed and the
time after the nondimensionalization.

§ 2. Uniform Flow

It is desirable but impossible in practice that the probability density function
with the six arguments Cy, Cy,Cz, X, Y,,and Z whose domains are respectively
from minus infinity to plus infinity be used in the calculation. Therefore, a
truncated probability density function is used. The truncation is performed by
the restrictions of the ranges of possible values of the arguments as shown below.
it is soon noticed that the third coordinate Z need not be taken into account,
because of the symmetricity of the flow with respect to a Z=const. plane in a
two-dimensional or axisymmetric flow. The domain with negative ¥ can be also
¢xcluded from the consideration in the present cases.

What characterize a molecule in the two-dimensional and axisymmetric flows are
its coordinates X and Y, and its velocity components Vy, ¥V, and V, (the last is
not used in the Method B). In the uniform flow, X and Y are uniformly distri-
buted in the space, and Vy and V, obey the Maxwell-Boltzmann distribution, on
the other hand V' is the sum of the thermal velocity component with the Mexwell-
Boltzmann distribution and the uniform flow velocity.

I'wo-Dimensional Case

The ranges of possible values of X and Y are respectively restricted from-4 to
A and from O to A. Three boundaries X=—A4, X=A, and Y=A determined by
the value of the parameter 4 are to be located so far from the body that the dis-
turbance from the body can not arrive at them. This condition is often not satisfied
except at the upstream boundary X=—A, because the limitation of the computer
storage does not permit a very large value of 4. However, the boundaries are
considered to affect only some region which is very narrow, and then the region
near the body, which is most important, is scarcely affected by the boundaries. The
range of possible values of Z can be taken arbitrarily, because it is unimportant as
discussed above. It is selected from —1/2 to 1/2 so that the volume of the unit cell
is equal to unity.

The division of the flow field (—A<X<A,05Y< 4, —1/2<Z<1/2) by the
cells, each of which is a cube with the volume of unity makes 242 cells (see Fig. 2a).
Let N, be the total number of the molecules initially generated, and then the
number density in the uniform flow or the number of the molecules initially assigned
to each cell is

_ N

=g (2-1)

oo

The coordinates of a molecule in the (X,, Y,) cell (a cell is distinguished by the
coordinates of its left lower corner) are given as follows.

This document is provided by JAXA.



412 M. Takagi

y AY
11 T
z |]] X
0 ~-A 0 A
(@)
TY
y4
Fic. 2. (a) Two-Dimentional Flow Field
- (b) Axisymmetric Flow Field
<«
fss}
o
0 ®
X=X,+R, (2-2)
Y=Y.+R,, (2-3)

where R, and R, are random numbers uniformly distributed in the range 0 to 1.

Axisymmetric Case
The flow field is cut by the sector with the apex angle « in the Y-Z plane (see
Fig. 2b), and its cross sectional area is A2«/2, and the area of the hatched part
is (2B+1)a/2. If the same division in the X-Y plane as in the two-dimensional
case is made, the number of the molecules contained in a sectorial slice is N,/2A.
Therefore, (2B+1) No/2A® molecules are assigned to the hatched (X,, B) cell,
and the number density in the uniform flow is
_ N ,
n,= YD 2-19
The value of a can be taken arbitrarily, and is equal to two in this study so that
the volume of the cell just adjacent to the center line is unity.
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It may arise that (2B+1)N,/2A4* is not an integer, because the upper limit
of N, is decided by th computer storage. In that case it is determined by the second
scheme in § 8 how many molecules are to be generated in obedience to the proba-
bility (2B+ 1)N,/2A4°.

If one molecule is determined to belong some (X,, B) cell, its X-coordinate is
decided by (2-2), but Y-coordinate is not given by (2-3), since the width of the flow
field increases proportionally to Y and therefore the number of the molecules is also
a linear function of Y. Let aY be the probability density function of Y-coordinate

B+
of one molecule contained in the (X,, B) cell, and then f 1 aYdY =1 from the

B
definition. Therefore, the value of the constant a is 2/(2B+1). By the first scheme

in § 8,

2
2B+1

JmﬁuY:Rb and then S,=vBF QBT DR,
B

After all it is seen that in the axisymmetric case (2-3’) is used instead of (2-3) in
order to obtain Y-coordinate of a molecule in the (X,, Y,) cell.

Y=+Y+(2Y,+ DR, (2-3')

Velocity Components

The thermal speed C obeys the Maxwell-Boltzmann distribution function (2—4).
Py=KC?exp (—C? (2-4)
P, has the maximum value at C=1, then,

Py

PMmax

=C?exp (1-C?). 2-5)

How to generate the random number which obeys (2-5) is discussed in § 8 (second
scheme). The range of possible values of C is restricted from zero to three in this
study. Once the value of C is found, three thermal velocity components are
calculated as follows, because the distribution of the direction of the thermal
velocity is uniform in the space.

Cx=Csin nR, cos 2zR;
Cy=Csin 7R, sin 2zR,; (2-6a)
CZ == C COS ﬂ.‘Ri

where R; and R, are rectangular random numbers in the range O to 1. Three
velocity components of a molecule in the uniform flow are, then,

Vy=S+Cy
Vy:CY (2—7a)
Vz=C,y
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In the Method B the terms with the argument R; in (2—6a) are respectively
replaced by their mean values in the range of R, from 0 to 1, that is, (2—-6b) and
(2—7b) are used to obtain the velocity components of the molecule in the uni-
form flow.

Cy= EC cos 2nR;

i (2-6b)
C, = 2Csin 2R,
T
Vy=5+Cx (2-7b)
Vy=Cy

Thus, the effect of the velocity component along the third coordinate axis is neg-
lected, and then it is implicitly assumed that it scarcely changes from that given
by the third equation of (2—6a) for the Method B to be valid.

§ 3. Insertion of Body

When N, molecules are distributed into the flow field, the flat plate with the
leading edge at (X=A4—1/Kn, Y=0) and the trailing edge at (X=4, Y=0) or
the circular cylinder or the sphere with the center (0, 0) and the radius 1/2Kn is
inserted into the flow field. The length of the flat plate parallel to the uniform
flow or the diameter of the circular cylinder or the sphere is taken as the character-
istic dimension in defining the Knudsen number.

The molecules found inside the body are omitted from the calculation, and the
cells perfectly wrapped in the body are considered to be lost. The volumes of
the cells which are partly cut off by the body are recalculated.

§ 4. Calculation of Collision

There appears the region where n is large and 2 is small in the neighborhood
of the body, because of the collisions between the molecules and the body. The
cells there may be divided into smaller cells, since the collisions are considered to
occur between the molecules apart by the order of magnitude of 2 from each other
(see the introduction of (2—11)), and in order to obtain more precise information
about the flow.

In this study a cell is divided into two or four smaller cells, when it is necessary,
as shown below.

n<n, kept intact
m<a<n, divided into two
n,< 7 divided into four
where n=1.2,n=2.4 for the flat plate
n,=1.5,n,=3.0 for the circular cylinder and the sphere
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The division of the cell adjacent to the body surface is very laborious in the case
of the circular cylinder or the sphere, because the function f(X) representing the
body surface is curved. In practice no division into four cells may occur in the
case of the flat plate. In the Method B the divisions of the cell are not program-
med, so as to spare the computer storage. Therefore, the Method B is less strict
in case that the density becomes very high.

The molecular collisions are considered to occur simultaneously in all cells and
successively in a cell. The calculation of the collisions is made as follows. Firstly,
it is decided whether or not collisions can occur in the cell considered in an appro-
priate time interval 4¢, making use of random numbers. Secondly, if the molecules
to collide are found, their velocity components after the collision are evaluated by
using random numbers, and then the molecules are moved by the distance of the
product of the velocity after the collision and the time interval 4¢. The molecule
which undergoes no collision is moved by the product of its intact velocity and 4¢.
Finally, it is investigated what cell contains each molecule, and all molecules are
re-arranged for the next calculation, some cells are divided as mentioned above if
necessary, and the next collision calculation is made. The repetition of this process,
which is sometimes called the collision cycle, produces a macroscopically steady
condition. Once the steady condition is established, the sampling of the data is
begun (see § 6 and 7).

The time interval 4t should be smaller than the characteristic time 7 s=1/u,, where
I is the characteristic dimension of a cell, since the presence of the collisions and
the velocities after the collisions are calculated on the basis of the condition at
some instant. The following relation is obtained in a nondimensional form.

fi< ffzo( ;) (2-8)

§ 4-1. Choice of Pair of Molecules to Collide 1
The number of the times of the collision taking place per unit time in the cell

with the volume ¥V and the number of the molecules N is [/0]]
n N N ¢

Rop=L0 =N €

2 2 2 2

where v and ¢ are the collision frequency and the mean thermal speed, respectively.
The mean time 7, necessary for one collision is, therefore,

2 2
=t 2-9
TN T 29
The probability P, in which one collision takes place in the time interval 4¢ in that

cell is considered to be given as (2-10).

_ 4t _ At _ NéEdini

P,
Te #, 2

(2-10)
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The presence of a collision can be examined by comparing P, with a rectangular
random number R, in the range O to 1, that is, a collision occurs in that cell if P,
is equal to or greater than R, (second scheme in § 8). If it is true that a collision
occurs in the cell, a collision pair (two molecules to collide with each other) can
be chosen as shown below. The probability P,, in which any two molecules col-
lide with each other is proportional to the relative speed Vjp of them from the
analogy of (2-9) and (2-10) neglecting the difference between their coordinates.
(Recall that the dimension of a cell, and then the distance between two molecules
arbitrarily chosen in that cell are always smaller than the mean free path there
at least in the Method A.) It is easily seen that the collision pair can be chosen
by the probability (2-11),

P Vo,
Pu Ve (2-11)
P'mmax Rmax

where Vj_ _ is the maximum value of V -s for all the combinations of the mole-
cules in the cell.

§ 4-2. Choice of Pair of Molecules to Collide 11

The way mentioned in § 4—1 is strictly theoretical, but it increases the com-
plexity of the calculation and demands the superfluous computer storage to cal-
culate and store ¢ at each cell beforehand. The next way proposed by Bird is
simpler.

The time required by the collision of two molecules which are chosen arbitrarily
in the cell and whose relative speed is ¥V is analogous to (2-9), that is,

Fo= 1 (2-12)

_ 41 _ NV dti (2-13)

P,
%, 2

A collision pair can be chosen by a single step according to this criterion. This
criterion is always used in the Method B.

§ 4-3.  Selection of Time Interval At

The probability P, in (2-10) or (2-13) can not exceed unity in principle.
Rewriting (2-10),

Then,
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Finally (2-14) is obtained for the above inequality to be valid for all the cells.

s VE (2-14)
(NAY ) o

where (N#V T') 1y is the maximum value of (Nﬁx/ —f)-s at all the cells in the flow field,
and can be inferred beforehand for the given problem. The value of 47 may be
so selected as to satisfy (2—8) and (2-14).

The value of 47 can also be so decided that each molecule in the cell whose
number of the times of the collision may be maximal undergoes at most one colli-
sion. If P, which is the collision frequency rather than the probability in this
case, is greater than unity, the next collision can occur in obedience to the follow-
ing expression.
= 4?"?9_1

P,

~

Teq

Thus, the possibility of the collision remains in the cell, until P, becomes negative.
The inequality for A7 is

se¥r 1 (2-15)
2 (ﬁ\/T)max

The value of 47 is so selected as to satisfy at least (2-8) and (2-15) throughout
this study.

§ 4-4. Velocity Components after Collision

The velocity components after a collision are given by the following formulae,
since the momentum and the energy are conserved throughout the collision [102].

.,r,= VX, +&02

Ve =Vy, +92

V,z, = Vz, +¢0

Vie=Vx,—&R2 (2-16a)
ro=Vy,—12

V,Zn: VZ,"'CQ

Q= E(Vz,— Vxl) + 77( VY," Vyl) + C( Vz,,"' Vzl),

where &, 7, { are the direction consines of the impact line of the molecules and
written as follows.

§=sin 7R, cos 2zR;
p=sin 2R, sin 2zR, (2-17a)
{=cos R,

Here again R, and R; are rectangular random numbers in the range 0 to 1.  Simi-
larly, in the Method B,
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Vle = VX1 + SQ
r=Vr (2-16b)
Vi,=Vx,—&0
;'2: VYa—W‘Q
QZS(VXE—“ Vxl) + 7)(VY2““ VY,)
&=cos 2nR; (2-17b)

= Sin ZTCRi

are obtained.

Equation (2—-17) means that the distribution of the direction of the impact line
is uniform in the space, which is valid in case of the collision of the hard sphere
molecules.

§ 4-5. New Position and Velocity of Molecule

Two-Dimensional Case

A molecule with the velocity components V4, V', and V, at the coordinates X,
and Y, at some instant has the same velocity components at the coordinates X, and
Y,, given by (2-18), after the interval 47.

X,=X,+ Vg4

. (2-18)
YZ — Yl + VyAt

Axisymmetric Case

The directions of the Y-axes before and after the motion of the molecule are
different, therefore the velocity components are also different. The following rela-
tions about the new coordinates and velocity components of a molecule are obtained
from Fig. 3 which shows the motion of a molecule in the Y-Z plane.

X,=X,+4iVy
Y, =V (Vy i+ Y )+ (V , 47)
o Y 4V di ,
—tan~! 1 Yy 2-18
Lo 7 (2-189

Vy,=Vy cos o+ Vy sing
Vz,=Vz,sinp—Vy coso

It is the reason why the Method B can not be applied to the axisymmetric case
that Vy, is calculated not only by VV;, but also by V,,.

§ 5. Boundary Conditions

Three planes X==*A4, Y=A are sinks of the molecules. In other words, when
a molecule passes through one of them, the molecule is omitted from the calcula-
tion. Y=O0 plane is the one of the specular reflection in the case of the two-
dimensional flow (In the case of the axisymmetric flow Y-coordinate of a molecule
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N2 v,
A\RCS \
VY&
VY| AT"Y‘
Vi,
A\ Yag
Yi
’L’L
o
Z vz At

FiG. 3. Molecular Motion in Y-Z Plane in Axisymmetric Flow

is always non-negative by the second formula of (2-18")).

The molecules in the uniform flow move along the X-axis in the interval 47 by
the distances, the mean value of which is equal to the product S47. In order to
maintain the inflow of the uniform flow, the molecules with uniform flow velocity
components, given by (2-5) to (2-7), are generated at every collision cycle as

shown below.

Two-Dimensional Case

N,

N.t: —SA'Zt
2A4?
X=—A+S4iR,
Y=Y.+R;
Axisymmetric Case
_2Y.+1 .
N;= YU -N,S4it
X=—A+S4iR,

Y=Y+ (Y, F DR,

(2-19)

(2-19)

In the above formulae N, is the number of the molecules to be generated in the
region ¥, <Y<Y,+1 (Y,=0,1,--.,4—1), and X and Y are coordinates of a

molecule determined to be generated.

If the molecules reflect fully diffusely from the body surface, the reflected mole-
cules have the speeds obeying the Maxwell-Boltzmann distribution (2-20) at the

body temperature T,
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2 2
Pv _ € exp (1_ ¢ ) (2-20)
PMmax Tb Tb

The range of possible values of C is taken from zero to three times square root

of the body temperature (0<C< 3V T;) A molecule reflected from the body sur-

face has the velocity components given below.
In the Method A,

Vy=C sin zR; cos (xR ;+ )
Vy=C sin zR, sin (zR;+ ) (2-21a)
V,=C cos nR;.

In the Method B,

Vy= —2—C cos (zR;+9)

" (2-21b)
V,=2Csin (zR,+9).
T
Y ) (0.9 .
§=tan ("—gg"")» 2-22)

where f(X) is the function representing the body surface (see Fig. 4).

It is to be noted that the body temperature T, must be not so different from the
temperature 7., in the uniform flow in the Method B, since the distribution of V',
is assumed to undergo a little change throughout the flow field.

%)

f(x)

0

Fig. 4. Some Rejationships at Body

§ 6. Number Density, Macroscopic Velocity and Temperature

Once the steady condition is established, the sampling of the macroscopic quan-
tities are started. The sampling is made at intervals of 10 to 20 times 47 so as
not to be affected by its foregoing step, until the desired accuracy is obtained.
Here, it is implicitly assumed that the macroscopic properties are not so altered
after the establishment of the steady state and the process to obtain some quantity
as a mean value wih respect to many molecules in a cell at a time can be replaced
by the similar one with respect to the sum of the molecules at different times whose
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number is not so many at a time. The former process is the definition of a macro-
scopic quantity and the latter is used in the Monte Carlo method, since the total
number of the molecules is limited by the computer storage.

The number density is calculated from the number of the molecules in that cell,

i=—"_  m=3'N, (2-23)
n,V.m, i=1
where N, is the number of the molecules in that cell at j-th step of the sampling
and m, is the number of the steps of the sampling, and m is the total number of
the molecules in that cell at all the steps and is sometimes called the sample size.
The macroscopic velocity components are

— 1 »
Ve=— 3 Vx,
m i=1
Vo=t 3 Vs, (2-24)
n i=1
— 1 m
Vz:—— Z VZi
m i=1
The temperature is obtained from the formula 3RT =¢?%;
1=2{L 2 ornvp-n-ri-ni. e
m i=1

In the Method B, 2RT=¢* since the degrees of freedom of the molecules are
diminished to two;

m

T= Vi+Vy)—Vi—V2. (2-25b)

1
m i=1
§ 7. Physical Properties on or near Body

Physical properties on or near the body are calculated as follows after the estab-
lishment of the steady state.

§ 7-1. Slip Velocity

The slip velocity at the surface of the flat plate is given by the macroscopic X
velocity component in the cell just adjacent to the body.

V= pas (2-26)

The slip velocity evaluated by (2-26) may be overestimated, since molecules apart
from the body by the order of magnitude of the mean free path in the uniform flow
are included in the summation to obtain (V x),,.

§ 7-2. Surface Pressure

The surface pressure on the body is calculated from the changes in the momen-
tum of the molecules which collide with the body, that is,
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p= Z {(v,— %) cos 0 — (v, —vy) sin 6},

At Ads
where 6 is the angle which decides the position on the surface and 4s is the surface
elements at 6 (see Fig. 4), and m and 4¢, are the mass of a molecule and the time
interval in which the sampling is made, respectively. The above summation is
taken over the molecules colliding to 4s. A pressure coefficient C,, is defined by
(2-27).

Co—__ P _ 1P
T 2pu. | S p
N = * (2-27)

S — Ve—V/, Vy—V4 g
NSZAE 2 {(Vx ycos 86— (Vy ¥) sin 6},

where N is the number of the molecules involved by a volume of unity in the
uniform flow. Another pressure coefficient C,, defined by (2-28) is also cal-
culated, which is the ordinary definition of the pressure coefficient.

— 1
Coee P=Po o 1 2.928
"= D)t nTg ( )

Other values of C,, and C,, are calculated by the density and the temperature
in the cell just adjacent to the body.

1 .=
Cpl :F(nT)ab (2-29)

1 s
sz:‘ST(nT— Dasy (2-30)

Two values of C, or C,, are in general not same, since there may exist the
density and temperature gradients near the body surface. In the following sections
the values of C,, and C,, are given by (2-27) and (2-28), unless otherwise noted.

§ 7-3. Skin Friction and Drag

The skin friction exerted on the flat plate or the drag force on the circular
cylinder and the sphere is given by the changes in the X component of the momen-
tum of the molecules which collide with the body;

— ).

The above summation is taken over the molecules colliding with 4s with respect
to the skin friction, and total body surface to the drag force, respectively. The
skin friction coefficient C, and the drag coefficient C, are defined by (2-31) and
(2-32), respectively.

d__— 2 s w.Vp. (2-31)

Cf: 2 - 2 AT A &=
1/2)puds  N,S4i A5 5
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d 2 ,
= Ve—V5h), 2-32)
(1/2p s,  N.S'ig3, & Va= Vo (

D..’__‘_'

where s, is the characteristic area of the body and is the cross sectional area per-
pendicular to the uniform flow of the circular cylinder or the sphere.

§ 7-4. Heat Transfer

The heat transfer per unit area and unit time to the body is obtained from the
changes in the kinetic energy of the molecules colliding with the body.

m 2 2 2__ a2 /2 2
= gdsdi, 7 U= 2

A heat transfer coefficient C, is defined by (2-33).

g
C, =
§ pmumcp(T “"Tb)

(2-33)

T 1 (V 2 + V2 . V/B____ V,2~— V/Z)
TN S(To b)Agdi ﬁ‘; Y z X Y z/s
where ¢, and y are the specific heat at constant pressure and the specific heat ratio,

respectively. T, is the stagnation temperature of the uniform flow and is given
by (2-34).

To:1+7’;1_M2:1+J_“_1“52 (2-34)
2 r
If T, is equal to T, C;, defined by (2-35) is used
Ci=— Ll S VAV VIRV, (2539

yN.ST 4547, 7

§ 8. Generation of Random Number

Many kinds of the random number are used in the Monte Carlo method. It is
important what type of the rectangular random number is generated, since any
sort of the random number is produced from the rectangular random number as
shown below [103, 104].

§ 8—1. Rectangular Random Number

Several rectangular random number tables are already published [105, 106].
However, its application is not practical, since it requires superfluous computer
storage and its number of the terms is small. Therefore, the random number
usually is generated by the use of appropriate arithmetic expressions. In that
sense it is distinguished from the real random number, and is called the pseudo-
random number.

The congruential method employed in the present study consists of the follow-
ing formulae.
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Ryvi=— Fain Fau=FatFopd (mod M), M=2%, (236
where M is the modulus and F, and F, are given initially. A sequence of rectangular
random numbers in the range O to 1 is obtained by (2-36).

A number R,,, has a strong correlation with R, in this method. So R,,,, is used
in the next place of R; in this study.

§ 8-2. Random Number with Specified Distribution Function

The random number §; obeying some probability density function can be made
of the one R, uniformly distributed in the range O to 1, in the two ways below.
a) There is a theorem that if the random variable & has a probability density
function f(&), the distribution of the random variable

= f 6f(x)dx (2-37)

is uniform in the range O to 1. If the above integration is executed and & can be
described as a function of 7, that is £§=¢(y), S;=¢(R;) is the desired random
number which obeys the probability density function f(£).

b) When £ is not written as an explicit function of 7, the routine described below
is available. If the range of possible values of & is unbounded on one or both sides,
it is necessary to transform f to a corresponding truncated distribution. It is as-
sumed that the range of possible values for the truncated distribution is the interva
a to b. The transformation of variables

E—a
b—a

7]:

produces a random variable 7 with the probability density function

F(y)=(b—a)fla+(b—a)y]
Let F_,, be the maximum value of F(»), and then the probability density function

’;"‘lf[a+(b-—a)y]

max

is contained within a unit square.
If two values of the rectangular random number R,,_; and R,; are chosen, and

b—a

max

Ru< fla+(b—a)R;, ] (2-38)

is valid,

Si=a+ (b—“a)Rzi—1 (2-39)

is the desired random number.
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It is to be noted that the scheme above is equivalent to the calculation of the
integral (2-37) by the Monte Carlo method.

§ 8-3. Chi-Square Goodness-of-Fit Tests

It is necessary to test whether the pseudo-random numbers generated in § 81
and 8—2 imitate the real random numbers. The chi-square goodness-of-fit tests
[107, 108] shown below are made in this study.

The range of possible values taken by the pseudo-random numbers is divided to
k classes, and let f, be the number of pseudo-random numbers belonging to the
i-th class. 1f the real random numbers are considered, their number in the i-th
class is known by p; which is the value of the integral of the probability density
function from the lower to upper Lmits of the i-th class. Let m be the sample
size, and the value of y* is calculated by (2-40).

= U=y —mp, (2-40)

it can be tested whether the pseudo-random numbers imitate the real random num-
bers by comparing the value of y* with the values of the chi-square distribution
with k-1 degrees of freedom for the level of significance « and the confidence
level l-a. If

Bl —a) <P <xi-1lc) (2-41)

is valid, the pseudo-random numbers are acceptable. The value of « is selected
to be 0.05 in this study.

It is to be noted that the value of 77, is selected to be greater than five and that
the classes where #7,>>5 is invalid may be got together to one new class.

Test of Periodicity of Rectangular Random Numbers
When the (L + 1)-st pseudo-random number coincides with the i-th (1< <L),L
and (L—i-+ 1) are called the length of the interval of aperiodicity and the length of
period respectively. Let L, be the former with the initial condition (¥, F Vs and
1 ¢
= L2
Ui M 2T

may have the chi-square distribution with 2¢ degrees of freedom [/03], where ¢ is
the number of the times of the test.

The random numbers generated by (2-36) are reported to have a period ap-
proximately equal to 2.5Xx10'3. It is ascertained that at least the period is greater
than 10% in this study.

Test of Uniformity of Rectangular Random Numbers
In the case of the rectangular random numbers, (2—40) is rewritten into (2-42).

R

I

x g (fs—m)? (2-42)

>
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FiG. 5. Uniformity of Rectangular Random Numbers
(1-Dimensional)

The range 0 to 1 is divided into 20 classes and the values of 7 are selected to be
50, 500, and 5000 (Fig. 5). The values of 4> are between 13:(.95)=10.12 and
12(-05)=30.14 in all the cases.

Two-dimensional test of rectangular random numbers is also employed [109].
The unit square is divided to k! classes and pairs of random numbers are generated.
Then,

1 k l . 1 k 1 N 2
r=t 3 5y~ —-L ¥ (Zn,——lm) (2-43)
m i=1j=1 Im i1 \izx
and
1 & U 2 k[l A\ 2
A=t 3T Y (o —y— 2 z(m,—lm) (2-44)
m i=1j=1 Im 51 \j=

should have the chi-square distributions with k(/-1) and (k-1) (I-1) degrees of
freedom, respectively.
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TaBLE 1. Two-dimensional Test of Uniformity of Rectangular
Random Numbers

fi =1 2 3 4 s ¥
J

=1

64 81 70 79 92 386
73 81 69 82 86 391
74 81 87 84 81 407
67 92 82 80 82 403
93 75 72 80 93 413

N A W N -

A result under the condition of =35 and [=5 is shown in Table 1, where 7 is
80. The calculated values of ,* and ,y* are 18.29 and 17.03 respectively, and they
are between y3,(.95)=10.85, »2,(.05)=31.41 and y},(.95)=7.96, 3},(.05)=26.30,
respectively.

Thus, there is no reason to state that the pseudo-random numbers generated
by (2-36) do not imitate the real rectangular random numbers.

Test of Pseudo-Random Numbers Obeying (2-5)

The range taken by the values of the thermal speed C is restricted from 0 to 3,
and is divided into 21 classes; 0-0.2, 0.2-0.3,...... , 2.0-2.1, 2.1-3.0. A result
with the sample size of 500 is shown in Fig. 6, and the value of y*is 25.5, on the
other hand y3,(.95)=10.85 and ¥3,(.05)=31.41. Therefore, the pseudo-random
numbers generated by (2-5) can be considered to imitate well the real random
numbers in obedience to the Maxwell-Boltzmann distribution.

§ 9. Values of Necessary Parameters for Calculation

Several parameters, mentioned in the preceding sections, are to be determined

-l =
X
Y fi=500
0.1 1 x?*=255
Maxwell-Boltzmann
Distribution
0
0 1 2 3
C

F1Gg. 6. Random Numbers with Maxwell-Boltzmann Distribution
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before the practice of the calculation. They are the total number of the cells 242,
the total number of the molecules initially generated N, the time interval of a
collision cycle 47, the time when the sampling starts z,, and the number of the
steps of the sampling m,. The ranges of their values made use of in this study
are summarized as follows.

242=200—1250
N,=5000— 7500

4i=0.05-0.1
1,= 4047 — 10047
m,=20—40

III. EXPERIMENTAL APPARATUS

A low density wind tunnel at the Institute of Space and Aeronautical Science,
University of Tokyo, is used to investigate the surface pressure distributions of a
circular cylinder and a sphere, and the drag of a sphere in rarefied supersonic flows.

S 1. Surface Pressure Distribution

The surface pressures of a circular cylinder in rarefied supersonic flows are
measured, making use of a model made of brass. The experimental technique in
the present study is similar to that in Ref. 55. The diameter of the model is
3 mm and that of the pressure hole is 0.15 mm. A Pirani pressure gauge head
for the Autovac 3294B vacuum gauge is directly attached to the model to avoid
the error in the pressure reading induced by the tubing. The model is attached
to a rotation mechanism and the value of 6 is varied from 0 to 180 degrees (see
Fig. 7a). Measurements are made at intervals of 5°. Two nozzles are put to use
at the stagnation pressures of 0.6 and 6 Torr, respectively, the former of which
turns out a flow with M=3.0 and Re;=9, and the latter M=4.1 and Re,;=53.

Fi6. 7. Experimental Apparatus (a) Pressure Distribution
Model (Circular Cylinder)
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e

IG. 7. (b) Pressure Ditribution odel (Sphere)

gowelr g/hc}?qtstone
upply| ridge
Y VTVM g
Galvano-
Voltage meter
Standard
Gauge
Head
Power Supply Metronix 521A
VTVM Hewlett Packard 410C
Voltage Standard Yokogawa Elec. GOS-31
Galvanometer Yokogawa Elec. D2

Fi1G. 7. (¢) Schematic Diagram of Pirani Gauge

The effect of the thermal transpiration to the pressure reading is not taken into
account, since the stagnation temperature is equal to the body temperature, ap-
proximately.

The surface pressure of a sphere is also measured by the method similar to that
in Ref. 55. A Pirani gauge head (a fine tungsten wire) is installed in the model
made of plastics with the diameter of 10 mm (Fig. 7b). The electrical circuit
controlling the gauge head is diagramed in Fig. 7c. A constant-temperature opera-
tion of the Pirani gauge is employed here, that is, the pressure is related to the
voltage V' applied by a variable power supply to the Wheatstone bridge and that
V. at a very low pressure (V,=1.2 volt in the present case). The values of V and
Vi, are read to 0.1 mV by a VTVM and a variable voltage standard. The calibra-
tion curve of the Pirani gauge is shown in Fig. 7d. A simple conical nozzle is
used at po=0.6 Torr, and the flow condition is M=2.9 and Re,=32.

S 2. Sphere Drag

The sphere drag is measured by the method similar to that by Ashkenas [70, 72].
This investigation is made mainly by Dr. Hinada and Mr. Terada [77]. A sphere
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Fic. 7. (d) Calibration Curve of Pirani Gauge

FIC. 7. e) Sphere Drag Mbde )

model is supported by a fine wire made of nyion 0.147 mm in diameter. The
models are made of plastics, and their diameters are selected to be 5.5, 10, 13 and
20 mm, in order to study the effect of the Reynolds number. When the model is
immersed in a rarefied supersonic flow, it is moved toward downstream by the drag
force and the supporting wire is deflected (see Fig. 7e). The magnitude of the
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drag force is calculated from the deflection angle of the supporting wire and the
mass of the model. An additional mass is attached to the model by the aid of a
fine wire in order to set the deflection angle in a favorable range, since the plastics
used here are too light. Of course the additional mass is located out of the uniform
flow. The Mach numbers of the uniform flow are selected to be about 2 to 3.5.
The drag force exerted on the supporting wire itself is measured and subtracted
from the value obtained above, since it can not be neglected in the cases of small
models.

1V. RESULTS AND DiIscuUSSION

Results obtained by the Monte Carlo method and by the experiments concerning
the velocity, density, temperature, pressure and heat transfer profiles and so forth
are shown in the succeeding figures, and they are compared with other results and
discussed in the following sections.

§ 1. Flat Plate

The flow field on a flat plate placed parallel to the direction of a uniform flow
when S=5 and T, =1 is investigated by the Method A of the Monte Carlo method
with the criterion to select the collision pair discussed in section 4—1 in chapter II,
and afterwards it is again investigated by that with the criterion in secton 4-2.
The Method B with the latter criterion is applied to the case where M=10 and
T,=1.

Comparison of Two Criteria

Figs. 8 and 9 show the results calculated making use of the criteria in sectoins
4-1 and 4-2, respectively, about the flow field when S=5 and T,=1. The values
ot the mean thermal speed in all the cells are renewed at intervals equal to those
in case of the sampling steps, when the former criterion is applied.

It is easily seen that there are no appreciable differences in the equi-speed lines,
equi-density lines and equi-temperature lines, respectively, in the two figures. It
may indicate that the mean value of the relative speeds scarcely differs from the
mean thermal speed in a cell. Therefore, the simpler criterion in section 4-2 is
employed below.

Flow Field over a Flat Plate, S=5 and T,=1

The equi-speed lines (Fig. 9a) show that the flow in the neighborhood of the
body is decelerated toward the body and the downstream, since the speed of the
molecule which has collided with the body is diminished from about five (uniform
flow velocity) to the order of one (square root of the body temperature), and the
number of such slow-speed molecules increases toward the body and the down-
stream. Therefore these lines may be located closer to the body because the
molecules that have collided with the body possess larger speeds in the case where
the body temperature is higher than in the present case.

The density profile consists of a peak at X=5 and Y =0, a ridge running from
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the peak and a valley between the ridge and the body (Fig.9b). It can be ex-
plained as follows. The peak is formed by the molecules decelerated and gathered,
where the tangential velocity component 7 is large enough to neglect the effect
of the normal component Vy. As the flow is decelerated to some extent, the mole-
cules are pulled apart from the body by the normal velocity component, whose
profile is shown in Fig. 9c. It justifies the above inference that the position of the
ridge in Fig. 9b almost coincides with that in Fig. 9c. Tt is apparent that the flow
field is divided into two types. One of them (X<5) does not include the valley
and another (X>5) does. The former is considered to be the kinetic region, and
the latter is the continuum region which inctudes the shock layer and the boundary
layer. The ridge may be steepened to a Rankine-Hugoniot shock in the down-
stream region. The heights of the peak and the ridge may be low and the location
of the latter may be farther from the body as compared with the present case when
the body temperature is higher than unity. Similar patterns of the density profile
are also reported in the results obtained by the electron beam densitometry by
Joss et al. [27] and Lillicrap et al. [29].

The temperature profile is shown in Fig. 9d, and indicates the presence of a
peak and a ridge. The temperature peak is at almost the same place as the density
peak. However, the temperature ridge is nearer to the body than the density ridge.
This can be inferred from the following discussion. The high kinetic energy
possessed by the molecules in the uniform flow is converted to the heat energy
as they are decelerated and the temperature increases monotonically from the uni-
form flow value to its peak and the number of the molecules that have collided
with the body, whose kinetic energy is low as compared with that of the molecules
in the uniform flow, increases and the temperature decreases in the region very
near to the body on the downstream side of the peak. On the other hand, the
temperature may increase monotonically as Y decreases at any fixed value of X
in the case where the body temperature is higher than the adiabatic wall tempera-
ture. The difference in the locations of the ridge in the density and temperature
profiles is caused by the fact that the former is determined by the normal velocity
components of the molecules and the latter by the speeds of the molecules.

Fig. 9¢ shows the macroscopic speed, density and temperature in the cells just
adjacent to the X-axis (Y,=0). The distribution of the macroscopic speed can
be considered to be equal to that of the tangential velocity component V x, since
the normal velocity component ¥y is very small as shown in Fig. 9c. A few points
on the downstream side show a little different tendency as compared with others,
since the downstream boundary exists and the molecules entering the flow field
through it are neglected. If the body temperature is higher than unity, the dis-
turbance of the body extends further upstream and the curves may be shifted to
the left, and the density may be lower and the temperature higher as a whole,
respectively.

The results shown in Fig. 9 agree at least qualitatively with those by Huang et al.
with the discrete ordinate method [7/4] and by Vogenitz et al. with the Monte Carlo
method [96].
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Flow Field over a Flat Plate, M=10 and T ,=1

The equi-speed lines show that the region subject to the disturbance by the body
is narrow as compared with the preceding case (see Figs. 10a and 9a), since it is
determined by the ratio of the uniform flow velocity to the mean thermal speed of
the molecules with the Maxwell-Boltzmann distribution at the body temperature,

whcih is proportional to S/«/ E

’—2 =2
VitV M=10 (5=9.13)
Tb=]

|

Fic. 10. Flow Field over a Flat Plate
(a) Equi-Speed Lines
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(d) Physical Properties along X-Axis

The density profile is shown in Fig. 10b and also consists of a peak, a ridge and
a valley, of which the last is not seen in the figure and is very near to the body.
The heights of the peak and the ridge are greater than in the preceding case, be-
cause of the higher value of S/\/T,,.

The temperature profile shown in Fig. 10c indicate the higher temperature, sicne
the stagnation temperature in this case is higher than in the preceding case. Of
course it decrease as Y decreases in the very near region of the body (it is not seen
in the figure) in the region downstream of the peak.

The physical properties, that is, the macroscopic speed, the density and the

temperature along the body are shown in Fig. 10d.
The results given by Fig. 10 agree well with those by Huang et al. [15] with the

discrete ordinate method for the same flow condition.
Surface Pressure

The surface pressure distributions on the flat plate are shown in Figs. 11 and 12.
The open and solid symbols correspond to the cases where S=5 and T,=0.091T,,
and M=10 and T,=0.029T,, respectively. The rarefaction parameter V. , is

defined by the following expression.
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where C is the so-called Chapman-Rubesin coefficient and is equal to unity in the
present cases, and Re; is the Reynolds number defined by (4-2).

Relz_@*’“_w)i, (4-2)
Hoo
where x” means the distance from the leading edge of the flat plate to the center
point of the surface element 4s.

The pressure coefficient C,, is given as a function of the rarefaction parameter
in Fig. 11. It is seen that the pressure coefficient has a maximum value in the
neighborhood of V', ,=1, and it is scarcely affected by the Mach number and the
temperature ratio in the region for smaller values of 70‘,,1 (downstream side). On
the other hand, it is affected by them in the region for larger values of V., ,
(upstream side). The present results agree qualitatively well with those by other
theoretical studies as shown in the figure.

The surface pressure distributions are so re-arranged as to be easily compared
with the strong interaction theory in Fig. 12. The values by the strong interaction
theory [3] and the free molecule flow theory [/2] are given by (4-3) and (4—-4),
respectively.
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where  is the hypersonic interaction parameter and is defined by (4-5), and ¢ the
density ratio across the Rankine-Hugoniot shock defined by (4-6).

- s VC 4-5

=M e 43

_ =DM +2 (4-6)
(r+1M?

It is seen that the pressure varies from the value given by the strong interaction
theory to that by the free molecule flow theory as the rarefaction parameter incrases
as expected. It is interesting that the pressure in the case of S=5 comes nearer
to its free molecule value than that in the case of M=10. It may be because the
changes of the physical properties in the flow near the body is larger in the latter
case than in the former, that is, the deviation from the free molecule condition

may be large when the value of S/ v ﬁ is large.
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The present results agree at least qualitatively with other experimental results.
They appear to agree quantitatively with those by Moulic et al. [/9] and by Metcalf
et al. [28]. However, they do not agree quantitatively if account is taken of the
effect of the body temperature, since the pressure is strongly affected by the body
temperature so far as the fully diffuse reflection is assumed. (The pressure may be
high when the body temperature is high, since it determines the speed of the mole-
cule reflected from the body.)

Skin Friction

The skin friction is shown in Fig. 13. The values by the strong intercation
theory and by the free molecule flow theory are given by (4-7) and (4-8), re-
spectively.

MCr 011047 (0.664+1.7322 4-7)
X 0

o (4-8)

1

VS
The data indicate a tendency similar to that in the case of the pressure (Fig. 12),
and are qualitatively good as compared with other theoretical and experimental
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results. The skin friction may be scarcely affected by the body temperature, since
it is determined by the tangential velocity components of the molecule before and
after the collision with the body and the mean value of the latter vanishes so far as
the fully diffuse reflection is assummed and is therefore independent of the body
temperature.
Heat Transfer

Fig. 14 shows the heat transfer distributions. The results by the strong inter-
action theory with the Reynolds analogy and the free molecule flow theory are
given by (4-9) and (4-10), respectively.

MCo _0219; (0.664+1.73.72) (4-9)
e T,
e sty e
20V w S(T,—T)) 2 r—1

The data again indicate a tendency similar to that in the case of the pressure, and
are qualitatively good as compared with other theoretical and experimental results.
The heat transfer is, of course, strongly affected by the body temperature and may
change its sign at the adiabatic wall temperature.
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Slip Velocity

The slip velocity at the wall is given in Fig. 15, which also includes other
theoretical and experimental results. The present results show the effect of the
Mach number of the uniform flow, that is, the value in the case of S=5 is higher
than that of M=10 for the same rarefaction parameter, because of the difference

in the values of S/ v T, between the two cases. A few points on the left side are
omitted from the figure, since they are affected by the downstream boundary. The
slip velocity may be scarcely affected by the body temperature, because the mean
value of the tangential velocity components of the molecules that have collided
with the body vanishes regardless of the body temperature as far as the fully diffuse
reflection is assumed.

It is again to be noted that the slip velocity evaluated by this method may be
overestimated, since the molecules apart from the body by the order of magnitude
of the mean free path in the uniform flow are included.

§ 2. Blunt Body

The flow fields around a circular cylinder and a sphere when §=5, Kn=1 and
0.1, and T,=1 and 11 are investigated by the Method A. The Method B is
applied to the case of a circular cylinder when S=35, Kn=0.05 and 7,=1. The
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discussion of the flow fields is mainly concentrated to the case Kn=0.1 for sim-
plicity.

Flow Field around a Circular Cylinder when S=5, Kn=0.1 and T,,:l

(Highly Cooled Case)

The flow field around a circular cylinder with the temperature equal to that in
the uniform flow when S=5 and Kn=0.1 is shown Fig. 18. It is easily seen that
the existence of the body affects the flow in the directions upstream (X<0) and
normal to it (Y>0) more than in the case of the flat plate.
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The equi-speed lines given by Fig. 18a show how the flow is decelerated and
accelerated. Especially along the body surface the flow is accelerated from the
forward stagnation point to some point, which may be the separation point, and
subsequently decelerated. The reverse flow region near the rear stagnation point
of the body, where the flow is directed to the body surface, does not exist.

The density profile in Fig. 18b shows that the density in the forward stagnation
region becomes higher than ten (it reaches sixty at the very stagnation point) and

J vx2+ sz
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it monotonically decreases along the body surface to the rear stagnation point of
the body, and that the region with the density less than unity is very wide in the
downstream. '

The temperature profile (Fig. 18c) shows that the temperature has a peak in
the region somewhat upstream of the forward stagnation point and it decreases
toward the body surface, since the body is highly cooled, and that it is considerably
high in the wake.

Fig. 18d shows the variations of the macroscopic speed, density and temperature
along the stagnation stream line, the left half of which (forward stagnation region)
will be compared with other theoretical and experimental results afterwards. It is
seen from the right half of the figure that the macroscopic speed recovers to its
uniform flow value more rapidly than the density in the wake.

In a more rarefied case of Kn=1 the disturbance caused by the body affects a
wider flow field as compared with the body diameter (see Fig. 16). The flow field
in the case of =5, Kn=0.05 and T,,: 1, which is not shown in figures, has same
tendencies as the case of Kn=0.1.

Flow Field around a Circular Cylinder when S=5, Kn=0.1 and T,=1
(Near Adiabatic Case)
The flow field around a circular cylinder with the temperature equal to the

VW

-5 5 X
Fic. 20. (a) Flow Field around a Sphere
S=5, Kn=1 T,=1 (M=5.48)
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(b) Phisical Properties along X-Axis

stagnation temperature of the uniform flow when S=5 and Kn=0.1 is shown in
Fig. 19. All of the differences between Figs. 18 and 19 can be explained by the
different values of the body temperature, that is, the molecule that have collided
with the body has a larger speed and it can travel farther from the body than in the
highly cooled case.

It is seen from the comparison of Figs. 18a and 19a that the deceleration of the
flow occurs in the region further upstream and the acceleration occurs more rapidly
in the downstream in this case than in the preceding case. (Compare, for example,
the lines with the values of 4.5 and 3 in the two figures.)

The disturbed region is widened also in the density profile shown in Fig. 19b
(compare the lines with the values of 1.5 and 2 with those in Fig. 18b). The value
of the density in the forward stagnation region, however, is about four and does
not exceed six even at the forward stagnation point, since the molecules that have
collided with the body have large speeds and are not gathered there. A similar
tendency is seen in the wake, .and the region with the density less than 0.5 is wider
than in the preceding case.

The temperature profile (Fig. 19¢) is quite different from that in the preceding
case (Fig. 18c) as expected, that is, the temperature monotonically increases to-
ward the body surface.

The variations of the macroscopic speed, density and temperature along the
stagnation stream line are shown in Fig. 19d in this case. It is again found that
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the macroscopic speed recovers to its uniform flow value more rapidly than the
density in the wake. The temperature in the wake is higher than in the highly
cooled case, because the body temperature is high in this case.

Flow Field around a Sphere when S=5, Kn=0.1 and T,=1 (Highly Cooled Case)

It is seen at a glance that the flow field around the sphere (Fig. 21) indicates the
smaller effect of the body on the flow than in the case of the circular cylinder with
the same flow condition (Fig. 18), except that the region with the density less than
unity is almost same. It is a remarkable difference between the two-dimensional
and axisymmetric flows around the body, because the region which experiences the
disturbance is always wider than the region which generates the disturbance. (Recall
the difference between Figs. 2a and 2b.)

S$=5 (M=5.48)
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Fic. 21. Flow Field around a Sphere
(a) Equi-Speed Lines
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Another difference between the two-dimensional and axisymmetric flows is that
the sample size at any moment varies with the Y-coordinate of the cell (Y,) in the
latter, on the other hand it is almost independent of the value of Y, in the former.
It is a disadvantage in the axisymmetric flow that the sample sizes in the cells near
to the symmetry (or center) line, which are most important and interesting to
investigate, are always smaller than in the cells far from that line.

Similar arguments are applicable to the differences between Figs. 16 and 20, and
Figs. 19 and 22, respectively.

Flow Field around a Sphere when S=5, Kn=0.1 and f’,,:ll
(Near Adiabatic Case)

The flow field around a sphere with the temperature equal to the stagnation tem-

perature of the uniform flow when S=5 and Kn=0.1 is shown in Fig. 22. The
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differences between Figs. 22 and 21 can be explained by the difference of the body
temperature which determines the speed of the molecule that have collided with
the body.

Stagnation Line Velocity Profile

The variations in the velocity component in the direction of the uniform flow
along the stagnation stream line are shown in Fig. 23 for the cases of the circular
cylinder and the sphere with highly cooled and near adiabatic conditions, which
also includes other results.

It is seen from Fig. 23a that the deceleration of the flow in the case of the sphere
occurs in the region closer to the body than in the case of the circular cylinder,
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because of the difference between the two-dimensional and axisymmetric flows as
discussed above, and that it agrees well with the results by Ho [36], who used the
kinetic theory with Kao’s solution [35] as the zeroth approximation. This agree-
ment means that the kinetic theory is to be applied to the analysis of the flow
with a low Reynolds number. It is guaranteed by the difference between the
results by Levinsky et al. [34] and by Vogenitz et al.[97], the former of which is
based on the continuum theory and the latter on the Monte Carlo method. Rey-
nolds numbers used here are defined by the following expressions.

Re,=_L=H=ls_ (4-11)
;’Loo

Re,= O=l=lb (4-12)
Hs

where r, is the body radius.

Stagnation Line Density Profile

The variations of the density along the stagnation stream line are shown in
Fig. 24, which also includes the results by Russell [39] with the electron beam
densitometry and by Vogenitz et al. [95] with the Monte Carlo method. The pre-
sent results in the case of the highly cooled sphere agree well with the former, and
the results in the case of the circular cylinder slightly exceed those in the case of
the sphere, because of the reason discussed above (Fig. 24a). The results in the
case of the near adiabatic sphere also agree well with those by Russel. The results
in the case of the near adiabatic cylinder show a similar tendency as that obtained
by Vogenitz et al. The agreement is not so good if the difference of the Reynolds
numbers between the two cases is taken into account (Fig. 24b).
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Stagnation Line Temperature Profile

The temperature profiles along the stagnation stream line are shown in Fig. 25
with other results. The present results in the case of the highly cooled sphere are
shifted further upstream and its maximum value is lower than in the case of the
result by Vogenitz et al. [97] whose Mach and Reynolds numbers are higher than
in the present case. It is reasonable because the former and latter differences can
be explained by the differences of the Mach and Reynolds numbers between the
two cases, respectively. The results in the case of the highly cooled cylinder have
higher values than in the case of the sphere, because of the difference between the
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two-dimensional and axisymmetric flows. Similar tendencies are seen in the near
adiabatic case shown in Fig. 25b, which also includes the result for the circular
cylinder by Vogenitz et al. [95] with the Monte Carlo method.

Stagnation Point Pressure

The pressures at the forward stagnation point are shown in Fig. 26 which also
includes the experimental results by Potter et al. [42] and by Chang et al. [44] in
the case of the sphere.
Hugoniot relation as follows.

C,.(0), appearing in the ordinate is given by the Rankine-
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F1G. 26. Stagnation Point Pressure
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2 (r+ 1)M2 ]7/7—1[ 7,+1 ]Ur—l
C.(0),= [ _ 4-13
w0 M 2 M —(y—1) (“-13)

The free molecule value is calculated by the equation (4-17) with the value of
theta equal to zero. It is to be noted that the Reynolds number in the abscissa
Re. is the half of the ordinary definition of Re. in the stagnation point pressure
study. The present results seem to be reasonable, although the data points are
scarce and no other result about the circular cylinder is present.

Stagnation Point Heat Transfer

The heat transfers at the forward stagnation point in the highly cooled case are
shown in Fig. 27 with other theoretical results. (Other experimental results agree
with the theoretical curves.) Reynolds number used here is defined by the follow-
ing expression.

I{e3 — f:*'zfl’;ﬂ . (4—'1 4)
Ys

The result obtained by Lees [46] using the modified Newtonian and boundary layer
theories for a highly cooled blunt body is expressed as follows.

—1 2 M
C,(0)= T " < pProGyH
’ T—T, 4 VRe,
—1 2 1 1 174
e
T r__] M2 TMZ ) ( )

QEOM [ DM Ty
H—_. LI ,
e | VT

(r— DM 42

Ch/Re3

after Lees (46)

o Cylinder  To=1 Sphere  ___
e Sphere  Tb=1
(O Ferri etal.(48) Sphere M=5.7 Cytinder —
@ Chow(51) Sphere M=57

@ Cheng(32) Sphere

0 T TTrTT T T T T T T T T T T T T 1 T UTTIT

10 100 1000 Re3
F16. 27. Stagnation Point Heat Transfer (T3« 7o)

This document is provided by JAXA.



Monte Carlo Calculation of Hypersonic Rarefied Flows past Bodies 461

where k=0 and 1 respectively correspond to the two-dimensional and axisymmetric
bodies. The free molecule value is calculated by the equation (4-19) with the
value of theta equal to zero. The present results agree reasonably well with the
theoretical curves by Cheng [32] and by Chow [51].
Surface Pressure Distribution

The surface pressure distributions are shown in Fig. 28 including other theo-
retical results. It is expressed as follows by the modified Newtonian theory and
by the free molecule flow theory, respectively.

C@)=Cp(0) cos 0+ 2 sin*4 (4-16)
™

(4-17)

where erf is the so-called error function defined below.

_ 2 r® 2
erf(x)—v;-; ! exp (—y"dy
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Fig. 28a shows that the pressure distribution of the circular cylinder at T,=11
is a little higher than that at T',=1 in the front part of the body and their difference
can not be distinguishable in the rear part and that the Monte Carlo results are
located between the values calculated by the modified Newtonian theory with the
Rankine-Hugoniot relation (combination of (4-13) and (4-16)) and by the free
molecule flow theory in the front part and then they become higher than the theo-
retical values in the rear part. Conversely, the reasonable agreement of the present
results with the theoretical curves in Fig. 28a bears witness to the uniformity of the
coordinates of the molecules in a cell, since the body radius is equal to the half of
the side length of a unit cell in this case. The difference between the circular
cylinder and the sphere is seen in Fig. 28b, that is, the results in the case of the
sphere agree well with the modified Newtonian theory with the Rankine-Hugoniot
relation in the front part, even when the Reynolds number is low (Re;=45). The
effect of the body temperature is found to be small also in this case. The results
for the highly cooled cylinder in the case of Kn=0.05 show a similar tendency
as in the case of Kn=0.1 (Fig. 28c).

Fig. 28d shows the present results both by the Monte Carlo method and by the
experiment. The pressure coefficient C,, divided by the value after a Rankine-
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Hugoniot shock is made use of, since the uniform flow Mach numbers are different

between the cases of the Monte Carlo method and the experiment.

The experi-

mental curves respectively represent the mean values of several runs, and they
show that the surface pressure is scarcely affected by the Mach and Reynolds num-

bers at least in the ranges of the present experiment.

Carlo and experimental results is quite well.

The comparison of all the results in Fig. 28 shows that the surface pressure is
near to that obtained by the free molecule flow theory when the Knudsen number
is large and it approaches that calculated by the modified Newtonian theory with
the Rankine-Hugoniot relation as the Knudsen number decreases in the front part

of the body.

Heat Transfer Distribution
The heat transfers to the body surface are shown in Fig. 29 including other
One of them is given by Lees [46] for a highly cooled sphere.

theoretical curves.

Cn0) _

6 sin c‘}[cos2 0+-T-1%4-5 sin? 0]

Cu(0) 2 { f 00 sin? 6[0032 0+ -Jf sin’ 0] d6} .
1 rM*

Another is by the free molecule flow theory as follows.

The agreement of the Monte

(4-18)
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—1 1 y+1 5
Cr@)=— 11 [ (Sz o7 _lr+lg )
T R ST —T) r— ’
X [exp (—S* cos? 6) ++/ 7 S cos O{1 + erf(S cos 6)}] (4-19)
—% exp (—§? cos? 0)]

The results in the case with the larger Knudsen number are seen to come nearer to
the free molecule value as expected in the front part of the body (Fig. 29a). Lees’s
results (combination of egs. (4-15) and (4-18)) are qualitatively good and equa-
tion (4-18) only is quantitatively good if the value of the stagnation point is
known. It is because his result (4—15) is to be valid for a faily large Reynolds
number. The results in the rear part of the body are dispersed and a quantitative
discussion can not be made, partly because the sample sizes are very small there.
They, however, agree reasonably well with the experimental results, which are not
shown in the figure for simplicity. ,

The results in the case of the near adiabatic cylinder are shown in Fig. 29b,
and they are strongly dispersed and a quantitative discussion can not be made,
although the sample sizes are almost same as in the preceding case. It may only
be said that the region C, <0, that is, where the heat is transferred from the body
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to the flow can appear in the rear part of the body.

This difference between the dispersions of the results for the highly cooled and
near adiabatic cases seems to clarify a weak point of the Monte Carlo method, that
is, it can hardly treat a very small quantity. This difficulty has been pointed out by
Kogan [7110] and can also be seen in the density profile of the flat plate. (See Figs.
8e, 9¢ and 10d.) The quantity treated by the Monte Carlo method, of course,
can be made small, if the sample size is increased, because the former is considered
to be inversely proportional to the latter. However, it is not practical, since a very
long computing time is required for such a calculation. Thus, it is seen that the
Monte Carlo method can easily deal with the problem where all quantities deviate
remarkably from the uniform flow values.

Wake

No useful information about the wake is obtained in the present study, because
the sample sizes are very small there. Of course, it can be investigated if the cells
are made small and the sample sizes are large, though very large computing time is
required. However, the valley in the temperature profile in the downstream region
may indicate the position of the separation shock (see, for example, the lines with
the value of two in Fig. 18c). Thus, it is seen that the treatment of the wake

by the Monte Carlo method requires a special arrangement of the cells and the
body.
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Drag

The drags exerted on the circular cylinder and the sphere obtained by the Monte
Carlo method and by the experiment are shown in Fig. 30, also including other theo-
retical and experimental results. Davis et al. [56] calculated the flow fields around
the sphere in the case of M=10 and T »=0.2T, for several values of the Reynolds
number making use of the first- and second-order boundary layer theories, and
obtained the following expression for the drag.

C,=0.89+_ 28 (4-20)

v/2 Re,

It is to be noted that 2Re. above corresponds to Res in an oridnary definition in
the drag study. Whitfield [69] calculated the drag as follows on the basis of the
kinetic theory, introducing the concept of the collision surface.

Cpr _ 1
Cpem 2/ 2K -k
Dtm 14 1+—-——7S— / Zs — (4-21)
\/[ - ] +2 —cos f+1
3T, 3WrT,

where k=1 and 2 respectively represent the cases of the circular cylinder and the
sphere, the value of 6 is determined by the location of the collision surface, and
Cpsm s given by the free molecule flow theory in the cases of the circular cylinder
and the sphere, respectively, as follows.

o ()[4 3G e g
(4-22)
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Cotm= _E%gi(zsz +1)+ ﬁ;lé? (48' 4 48— 1) + _%J T (4-23)
I, appearing in (4-22) is the ith-order Bessel function of the first kind with imagi-
nary argument. Experimental results in the case of the sphere by other authors are
scarcely affected by the Mach number so far as the Mach number is higher than
four when the body temperature is nearly equal to the stagnation temperature of
the uniform flow and they are represented by those obtained by Aroesty [71] and
by Ashkenas [72]in the figure. The lower the body temperature becomes, the
lower the drag becomes. It is considerably higher in the case of the circular cylinder
than in the case of the sphere.

It is seen that the present experimental results are located higher as a whole
than the other experimental curves, partly because the surface of the present model
is relatively rough. On the other hand, the Monte Carlo results shows the lower
values and the effect of the body temperature can not be clearly seen. The results
for the highly cooled sphere, however, agree well with the theory by Whitfield.

V. CONCLUSION

It is concluded that the Monte Carlo method without the sampling in the velocity
space is of use for calculating the hypersonic rarefied gas flow past a two-dimen-
sional or axisymmetric body in consequence of the present study.

It is also concluded that this method enables us to easily obtain the important
quantities with respect to the body, that is, the pressure, the skin friction, the drag
force and the heat transfer.

It is shown that the Monte Carlo results agree well with the values measured by
the present author in a low density wind tunnel in respect of the pressure distri-
butions of the circular cylinder and the sphere. The present results of calculations
concerning the density fields are also shown to agree well with the existing experi-
mental results obtained by the electron beam densitometry.
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