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Numerical Calculations of Some Complicated Aerodynamic
Problems by a Time-dependent Finite-difference Method

By

Naoki HIROSE*

Summary: A time-dependent finite-difference method known as Fluid-in-Cell method is
applied to the inviscid compressible flow problems containing such unknown discon-
tinuities as shock wave and contact surface for the purpose of investigating the transient
unsteady flow behaviour and the resulting asymptotic steady flow field as well without
making any specific assumptions on the position and the strength of those discontinuities.
The problems treated in the present paper are as follows: (1) supersonic flow past a
circular cylinder perpendicular to the main stream, (2) supersonic flow around a flat-
faced circular cylinder parallel to the main stream, and (3) supersonic flow around a
flat-faced circular cylinder with a supersonic opposing jet from the nose.

The results of the present numerical calculation for cases (1) and (2) show close
agreement with those of the existing theories and experiments. It is also shown that, in
case (1), the method of calculation can be successfully extended to the plane polar
coordinate system.

In case (3), it becomes clear that the present method of numerical calculation can
produce sufficient informations to investigate the highly complicated flow field induced
by the opposing jet. The effect of the governing parameters such as free stream and
jet exit Mach numbers, nozzle to body radius ratio, and total pressure ratio of the jet
to the free stream on the flow pattern are investigated. It is of interest to notice that
two different types of the flow field appear according to the boundary conditions: the
one is a steady flow field with a Mach disc in the jet stream and a bow shock similar
to the one in front of a blunt body in the supersonic flow, and the other is an unsteady
flow field with ever forward-moving bow shock and periodic wave pattern in the jet
stream. The both types of flow field has already been observed in the experiments.

SYMBOLS
AK parameter of artificial viscosity term
B coefficient of artificial viscosity term
Cps pressure coefficient at stagnation point on body
Cyp; pressure coefficient at jet nozzle exit
Cow average pressure coefficient on the front surface of body
c speed of sound
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total energy per unit mass

total energy in the computing region
=u, v, wor E

see chapter 3.1.

specific internal energy per unit mass

IN1, IN2 total cell numbers in axial direction shown in Fig. 1

i,j,k  cell numbers along axial, radial and angular directions, respectively
JETIN,JETIN total cell numbers to represent the geometry of jet nozzle shown

in Fig. 1

JN1,JN2 total cell numbers in radial direction shown in Fig. 1

M Mach number
n time cycle number
p pressure
Ds pressure at stagnation point on body w
Do total pressure
q explicit artificial viscosity term
R, body radius
Riss» Rerr» Royp radius of curvatures of bow shock wave, interface and Mach
disc, respectively
R; nozzle exit radius
Ry numerical Reynolds number
S cross-sectional area of cell
S distance along body surface
T(1), etc.=0 or 1 according to the flow direction at cell boundary 1
t time
u,v,w velocity components in axial, radial and angular directions, respectively
V; volume of cell with index ]
x,r,¢ Cartesian or axial, radial and angular coordinates
7 specific heats ratio »
4, axial distance between bow shock wave and interface
) stand-off distance
6E,; change of total energy in computing region due to centrifugal forces
during time increment gt
oM mass flow transported across a cell boundary
oE change of total energy in computing region during time increment 6t
d,, 0;, 8, stand-off distances of bow shock wave, interface and Mach disc, respec-
tively
ot time increment of difference scheme
éx,or,d¢ cell widths in axial, radial and angular directions, respectively
es, €y ¢, coefficients of truncation error terms in each direction
e density
T ratio of time increment to cell width
top, ~ Maximum time increment ratio given by C-F-L condition
¥
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Y order of accuracy of difference scheme or index of coordinates
1,2,3,4 cell boundary numbers

SUPERSCRIPTS:

H referres to value at time t=ndt

x,r,6 refer to x, r or ¢ directions, respectively

~ referres to intermediate value at the end of Phase I
referres to the average of normal and tilde values
* referres to nondimensionalized value

SUBSCRIPTS:
i,j,k  refer to value at cell numbers i, j, or Kk, respectively
i referres to nozzle exit condition of jet
mn maximum cell number in each direction
oo referres to free stream
INTRODUCTION

Recent advance of highspeed large scale digital computers made it feasible to
numerically simulate complicated physical phenomena of fluid motion by replacing
the basic differential equations with an appropriate finite-difference approximation
or with a physical particle model representing fluid motion. Such a numerical
treatment of the problem called computer experiment or computer simulation often
brings us valuable informations on the interesting problems of fluid motion in

‘which nonlinear behaviour is predominant. Analytical approach to such problems

is impossible in most cases. Even if possible, a various kind of assumptions and
approximations must be provided for. The same can be said for the numerical
methods proposed in the past. On the other hand, in practical physical experi-
ments an exact selection of experimental conditions is hard to realize in general
and deviation of factors from the ideal conditions may bring various effects on the
results and makes it difficult to interprete them correctly. Meanwhile, the computer
experiment can be regarded as an idealization of the physical experiment. A better
representation and understanding of physical phenomena can be obtained from
it with quite a few assumptions on initial and boundary conditions and it will play
an important role of guide to the analytical treatment of the problem. Numerous
works have been reported not only in the field of hydrodynamics but also in a
variety of fields related to fluid motion such as plasma physics, astrophysics,
meteorology and oceanography [I],[2], [3]. From the mathematical standpoint
of view most of these works are reduced to the numerical methods of the mixed
initial-boundary value problems of nonlinear partial differential equations. Theory
of numerical analysis of these problems, however, is not sufficient yet to be applied
to practical problems in hydrodynamics [4]. Therefore the results of computer
experiments must be carefully interpreted with mathematical and physical insight
to deduce a useful conclusion from them.
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4 N. Hirose

In the problems of compressible fluid flow of inviscid ideal gas, discontinuities
such as shock wave and contact surface are often formed in the flow field. In
general, their positions, shapes and strengths are not known beforehand and deter-
mined after the solution of the whole tlow field is obtained. This is the type of
nonlinear intcrior boundary value problem of nonlinear diffcrential equations and
their analytical solution is quite limited. A typical example of this type of problem
is supersonic flow around blunt body. Although a number of numercial methods
have been proposed for this problem, most of them assume the shape of shock
wave and apply Rankine-Hugoniot (R-H) relation across the shock wave or as-
sume distribution of flow variables in the shock layer. These makes the algorithms
of the calculation rather complicated, and moreover, when multiple shock waves
or/and contact surface are present in the unsteady flow field, these methods are
hard to be applied. Therefore the methods of computer experiments can be most
applicable and beneficial in such problems.

Numerical treatment of discontinuities such as shock wave is difficult and a
finite-difference scheme which is valid across unknown discontinuity and gives it
correctly and automatically is quite desirable as the method of computer experi-
ment. Such a scheme was first suggested by von Neumann and Richtmyer [5].
They utilized the well-known effect of dissipative mechanism on shock waves. In
viscous fluid, shock wave is smeared out to form a thin layer in which flow vari-
ables such as pressure and density vary rapidly but continuously. They introduced
artificial dissipative terms simpler than the real ones which have larger value at the
shock into the time-dependent hydrodynamic equations of inviscid compressible
fluid so as to give the shock a thickness comparable to the scale of computing
mesh and yet sufficiently small compared with the scale of the whole flow field.
Ludford, Polachek and Seeger [6] calculated one-dimensional viscous compressible
flow involving shock propagation using finite-difference representation of unsteady
hydrodynamic equations. They had to use unrealistically large value of viscosity
coefficient in order to make the shock thickness comparable with the mesh width
and also to eliminate oscillation behind the shock. Their results indicate that we
need not to solve Navier-Stokes (N-S) equations but the finite-difference approxi-
mation of the inviscid Euler equations with von Neumann’s idea of artificial vis-
cosity gives correct relation between the flows in front of and behind the shock.
Lax [7] proposed a particular difference scheme for nonlinear hyperbolic system
expressed in the form of conservation laws based upon the fact that mass, momen-
tum and energy are conserved in hydrodynamics. He obtained discontinuous
numerical solutions of discontinuous initial value problems. Artificial viscosity
terms are implicitly taken into account as truncation error terms in Lax’s scheme.

Numerical methods such as described above are called artificial viscosity method
or time-dependent finite-difference method in which the flow field including dis-
continuities is calculated as a finite-difference solution of initial-boundary value
problem by introducing artificial viscosity either explicitly or implicitly. A number
of those methods have been proposed and applied to the hydrodynamic problems.
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One category of them utilizes the conservation law form. Such schemes proposed
by Lax, Rusanov [8] and Godunov [4] are of first-order accuracy. Lax’s scheme
was applied to various aerodynamic problems including three-dimensional flow
around an axisymmetric blunt body at an angle of attack [9], [/0]. However, con-
sidering the characteristics such as spacewise accuracy and required computing
time, the scheme is not completely satisfactory. Lax and Wendroff [//] proposed
a second-order-accurate scheme. Several kind of variants of two-step Lax-Wen-
droff scheme suitable for multi-dimensional problems have been proposed [12],
[13],(14]. Lapidus [/5] extended the scheme to curvelinear coordinates and
Thommen [16] applied it to N-S equations. A third-order-accurate scheme was
proposed recently by Rusanov [/7] and Burstein and Mirin [/8].

Methods classified into another category are not based on the conservation law
form but on certain elementary physical models of fluid motion. They were
developed by people at Los Alamos Scientific Laboratory and known as Particle-
in-Cell (PIC) method [19], [20], Particle-and-Force (PAF) method [2]] and Fluid-
in-Cell (FLIC) method [22]. In PIC method, the space where fluid motion takes
place is subdivided into a large number of cells by Eulerian mesh fixed to observer
at rest. Each one of cells is characterized by its velocity, total energy and total
mass. Meanwhile, the fluid itself is represented by a large number of Lagrangean
discrete mass points called particle which move through the Eulerian mesh carry-
ing mass, momentum and total energy. PIC method demonstrates its ability
especially for multi-material problems because we can assign each kind of materials
to each one of particles. The method was also applied to the problems of three-
dingensional flow [23], viscous compressible flow [20], rarefied gas flow [24] and
hypervelocity impact of solid [25]. However, it requires a large computer memory
capacity to store the coordinates of the each particles besides cell quantities and the
algorithm to calculate the transport of particles becomes too complicated and time-
consuming. A full analogy to the classical particle dynamic theory is adopted
to represent the fluid motion in PAF method. The ability of present day com-
puters is insufficient for both of these methods. Rich [26] proposed an Eulerian
extension of PIC method to continuous fluid. He considered continuous fluid
instead of discrete particles moving through the Eulerian mesh, thus reducing a
large amount of required memory and simplifying the calculation of transport
process. Later, Gentry, Martin and Daly [22] made some modifications to it
such as the change of one of the basic flow variables from total energy to internal
energy and the adoption of more sophisticated difference scheme. This method
known as FLIC method was applied to the problems of shock interaction with
forward-facing step and flat-faced circular cylinder by Butler [27].

When shock shape is simple such as the ordinary blunt body problem, it will be
convinient to apply the finite-difference method only to the shock layer and to
represent the shock by discontinuous R-H relation, although one of the merits of
the time-dependent finite-difference method lies in that it needs no assumption
concerning shock wave. Moretti [28] proposed such method using a difference
scheme similar to Lax-Wendroff type and also Masson, Taylor and Foster [29]
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6 N. Hirose

using Godunov’s scheme. This type of calculation requires less computer memory
and computing time than the ordinary finite-difference methods because coarser
computing mesh can be used in it.

No detailed comparison between those methods has been reported yet. Judg-
ing from our limited experiences, however, FLIC method gives fairly good space-
wise accuracy with coarser computing mesh and shorter computing time than the
other first-order-accurate methods. It possesses comparatively strong stability
even when the initial condition differs greatly from the asymptotic steady solution.
It also can be extended to multi-material problem in which different fluids coexist
separated by a contact surface [30].

In the present paper, some of the acrodynamic problems containing highly-
complicated flow field, i.e. flow field past a circular cylinder placed either normally
or parallel to the supersonic free stream and flow field induced by a supersonic
opposing jet from the nose of a flat-faced circular cylinder, are numerically in-
vestigated. From the above discussion the FLIC method was adopted and used
throughout the calculations. The description and discussion of the method are
given in chapters 1 to 3. An extension to the plane polar coordinate system of
the method is also described. In the rest of the paper are presented the results
of the numerical calculations and the discussions of the resulting flow phenomena.

1. Basic EQUATIONS

The hydrodynamic equations of motion for the two-dimensional flow of inviscid
compressible fluid are written as follows

eq. of continuity

do | o) | a(rpv) 0
il =0, 1-1
ot * 0x + ror (-1
eqs. of momentum
out ou ou , op
=+ pit— + pv—+ =0, 1-2
P T T T .
ov ov ov , op
—+ pu v— +—=0, 1-3
oo T T T (1-3)
eq. of energy
ol ol ol ( ou . o(rv) )
+ put vV— =0, 1-4
o T T TP e T (1=

where u, v, p, p and I are the velocity components, density, pressure and specific in-
ternal energy, respectively. In the case of a plane flow, v takes the value of 0 and
(x,r) are Cartesian coordinates, while in the case of an axisymmetric flow, v takes
the value of 1 and (x, r) are the axisymmetric cylindrical coordinates.

In the case of plane polar coordinate system the basic equations are
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eq. of continuity

ﬁ—p__i_ 3(rpv) 1 o(ow) _

0, 1-5
ot ror rod (1-5)
eqgs. of momentum
ov ov ov ow* | op
— V- Weree— U 4 22 =0, 1-6
O T T s T T T (1-6)
LA LA LA LA A (1-7)
ot or rog g rgch
eq. of energy
ol ol ol < a(rv) ow
7 ov— oW =0, 1-8
O O T s TP e T ra¢) (1-8)

where v and w are the radial and angular velocity components, respectively, and r
and ¢ are the radial and angular coordinates, respectively. In the present study
the fluid is considered as ideal gas. The equation of state is

p={(—Del, (1-9)

where 7 is the ratio of the specific heats of the gas.

2. DescripTioN OoF THE FLIC METHOD

2.1. Finite-difference scheme in Cartesian and cylindrical coordinates

The brief description of the calculational procedure of the method in Cartesian
and cylindrial coordinates is given in this section. More details are found in
Ref.22. The computing region considered is subdivided into a number of cells
as shown in Fig. 1. Each cell is denoted by the indices 7, j where { and j represent
the cell numbers in x and r coordinates, respectively. In cylindrical coordinates,
cell i, j is a rectangular torus with central radius (j — 1/2)6r and width gx and in Cartesian
coordinates the cell is a right parallelpiped. The volume V,, the axial cross-sectional
area §7 and the radial cross-sectional area S7,,, at the upper side cell boundary of
cell i, j are given as follows:

Cartesian coordinates Cylindrical coordinates*
vV, dx-or 2r-dx-(3r)2-(j—1/2)
57 ar 2r-(8r)-(j—1/2)
ST ox 2r.6x-6r-j

*j=1 at the adjacent cell to the x axis.

Each cell is characterized by the flow variables such as density p};, velocity u;, vj;

OV
and internal energy I7;, where superscript n represents the value at time t=ngt. When
the values of flow variables at time nét are assigned to each cell, new values after a
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Continuative Boundary Cells
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Fig. 1. Cell arrangement in Cartesian coordinates and concept of the ;
problems (see in the text).

time increment gz are calculated by a finite-difference approximation to the basic
equations (1-1) to (1-4). This procedure consists of the following two phases in
the FLIC method.

Phase I When transport terms are omitted and only the effects of acceleration
caused by pressure gradients are taken into accounts, the basic equations (1-2)
to (1-4) become

du , ap+q _ 21
e ot + 0x ’ (2-1)
v dp+a) _ )
o= + 5 , (2-2)

ol ( ou , a(rv) ) o(qu) . oq , (grv) aq
— —_ -1 —P—==0). 2-3
P ot +P 0x + ror + ox lax + ror or (2-3)

The equation of continuity is not used in Phase I because the method implicitly
takes into accounts the mass conservation law in the next phase. Explicit artificial
viscosity term g is added to the pressure terms which prevents the instability of
the difference scheme in the region where the fluid velocity is small compared with
the local sound speed. The form applied here is the one proposed by Landshoft
[37]. For example, when applied in axial direction, the term is expressed as

g=— Bc,o—a—Li ox,
ox

when %Li <0 and 4K +v%) <%, (2-4)
x

and ¢=0, otherwise,

where c is the local sound speed, B is a constant which determines the magnitude
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Numerical Calculations of Aerodynamic Problems 9

of the artificial viscosity and AK is the parameter to determine the maximum local
Mach number at the cell boundary for which the artificial viscosity is applied,
respectively.  Explicit artificial viscosity is not applied in the regions where the
fluid velocity is large compared with the local sound speed and the flow is expand-
ing, because the truncation error terms of the finite-difference scheme play the
role of artificial viscosity implicitly and these terms are sufficient to stabilize the
scheme. The discussion will be given in the next chapter.

Equations (2-1) to (2-3) along with the thermodynamic equation (1-9) are
approximated by the following finite-difference scheme.

pl=(—DpdlY, (2-5)
7 5t n n
dy=u———{P+ D, — P+ D, ) (2-6)
ijY
Y Y 5t 1 r n n r n n
Vij=V—— —,)'W[Sj+]/2(pi,j+l—pij)MSj-—l/?.(pi,j—-l_pij)]
ol 2V,
1 n
+————6r (Qﬁjﬂ/z‘_qb',j—uz)} ’ -7
~n n 5t n r nnr r fin
I =I}— ~ "{pij(Sj+1/Zui,j+1/2_Sj—llzvi,j—l/z)
eV ;

1 _ L 1 . .
+ 7‘1§l,j+1/2(5§+1v?,1+1+S7j”?j) - —2—‘1?,;'-1/2(550% + 85107 ;-0
- DELjS;(QZj+1/2 - qy,j-l/?.) - ﬁ?ij(CI?H/z,,- - q?—l/z,j)

+ ST 10, (DY + QT 1y, 1) — FF1pa, ; (O + Q?-l/z,j)]} , (2-8)
Bty =T )+ ), (2-9)

where E is the total energy per unit mass and tilde ™~ represents the intermediate
values of u, v,1 and E at the end of Phase I. Half integer in subscripts and bar —
mean just as the following examples:

1 T 1 n ¥
p?+1/2,j:‘§‘(p?j+p?+l,j)> uy=—up+ay).

2
Finite-difference form of artificial viscosity term gq is,
Qi = —'BC?+1/2,jp?+1/2,j(u?+1,j—u?j)’
when u?,; ;—u;;<0 and
AK{(”?J‘)Z + (v?j)z + (u?+1,j)2 + (v?+1,j)2}< {(C?j)z + (C-?+l,j)2}’
and g}, ,=0, otherwise.

(2-10)

Similar form is given for gq},,,,. In the present calculation, the parameters were
set as AK=1.5 and B=0.3.

Phase II The fluid is assumed to move across the cell boundaries with the
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intermediate values of velocity and carry momentum and energy corresponding to '
the intermediate values of velocity and total energy of donor cell from which the
fluid flows out. The final values of velocity and total energy at time (114 1)dt are
obtained by using the conscrvation law of mass, momentum and energy in each
cell. This procedure simulates the transport effect which was neglected in Phase L.
Mass flows dM?2, . ; flowing out or in through the right-side cell boundary i+ 1/ 2
and 6M?,,,, flowing out or in through the upperside cell boundary j+ 1/2 during
time increment §t are given as,

0 ?+1/2 .‘—Slpllll;l"'ll ]5f for 17;1+1/2’j>>0’
_._SL‘OLH j“ml/" 0t, for ﬁ?+1/'2,j<0’ ’ (7_11)
BMEI,J‘H/-:‘—‘-S.;'-H/WU i,j+1/25t9 for D;)‘.j+l/2>0’ 5 i
=87 1/200, j 4107, 5 +172085 for ﬂ2f+1/3<0’

l‘)‘: “
respectively. Summation of mass flows from all cell boundaries gives the new
value of density for each cell.

p:lj+1—“ Pu + "—”{OML -1/2,7 + 5M1€l,j«l/2_— 5M1'Zl+1/2,j_—5M‘;1,j+1/2}' (2—12)

New values of velocity and total energy are,
Fit= o 1V e T (DF2, M2y ;4 Ti (D F M7 e

— T3y 3V Ffr, M 1ps = Tisf(DFL 1 10M, e

+F1J[‘0."‘/V +[1 ’l,j(l)]OMz 1/2,7 +[1— 11(‘))]5M1 ji-1/2

—[1— 11(3)]5M1+1/z j —[1— ij(4)]oMi,j+1/2]}’ (2-13)
where F represents either one of u, v and E. Left-side boundary of cell i j is labelled
the cell boundary 1 and the rest of the cell boundaries are numbered anti-clock-
wise. The value of T,;(1) is unity when the fluid flows into the cell i j through
the cell boundary 1 and is zero when the fluid flows out through the same cell

boundary.
Internal energy is finally obtained using the relation

ln+1 En+1 ____{(un+1 24 ,vn+1) } (2_14)

The process is repeated using the final values at the previous time cycle as the
initial values for the next time cycle and one can continue the processes succes-
sively as many time cycles as one wants.

2.2. Formulation in plane polar coordinate system

As far as the author knows, the extension of finite-difference scheme of FLIC
or PIC method to the polar coordinate system has not been reported so far.
Harlow [32] emphasizes that, in PIC method, Phase II must be carefully modified
to take into accounts the effect of centrifugal forces and Coriolis forces on the
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particle transport. His group has been working at this modification and yet have
not attained the aim. In FLI1C method which is an extension of PIC method to
the continuum, difficulty of treatment is considerably reduced because there is no
nced of particle treatment. Appropriate treatment of centrifugal force terms such
as —pw’/r and pvw/r which appear in the equations of motion (1-6) and (1-7).
however, is important in applying the basic idea of the method, i.c. the separated
treatment of pressure gradient effect and transport effect to the formulation in
polar coordinates. Any modification of the finite-difference scheme to include
the centrifugal force terms must approximate exactly the partial differential equa-
tions (1-5) to (1-8). It can be shown that mass, momentum and energy flows
across the cell boundaries in Phase II correspond to the transport terms of the
basic equations in an arbitrary coordinate system and pressure gradient terms are
implicitly brought into the time change portion

(Frtomst—Fr i)V, (2-15)

of the cell quantity itself of Eq. (2—-13) through the procedure in Phase I. Thus
the centrifugal force terms in the polar coordinates can be included in Phase I
as the apparent pressure terms while Phase II is not modified basically except for
the adjustment of geometrical quantities such as cell volume and cross-sectional
areas. Coriolis forces need not be included because the coordinate system is not
rotating in the present formulation.

The cell arrangement is shown in Fig. 2 in which the computing region is
indicated by ABCD. Each cell is denoted by the indices j and k& which represent
the cell numbers in radial and angular directions, respectively. Geometrical
quantities are now given as follows:

D A 0

Fi1G. 2. Cell arrangement in plane polar coordinates.
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12 N. Hirose
volume Vi=r;-or-og,
1: ~ M - r I I > 7
radial cross-sectional area Shie= {1+ = 0r| d
- /
angular cross-sectional area 5% a0,

where dr and 3¢ are the radial and angular widths of cell respectively and r; is the
radial distance of the center of cell j k from the origin.

Phase I The transport terms are omitted from Eqs. (1-6) to (1-8) retaining
the pressure gradient and centrifugal force terms, while the artificial viscosity terms
of Landshoff type are brought in a similar manner to the previous section. Then
the equations become

w3+ 2-16
o — ; (2-16)
Q;vg+ pvw ap+q) 0, 2-17)

ot r 19¢

ol ( o(rv) ow ) a(qrv) . 0q o(gw) 2q 0. (2
—p 4 HT W %1 0. (2-18
ot TP ror + ro¢ T ror or + rog ¢ ro¢ ( )

The finite-difference approximations to these equations are

Ph=(— Dofl}, (2-19)
’ N n 6t 1 r n n r n n
Vix="jr— o '—-[Sj+1/2(pj+l,k_pjk:)'—Sj.-l/g(pj_l’k_‘pjk)]
er 2V
1 n n 1 n n )2
+_“:—(qj+1/3.k-—qj—1/2,lc)_'—‘"‘pjk(wj/;) s 2-20)
or r;
N n 6t n n n 1 1' n n n n
Wix=Wje—— A —'(pj,k+1—'pj,k-—1)+(Qj,k+l/2'—qj,lc—l/2) }
F;05% o L2
(2-21)
T 13 Ot n T N r iin 1 n r nn ran
Ij'llc:[jk“‘—no-“— [ij(sj+1/zvj+1/z,k“Sj—1/20j~1/2,1c) + _q1‘+1/2,k(Sj+lvj+1,lc+Sjvjk)
P5V s 2
1 Tpn T pn nn Crf an n
_Eq;‘-l/:’,k('sjvjk+Sj—IUj—-l,k)—vjl\:Sj(Qj+l/2,l\:—qj—l/z,k)
— W;‘ksﬁ(#,kn/a— 617,k-1/z) + St[W7'Z,k+1/z(P?k + CI}L,kH/z)
- w?,k-l/?(p?k + q?,k-—l/z)]} s (2-22)
" - 1 (.. N
Epe=Tjet o {32+ (5307 (2-23)

where q’s are given as,
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G 1o = —BChiym 10712V 1 e — V] 4)s
whenv?,, ,—v7},<0 and
AK{(n) + W)+ (0441, + Wy, F<{ (] + (€], 0
and q7,,,,=0, otherwise.

(2-24)

]

Phase II. Mass tlows dM?%,,, , flowing out or in through the upper radial cell
boundary j+1/2 and 6M?%,.,, flowing out or in through the right angular cell
boundary k+ 1/2 during time increment gt are given by

M}, 1y, =57 4120560 7 +1/2,10L5 for 93,1, >0,
=87 .1207 41,607 +1/2,100, for 03,152, <0,
, P -~ .
OM3 i 119= Sk 4120757 172085 for W} 4112>0,

=88 41205, 6+1W7 5412085 for W} ;.1.<0,

P ‘
respectively.
New values of density, velocity and total energy are

n+l___

1 1 n
O = ij + "'I/_'{(SM?-I/Z,B: ’|‘ 5M}L,k-1/2 "‘51"1;-;1/2,1; - 6Mj,k+1/2}7 (2’26)
J

+1 __
Fyri=

V (T (D Fpy M2y o+ T (2 F 1 0M 1o
j/\.
—“lec(3)Fj+1,L-5Mj+1/2,k Tjk(4‘)F],k+15Mj,k+1/2

+ P oV 4+ (L =T (DIM) o+ 11— T 11 (16M7 o

) - [1 - Jk(3)]0Mf+1/z,k [1 - T,‘lk(4)]5M";,k+l/2]}ﬂ (2—27)

where F represents either one of v,w and E. T,(1), etc. are the same as in
the cylindrical coordinates. But the cell boundaries are numbered clockwise from
boundary j —1/2 in this case.

¥ New value of internal energy is given by

In+1__ n+1 {(,vn+1 2+(W?}:1)2}. (2_28)

Tk

2.3. Initial and boundary conditions

Besides the finite-difference scheme, the initial and boundary conditions must
be specified in order to obtain a numerical solution. Initial condition is given by
providing appropriate distributions of density, velocity and internal energy to every
cell in the computing region at time t=0. If the steady solution of the flow exists,
it will be determined only by the boundary condition imposed and will not depend
on the initial condition. Thus, arbitrary initial distributions of the flow variables
without any specific physical meaning may lead us to the asymptotic steady solu-
tion as time tends to infinity. Such setting of the initial condition may reduce
the computing time as: (1) use of known approximate distributions of the flow
variables, (2) assumptions of shock shape, stagnation point state on the body
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i
surface and linear distributions of the flow variables across the shock layer, and
(3) use of steady solution for different Mach number already calculated. In
these cases, the asymptotic steady solution is only meaningful and time-dependent
flow field during the calculation will not have any physical importance.

Another initial condition often used is the impulsive start condition in which
the free stream values of the flow variables are given to every cell in the region
considered. 1t is equivalent to the flow field induced by a body which impulsively
begins to move with the free stream speed in still air. If the initial flow distri-
bution is far different from the steady one as above, in some schemes the calcula-
tion diverges and is destroyed and the steady solution is not obtained due to
nonlinear instability. Examples of the case are reported by Lapidus [/5] and
Burstein [33].  In the present method, however, the impulsive start condition
caused no such problem and stable computation was possible.

Several kinds of boundary conditions are specified according to the setting of
the problem.

Free stream boundary: at the upstream boundary of the computing region, ficti-
tious boundary cells adjacent to the inner cells are assumed where the free stream
values of density, velocity and internal energy are assigned to as a function of time.

Continuative boundary: at the down stream boundary the values of the flow
variables at a fictitious boundary cell are set equal to the values at the inner cell
adjacent to it. This means that the normal space derivatives are zero at the
boundary and it is the zeroth order of approximation. However, any effect of
boundary condition will not propagate upstream when the fluid flows out from the
boundary with supersonic speed. When the flow is subsonic there, the effects of
the boundary condition may propagate upstream and the whole flow field will
become under the influence of them. The numerical solution may differ greatly
from the exact one for such a case, so that the calculated results must be carefully
analyzed and interpreted.

Reflective boundary (rigid wall boundary): on the body surface which coincides
with cell boundary, normal mass flux and energy flux must vanish. This condition
is represented by giving the values of density, internal energy and tangential velo-
city and the value of normal velocity with the opposite sign at the adjacent inner
cell to the values at the fictitious rigid wall boundary cell inside the body surface
respectively. Reflective boundary condition is also applied on the symmetric axis
of the cylindrical coordinates.

When the body surface does not coincide with the cell boundary, the effective
dimension of partial cell which contains a part of body surface decreases and the
finite-difference scheme must be modified. The accuracy of the solution decreases
in the vicinity of the body surface which is the most important region from the
aerodynamic stand point of view. To avoid such deterioration of accuracy, the
shape of body in the present calculation coincides with the computing mesh.
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3. ANALyYsis OF THE FLIC METHOD

3.1. The analogue differential equations

Let us examine whether the difference scheme given in the preceding chapter
consistently approximates the basic equations. When a difference scheme approxi-
mates a system of differential equations with the error of O((5?)**') in the
limit of time increment §z—0 for all sufficiently smooth solutions of the differential
equations while retaining a relation between the time increment and size of cell
constant, the difference scheme is vth-order-accurate. Order of accuracy v is
estimated as the order of truncation error when the Taylor expansion of the solu-
tion of the differential equations is put into the difference scheme. However, the
analogue differential equations which approximate the difference scheme is more
suitable for the understanding of the behaviour of the scheme. The analogue
differential equations possess the identical higher order terms with the truncation
error terms of the difference scheme although their sign is changed. Hereafter
we shall refer “truncation error terms” as the higher order terms of the analogue
differential equations.

Applying the analysis of the PIC method by Kaplan and Papetti [34], the FLIC
analogue differential equations are derived for each of three coordinate systems.
Consider a continuous function f(x, r,t) which represents any one of the flow
varaibles and is equal to the finite-difference solution f}; at all integer and half-
integer values of subscripts. Taylor expansion of function f about center of a
cell i j and time ndt is substituted into the difference scheme, then both of Phase
I and II are represented by the differential equations. Combining them together,
we vbtain the analogue differential equations of the FLIC method for Cartesian
and cylindrical coordinates,

90 a(put) + o(rpv) _ _ 9 (c 8p> + 9 (r”s,.aﬁ->

ot 0x reor ox ox ror or
L KGO RPN 3-1
Yo o TV YOO (3-1)
ol ou ot op 0q 0 ( ou ) 0 ( ou )
- - v—— —_—— g | + - o
P ar+a¢ ox T ax \Po gy ) Ty \Teery;
ou dp o dp _ (5r)2 [au d(pv) < au)} 0
: ou 50), (32
e o o o TV \Pg )y TO6D, 3-2)
o o a0 [, )
ot a o ar o \P
9 ( ) v 3p v 3o
e 'p’a ey o T o
(or)? [87} 9(pv) ( oo) }
_ v 000, 3-3
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where

e, =L |u]6x, e,:-;—lvlﬁl‘, 6= — W] 3¢, (3-9)

1\)|,—-A

and the explicit artificial viscosity ¢ has different form according to the direction
of derivatives as mentioned before.

The left-hand side of those equations is exactly the same as that of the basic
equations (1-1) to (1-8). The right-hand side is the artificial viscosity and the
truncation error terms. Because the O(dt) terms have complicated forms and
their effect can be included in the O(dx) terms, they are not given explicitly here.
It is clear that each term in the right-hand side vanishes if §¢ goes to zero in such
a way that z=41/6x is constant. The difference scheme satisfies the consistency
condition with the first order of accuracy.

Some of the truncation error terms are similar to viscous force, thermal conduc-
tion and viscous dissipation terms in the viscous hydrodynamic equations and they
introduce an artificial dissipative mechanism which makes the finite-difference
calculation possible without any assumptions on shock wave and contact surface.
They smooth the profiles of the flow variables at the discontinuities. However
the diffusion coefficients such as e, which may correspond to the coefficients of
viscosity and thermal conductivity of real fluid depend on the size of cell and
local velocity and are not invariant with the coordinate transformation. The form
of these terms also depends on the difference scheme. Therefore we cannot direct-
ly relate the analogue differential equations to N-S equations. For example, if
cell boundary values are used in Phase II calculation instead of the donor cell
method used in the present formulation, the O(dx) terms are all dropped. Density
diffusion terms are not present in Rich’s and PIC methods. But in such schemes,
nonlinear instability arises in some kind of problems even if large explicit artificial
viscosity terms are added to the schemes. We conjecture that the presence of
diffusion terms in the equation of continuity makes the FLIC method more stable
in the region of rapid change of the flow variables than the other methods.

The second-order terms with the form of (6r)?/r may not be neglected in the
region where radius r is small and are retained in the equations. However, only
the region 6r/r« 1 is considered in the calculation in the polar coordinates and the
cell location is arranged to avoid the symmetric axis in the cylindrical coordinates.
So these terms become at most comparable with the first-order terms even when
r is nearly equal to §r. Therefore they will not have any significant effect on the
calculation.

3.2. Stability condition

A finite-difference solution not necessarily gives an approximation to the dif-
ferential solution even if the consistency condition is satisfied as pointed out by
Courant, Friedrichs and Lewy [35]. Some kind of requirement is necessary for
a finite-difference solution to coincide with the exact differential solution. The
rigorous theoretical analysis was developed for the linear difference equations with
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4

constant coefficients. The hydrodynamic equations, however, are nonlinear equa-
tions with variable coefficients and so are the corresponding difference equations.
And there is no rigorous theory yet for these problems. Therefore, in practice the
local stability of the linearized equations is checked [4]. A small perturbation is
superposed on a smooth difference solution and put into the difference equations.
Dropping the higher-order terms, the linear difference equations with coefficients
which depend on the unperturbed solution is obtained. The coefficients can be
regarded as constants at a fixed point on the mesh. Then the local stability is
analyzed. Although the local stability condition is not always sufficient nor neces-
sary for the overall stability of the original difference equations and such examples
are pointed out by numerical analysists, von Neumann’s condition for the local
linearized stability gives reasonable criterion in practical problems. Local lineari-
zation seems to be justified because the instability appears locally at first for most
cases.

As for the stability condition of the FLIC method, the truncation error terms
with ¢, etc. are brought into the analogue differential equations in Phase 1I treat-
ment and they play the role of diffusion terms and increase the stability. So the
stability of Phase I is investigated in this section. We take up the plane polar
FLIC method proposed in the present paper for example. We assume a nearly
steady flow in the vicinity of stagnation point. The distribution of the flow vari-
ables is assumed to be smooth and depend on radius only. Then it can be shown
that the local linearized difference equations are reduced to the same form as that
for Cartesian coordinates if a region is considered where radius r is sufficiently
larger than the radial cell width §r. Amplification matrix and its eigenvalues were
obtained by substituting the Fourier components of the solution into the equations.
von Neumann’s condition requires all of the absolute eigenvalues not greater than
unity. The calculation gives the stability condition for Phase I,

ot gmm(i, rB ) (3-10)
or B (r—1)

where ¢, is the local sound speed and B is the coefficient of the artificial viscosity
q, respectively. From this criterion the difference scheme becomes unconditionally
unstable when the artificail viscosity is not applied. The result of one-dimensional
shock tube problem shows that when B is zero, the instability appears at stagnant
region behind the reflected shock wave, because the velocity is nearly zero there
and the truncation error terms become too small and the computation is destroyed.
The instability, however, is bounded sometimes due to the nonlinear suppression
effect by the truncation error terms. In practice the stability condition will be
given empirically to satisfy Courant-Friedrichs-Lewy condition,

cot/or<1, (3-11)

and another one,

Vmax0t/0r< 1, (3-12)
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'

which forbids the fluid to move over one cell width during time increment of
because the difference schemes express no more than the relation between the

adjoining cells. Here v,,, is the maximum velocity.
The above discussion is also applicable to the other coordinates and the stability

condition must not be violated anywhere in the computing region.

3.3. Conservation of mass and energy

Although the FLIC method is not derived from the conservation law form of
the basic equations, the conservation of mass, momentum and energy, however,
must hold in the difference schemes. We will discuss the conservation of mass
and energy. Momentum is not conserved in the polar and cylindrical coordinates

and is omitted from the discussion.

3.3.1. Mass and energy conservation in Phase I

Density is considered to be constant during Phase I, therefore the total mass in
the computing region does not change in Phase I. Total energy Ez in the comput-
ing region at the beginning of the phase is given as

Ey=2 41;-‘,;+~,l;—[(v}‘,,.)2 +(w? )]}p,ij, (3-13)

Jk o

in the polar coordinates. At the end of Phase I, total energy becomes

ET=§ {7}‘k+—;—[(v )+ (0} )]}p,,u (3-14)

The difference §E2 between them is expressed as follows

oFEr—=FEn— E;_Zp Vj{(Ij,h 1)+ o208 — o) + Wi (v —wi}. (3-15)

Substituting the equations (2-20) to (2-22) into the right-hand side of the equa-
tions and rearranging the terms to cancell with each other between the adjoining
internal cells, the equation (3-15) is reduced to

~ - 1 _ _
E7=—adt ? {ES§m+l/2(p;‘bm,kU?m+l,k+p?m+1,kv?m,k)
1

+ ?q?m'”/" (ST 1D 1,5+ S50 )

1

~2—S§/2(P1 «Dox+ DoilT, K — —%/2 WSO8+ VSIS k)}
—at Z { S3D} e k1 F P 197 k) + A e #1277 e 172
“'—-S (pj ;1 + D7 W7 o) — q7, W, 1/0} +0cha (3-16)

where j=1/2, j.+1/2 and k=1/2, k, +1/2 are the external boundaries of the
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computing region, respectively. j,+1 and &, 41 indicate the fictitious boundary
cells placed adjacent to the internal cells.

The summation of the first bracket of the equation (3-16) is the net radial
energy flux through the radial boundaries of the computing region and similarly
that of the second bracket is the angular energy flux through the angular boun-
daries. For the total energy of the system to be conserved exactly, the values at
the boundary cells must be specified so that the radial energy flux given above
may be equal to the corresponding value

r n krRis
z; ST 1720 12,60 172,508

on the radial boundary and so on. The boundary conditions given in section 2. 4.
were derived to satisfy this requirement. The reason why barred velocity com-
ponents 7 and W are used in the calculation of the intermediate internal energy [
also comes from this requirement. The total energy is not rigorously conserved
when velocity components with or without tilde are used instead, although the
analogue differential equations become the same as equations (3-5) to (3-8).
Only the use of barred velocity conserves the total energy of the system.
The third term 6E7, is expressed as follows

~ o 1 N .
0L, =0t5rd¢ Z}:t "',)"loylvw.?l.;(y.?kw.?;k — VR, (3-17)
7w 2

and this term appears due to the presence of centrifugal force terms in the difference
scheme in the polar coodinates. Because the difference between #,1v and v, w is
the order of 6t, BEL’.} becomes the order of (§¢)° and therefore it is higher than the
rest of 6E7. It becomes negligibly small in practice if 5z is taken sufficiently small.
5E2f disappears if v is used instead of ¥ in the calculation of intermediate internal
enegy. For such scheme, however, energy defect appears and total energy is not
conserved as mentioned before.

In Cartesian and cylindrical coordinates 6E ». does not appear and similar discus-

sion can be given to the rest. The total energy is rigorously conserved in these
coordinates.

3.3.2. Mass and energy conservation in Phase 11

Mass flow M and total energy flow EdM flowing out from any cell are regarded
exactly as mass and total energy flows flowing into its adjacent cells respectively
in Phase II. Therefore only the mass and energy flows across the boundaries of
the computing region during the time increment ¢ give the change of mass and
total energy in the computing region. Since the boundary conditions are specified
so as to represent the flows across the boundaries, the conservations of mass and
total energy are satisfied in arbitrary coordinate system.

From above discussions it can be said that the FLIC difterence schemes exactly
conserve mass and total energy in Cartesian and cylindrical coordinates and also
conserve them within the order of accuracy in the plane polar coordinates.
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3.3.3. A madification in polar coordinates

In the early stage of development of the PIC method, specific total energy E
was used as a primary variable in the energy equation. Internal energy was
calculated by subtracting the kinetic energy from the total energy. Conservation
of energy in the system, however, did not hold in this case and energy defect
appeared although negligibly small in practice. In a certain kind of problem it
brought an instability. Later the form in equation (1-4) was adopted and the
trouble was relieved. In the PIC method it was necessary to assign the internal
energy to each one of the particles, therefore the internal energy must be used
explicitly as the one of the primary variables. In the FLIC method, however,
there is no such requirement because of the reprresentation of the fluid as con-
tinuous medium. When the internal energy is used in Phase I, the centrifugal
force terms are necessarily brought into the expression of § i» because the kinetic
energy terms appear in §E7 and the momentum equations must be substituted
into them. When we adopt the specific total energy E as a primary variable and
use an energy equation expressed in terms of E instead of the internal energy,
the Kinetic energy terms do not appear explicitly in the expression of 0F? and
the energy conservation is satisfied exactly in the polar coordinates.

A modification of the difference scheme is suggested as follows. Equation of
energy (1-8) is replaced by

0% 4w 4w OB | gl | d+awl _,

H (3 - 1 8)
ot or rog ror rog

and the intermediate total enery £7, is calculated by

» “t a3 nn n r Hn n
E} =L} — ,,o “*{[S}H/zvjﬂ/s,k(!’ + q)j+1/2,lc'—'"Sj-I/ZUj—l/Z,k(p + Q)j-x/z,k]
g
+ Sﬂw}&,kn/z(P + Q)}l,kn/s_ w?,k—l/ﬁ(p + Q)}L,k—x/z]}- (3-19)

The rest of the scheme remains unchanged from the one in section 2.2.
Total energy change 6£7 in Phase I now is expressed as

3E3=3 o1V (E%—E3)
jk
= —0t Zk: {S;mn/zl‘)}’,,,ﬂ/z,k(["*‘ Q)?mﬂ/z,k_sf/zp?/z,k(p‘}‘ q)lnlz,k}
—at Z Sz{wf,kmﬂ/z(l’ + Q)}z,kmn/z— W?,l/:z(l’ +4q }Z,l/z}- (3-20)
J
It is clear that the energy is conserved exactly in this modified scheme. It can
be shown that the consistency condition is also satisfied. In the present paper,
however, the difference scheme given in section 2.2. were used because it was

confirmed that 6E, was negligibly small without modification. Any comparison
between the two schemes was not made.
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4. APPLICATION TO THE AERODYNAMIC PROBLEMS

4.1. Supersonic flow past blunt bodies

Supersonic flow past blunt bodies with detached shock waves has been investi-
gated both theoretically and experimentally by various aerodynamicists, because
the development of highspeed aircraft, launching vehicles and reentry vehicles
needed the details of such flow field. As mentioned in the introduction, the flow
field contains a discontinuous shock wave and the shock layer is divided into the
regions where difterent type of a system of partial differential equations governs.
Theoretical study may be classified roughly into three groups: analytical, numerical
and computer experiment methods. Van Dyke [36] reviewed the existing analy-
tical methods and showed that they are inadequate to find the details of flow near
the blunt nose. He developed a numerical method of inverse type called “Marching-
ahead Procedure”. In his method, a curvelinear coordinate system is chosen to
contain the shock wave as one of its surfaces and the basic equations are trans-
formed into the coordinate system. They are solved numerically by forward
integration from the shock wave toward the body surface as an initial value prob-
lem. The calculation must be repeated modifying the form of assumed shock wave
until the desired body shape is obtained. Several modified versions are proposed
by Vaglio-Laurin and Ferri [37], Fuller [38] and Lomax and Inouye [39]. Swigart
[40] extended the method to the three-dimensional flow problem with an angle
of attack. However, the inherent weak point of such inverse method lies on the
fact that the calculated body shape is too sensitive to the change of assumed shock
shape while the shock shape does not change significantly even by a large change
of body shape in the real flow. -So it is too hard to calculate a flow field past a
body with sharp corner and of unusual form. On the other hand, the body shape
is given as the previously known boundary condition in the direct numerical
methods. But the difficulty as the mixed type nonlinear problem is not relieved.
Hamaker [41] calculated flow past a circular cylinder at Mach number of infinity
applying the relaxation method to the subsonic region and the method of charac-
teristics to the supersonic region, respectively. He treated the sonic line separately
where both of these methods are not applicable. He writes that the treatment
of the sonic line is the most critical and difficult part of the entire calculation.
Method of flux analysis by Uchida and Yasuhara [42] is a graphical method and
not suitable for computer processing. Belotserkovskii, et al. [43] applied the
method of integral relations to the blunt body problem. They made extensive
calculations on inviscid, equilibrium and nonequilibrium flow fields around families
of axisymmetric bodies. In this method, the boundary value problem is solved
for an approximate system of ordinary differential equations using a polynomial
approximation for the flow variables across the shock layer, along it or in both
directions. The method is applicable only to the subsonic region. The calcula-
tion of the flow in the vicinity of sharp corner must be treated separately and it is
considerably complicated.

When a time-dependent finite-difference method is applied to this kind of prob-
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lem, the various assumptions, ristrictions and complicated procedures in the pre-
vious numerical methods are greatly reduced. The body shape is given as a
previously-known boundary condition and no special treatment is required at a
sharp corner. At the present stage of development there are several disadvantages
such as difficulty of treatment of body surface which does not coincide with the
computing mesh, low spacewise accuracy, stability of computation and long com-
puting time. Shock wave and both of subsonic and supersonic regions of the
shock layer, however, are obtained at once. The unsteady flow field as well as
the steady one can be obtained because the calculation proceeds along the time

axis as an initial-boundary value problem. In fact, the steady solution is given
as a time-asymptotic solution after long time has passed.

Before we made the calculation of blunt body flow, a propagation of plane shock
wave was computed in the plane polar coordinates in order to get the knowledge
of the scheme in that particular coordinates. Initially a plane shock wave of
shock Mach number 2.81 was placed in the middle of the computing region ABCD
(r=1.0~1.5,6r=0.01,$=0~90°, 6¢=1°)in Fig. 2. The air in front of the shock
was at rest and values given by R-H relation were assigned to the cells behind
the shock. The parameters of artificial viscosity were set as AK=1.5 and B=0.3.
The ratio z of time increment §¢ to radial cell width ér was varied from 0.2 to
1.0. When 7 was less than about a half of r;;,, where 7,5, is the maximum time
increment ratio given by C-F-L condition, the result showed that the calculated
shock Mach number, density and pressure jumps did not differ over one per cent
from the exact R-H relation. The shock front kept to be plane as it propagated
and the shock transition width was about three times of cell width. The oscilla-
tion just behind the shock was damped within one to two wave lengths. It can
be said that the accuracy and the other characteristics of the scheme are almost
same as the one in Cartesian and cylindrical coordinates.

4.1.1. Supersonic flow past a circular cylinder

Supersonic flow past a two-dimensional circular cylinder was calculated in the
polar coordinates with the following conditions.

Computing region: ABCD in Fig. 2 where r=1~3, 6r=0.02, 4=0~90°,
d¢=2.0°, and body radius R,=1,

Boundary conditions: reflective boundary at symmetric plane DA and on the
body surface AB,
free stream boundary at upstream boundary CD,
and continuative boundary at downstream boundary BC,

Initial condition: impulsive start with free stream Mach number M =4,
pressure p,, =1, sound speed c.,=1 and specific heats ratio y=1.4,

Atrtificial viscosity parameters: AK=1.5, and B=0.3,

Time increment ratio: r=4t/d6r=0.1.

Hereafter, length and time are nondimensionalized by the body radius R, and free
stream sound speed c,, as
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r*=r/R, and t*=tc /R,.

Time history of shock stand-off distanced,/R, given as the point of maximum
radial derivative of pressure and time history of stagnation pressure coefficient C s
are shown in Fig. 3. The experimental steady shock stand-off distance and the
exact stagnation pressure coefficient given by R-H and isentropic relations are
also indicated in the figure. The shock asymptotically reached its steady position
and the computation was stopped at the time cycle iumber n=1200, i.e. t*=2.4.
Shock shape and contour plot of local Mach number at this time are plotted in
Fig. 4 where the broken lines indicate the shock width. Also in the figure are the
shock and sonic line given by Moretti [44]. In Fig. 5, pressure distribution along
the body surface at time #*=2.4 is compared with a numerical solution by Fuller
[38] and numerical and experimental results by Belotserkovskii [43]. Fine solid
line indicates the sonic point on the body surface given by the position of the
critical pressure. Radial pressure distribution across the shock layer at various
angular positions are shown in Fig. 6 and compared with Moretti’s result.

The computation required about four hours on Hitachi HITAC S5020F.

4.1.2. Supersonic flow past a flat-faced circular cylinder
The axisymmetric cylindrical coordinates was used for the calculation of flow

0.5r f;:/Rb T
% I 3 0 5
tca/Rs r/Rs
F16. 3. Time history of shock stand-off FiG. 4. Shock shape and contour plot of
distance and stagnation pressure local Mach number around cir-
coefficient of circular cylinder cular cylinder, #=2.4 and M =4.

case, M..=4.
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FiG. 5. Pressure distribution on the body FiG. 6. Radial pressure distribution across
surface of circular cylinder, 7= the shock layer of circular cylinder
2.4 and M. =4. at various angles, r*=2.4 and
v Moo=4-

past a flat-faced circular cylinder. In Fig. 1, the computing region is expressed
as follows

x/Ry=—2.0~+1.0, 6x=1.0, r/R;=0.0~2.5, 6r=1.0,
and body radius R,=200r.

The initial and boundary conditions are the same as in the previous section except
for the free stream Mach number M_ =2.81 and time increment ratio r=4¢/6x=0.2.
Shock stand-off distance and stagnation pressure coefficient are plotted against time
and compared with the experimental result by Kendal [45] and the exact pressure
coefficient respectively in Fig. 7. The change of the flow field becomes almost
negligible after time t*=4. As the asymptotic steady solution the flow field at
t*=8 is shown in Fig. 8. These contour maps were obtained using X-Y plotter
directly from the output from the computer. Each plot is normalized by each free
stream value except for the local Mach number which represents the absolute value.
The interval between the contour lines is 0.1, 0.2, 0.5 and 0.2 for Mach number,
density, pressure and internal energy, respectively. The bow shock wave in front
of the body is expressed by many close contour lines. The irregular pattern found
in the free stream region is due to the round-off errors in the computation of plot
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Fic. 7. Time history of shock stand-off distance and stagnation pressure
coefficient of flat-faced cylinder case, M. =2.81.

routines and it is meaningless as well as some of the symbols and digits in the
plots such as M JET and T. In Fig. 8(e) the steady streamlines were computed
based on the mass conservation law. The bow shock wave in the figure was
determined by the least-square polynomial fitting to the trail of maximum axial
pressure derivative points at each radius. Pressure distributon along the body
surface normalized by the stagnation point pressure is compared with the numerical
result by South [46] at the front side of the body and with the experimental one
by Kendal at the afterbody side in Fig. 9.

4.2. Supersonic opposing jet directed upstream against supersonic main stream

The flow field around blunt bodies in a supersonic main stream induced by a
supersonic opposing jet injection from the nose is an area of interest. Opposing
jet injection is considered as a means of aerodynamic heat alleviation at atmos-
pheric reentry and flight control of highspeed aircraft and rockets. Most investi-
gations of such a flow field have been made experimentally and the theoretical
studies are quite few bccause of its highly complicated flow phenomena. Watt [47]
investigated the interaction of sonic jet directed upstream against main stream of
Mach number 2.5 by Schlieren photographs. Charczenko and Hennessey [48]
found drag reduction and instability of flow field of Apollo Command Module
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Fic. 8. (a) local Mach number. Fic. 8. Continued, (b) density.
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Fic. 8. Continued, (¢) pressure. F1G. 8. Continued, (d) internal energy.

|

Fi1c. 8. The asymptotic steady flow field around
flat-faced cylinder as given by countour
plots, r*=8 and M..=2.81.

Fic. 8. Concluded, (e) streamlines and
bow shock wave.

model with retro jet injection. Hayman and McDearmon [49] investigated the
effects of total pressure ratio of the jet to the free stream, jet-exit Mach number
and nozzle to body radius ratio on the flow pattern using flat-faced circular cylinder
model in Mach 2.91 main stream. Romeo and Sterrett [50] made similar experi-
ment at main stream Mach number of 6. They found two different types of the
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F16. 9. Pressure distribution on the body surface of flat-faced cylinder,
t*=8 and M..=2.81.

field. At high total pressure ratio, Mach disc is formed in the jet exhaust and
stationary bow shock wave similar to the one in front of a blunt body in a super-
sonic flow is observed in the main stream. The structure of the jet is qualitatively
the same as the one of the underexpanded jet flow into still air. Another type
occurs at low total pressure ratio and is characterized by unsteady behaviour of the
jet with violent oscillation of the bow shock in the main flow direction and the
Mach disc is not formed inside the jet stream. They attribute the latter type to
the predominant viscous dissipation of jet mixing along the jet stream boundary.
They explained the both types of the flow field by a simple qualitative theoretical
analysis. Casanova and Wu [5/] gave a semi-empirical formula for the stand-off
distance of the bow shock. However, in the treatment of the problem, it seems
that the analytical and ordinary numerical approaches are difficult even for the
steady type, because the flow field contains more than two shock waves, the inter-
face between the main and the jet streams and both of subsonic and supersonic
regions. It is more complicated than a simple blunt body problem. The time-
dependent finite-difference method will be applicable to the calculation of such
entire flow field if the calculation is carefully made.

In the present study the flow field induced by a supersonic opposing jet from
the nose of a flat-faced circular cylinder is investigated applying the FLIC method.
The calculation was restricted within the supersonic opposing jet because no dis-
turbance in the flow field may not propagate upto and change the flow inside the
jet nozzle and the boundary condition can be strictly given at the nozzle exit. It
will not be so in the case of subsonic jet injection although Taylor and Masson [52]
calculated such case applying Godunov’s scheme.

The concept of the problem and cell arrangement are depicted again in Fig. I.
The axisymmetric cylindrical coordinates are used as in the case in the previous
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TABLE |. Aerodynamic parameters and initial conditions for
the opposing jet problem.

(f;a;é | M. : M; ;[70j/[)(ymA | 1/l 'RI,-/Ru (“‘“"/lljgzi Initial Condition
1 i :
A | 280 28 s 1 0.5 10 ; o g Tl faced
B 2.81 2.81 S I 1 0.5 5 } Same as Case A
C 3.00 3.00 i ) 1 | 0.25 12 ! }:t]piﬁljzicvt?osl:art with impulsive
D 2.81 ! 2.81 | 2 1 3 0.5 10 ! Same as Case A
| | i

section. The body is represented by the rigid boundary cells where ‘the reflective
condition is applied as the boundary condition for the difference scheme. Boun-
dary condition at the jet nozzle exit is given by the jet nozzle cells where the values
of the flow variables are set to be equal to those of the opposing jet exit condition.
At the outer boundaries of the computing region, similar conditions as in the
previous section are given and shown in the figure.

Four different cases were calculated in the present study. The aerodynamic
parameters and the initial conditions for each case are listed in Table 1 where
M., and M, are the free stream and jet exit Mach numbers respectively, p,;/p,.
and I,/I,, are the total pressure and internal energy ratios of the jet to the free
stream respectively, and R;/R, is the nozzle to body radius ratio. The time
(tc../R,)s, Means that the calculations was produced up to this time. Pressure
p.. and sound speed c. of the free stream are normalized to unity. The free
stream gas and the jet gas are the same kind with specific heats ratio y=1.4. The
steady flow field obtained in the previous section was used as the initial condition

TAaBLE 2. Parameters for the finite-difference calculations.

| N P .
Case AK | ax | Ot Computing
No. IN1 | IN2 | JETIN | JN1 | IN2 | JETIN B or i Region
I R 1.5 1.0 X/Rp=—5~+1
A 100§ 20 0 20 30 10 0.2
0.3 | L0 F/Ry=0~2.5
] 1.5 | 2.0 | X/Ry=—4~ +4
B 40| 40 0 10 40 | 5 f 0.2
! 0.3 2.0 #/Ry=0~5.0
I I 1.5 1.0 ‘ x/Rp=—5~+1
C* 100 | 20 0 20 30 5 0.2
(135) (20) 0.3 Lo | r/Ry=0~2.5
] ) 1.5 ¢ 1.0 X/Ry=—5~+1
D 100 | 20 0 20 30 10 0.2 :
I 0.3 1O | | +/Ry=0~2.5
R B T

x ( ), after *=9
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for all but case C in which the free stream values were allotted to every cell at the
start of computation. We regarded the opposing jet was already started at time
zero. Jet flow deflection angle at the nozzle exit was set to be zero, although the
other conditions can be easily applied if one wishes so. The other parameters
for the difference scheme are shown in Table 2. Symbols such as IN1, IN2 and
JETIN represent the total cell numbers taken in axial and radial directions as
shown in Fig. I. Time increment ratio r was 0.2 in all cases. Case B was cal-
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FiG. 10. Time-dependent flow field of the opposing jet as given by countour

plots of density, case A.

culated to check the influence of the boundary conditions and the accuracy of
solution. Aerodynamic parameters were identical with case A and cell size was

doubled to enlarge the computing region.

The following figures are the examples of the computer plots of the results of

(the calculation. Fig. 10 shows the isopicnic lines at nondimensionalized time ¢*

=tc,/R,)=2.5,5.0,7.5and 10.0 of case A. The total pressure ratio is five. The

- /A/
g
B \Ri m/:/‘f B

Fic. 11. Continued, (b) pressure.
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FiG. 11. Continued, (¢) internal energy.

R e

Fic. 11. Continued, (d) Streamlines and bow shock wave.
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FiG. 11. The asymptotic steady flow field of case A at r*=10.

rectangular frame in the figure indicates the entire computing region. The lower
boundary is the symmetric axis and the flat-faced cylinder lies on the lower right ‘
corner. “T” in the figures does not indicate the correct time and should be ‘
neglected because it means the value of ndt continuing from the calculation in the
previous section. The intervals between the contour lines are the same as in
Fig. 8 except case C in which the intervals are 0.1 for density, local Mach number

This document is provided by JAXA.




(%)
(S

Numerical Calculations of Aerodynamic Problems

and internal energy and 0.2 for pressure, respectively (see Figs. 13 and 14). The
contour maps of local Mach number, pressure, and internal energy, stream lines
and velocity vector at every other cell at time *=10 are shown in Fig. 11 as the
asymptotic steady tflow field. To compare with case A, the isopicnic lines at time

'FIG.IIB. Continued, tc) ‘1"‘—_—3? Fic. 13. Eontinued, (d) =4,
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Fic. 13.

Continued, (e) r*=6.
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Fic. 14. Continued, (b) pressure.

FiG. 14. Unsteady flow field of case C at r*=12.
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tCQ/Rb_ 40

Case C

FiGc. 15. Concluded, (f) *=4.0.

FiG. 15. Details of flow field in the vicinity of nose in the early stage of
case C as given by velocity vectors.
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e F1G. 16. (a) density.
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M o2Ei= 2,81
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MACH NG

Fi1c. 16. Continued, (b) local Mach number.
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t*=5 of case B are shown in Fig. 12. The time-dependent flow field of case C
is shown in Fig. 13 as a series of isopicnic line plots. The total pressure ratio is
two and the nozzle exit radius is one fourth of the body radius. The free stream
and the jet were impulsively started in this case. The bow shock was formed
soon after the start and moved forward as the core of the jet stream extended
along the axis. When the bow shock reached near the upstream boundary at time
t*=9, the computing region was extended forward and shortened in radial direc-

M OINF- 0 34
M = 2.8
T = 320 ¢

Fic. 16. ontinued, (c) pressure.

M INF= 2 81
M Ci= 2.81
I W W T

INT. ENERGY

F1G. 16. Continued, (d) internal energy.

FiG. 16. Continued, (e) streamlines and bow shock wave.
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Fic. 16. Concluded, (f) velocity vectors.
Fic. 16. The asymptotic steady flow field of case D at r*=10.
tion. The computation was continued until time t*=12 when the shock again
, reached the upstream boundary. Fig. 14 shows the unsteady flow field at time

t*=12. The details of the flow field in the vicinity of the nose at early time are
shown in Fig. 15 where the velocity vector at every cell is plotted. The solid line
indicates the bow shock. The steady flow field was obtained for case D in which
the total pressure ratio was two and the other conditions were identical with case
A. Flow field at time t*=10 is shown in Fig. 16.

Bow Shock
—-—Interface
! . 6 ——-—Mach Disc
!
o | c
Ry
L §
j 4_
N . A
/’ —~— o —
’ =Rt
2+ /// 7 D
/ / i IO -
// // ~ — -
/ Ve
’
L),
r /
l, //
‘s
0 /// | |
0 5 10
{. tC.y;/Rb
! Fic. 17. Time history of stand-off distances of bow shock,
interface and Mach disc.
L |

This document is provided by JAXA.

[T ———



40

N. Hirose

1.5

Cpu- Cpl(A,B)

0.5

T

| !
=053 10
tew/Rs

Fic. 18. Time history of average surface pressure coefficient.

15( 0 FLIC(M.=2.81,M;=2.81,R;/Rs=0.5)
O Hayman & McDearmon (M..=2.91,M;=3.00,R;/R:=1.0) &
a ” (M., =2.91,M;=3.00,R;/Rs=0.8)
A
Bow Shock d,/R;
10 A D/D’A/A Interface d;/R; A
merEee L
< L
g —
R;j o % g}] Mach Disc d,/R; A
vl A g-a—>2
o S,D/E/
- o
5 o 7 2 ©
o A
i
0 1 | . | L I I | L ]
0 2 4 8 10
Poj P
Fic. 19. Variation of stand-off distances with total pressure ratio.
]

This document is provided by JAXA.




Numerical Calculations of Aerodvnamic Problems 41

The stand-off distances of the bow shock, the interface and the Mach disc are
plotted against time in Fig. 17. Fig. 18 shows the time history of the average
surface pressure coeflicient on the front side except the nozzle area. Jet exit
static pressure for each case is also indicated by horizontal line. Experiments of
Hayman and McDearmon were made with aerodynamic conditions close to the
ones in the present study, i.e. main stream Mach number M_=2.91, jet exit Mach
number M;=3.00 and nozzle to body radius ratio R 4/Ry=0.8 and 1.0. Standoff
distances read from their experimental photographs were plotted as function of
total pressure ratio in Fig. 19 and compared with the present results of case A
and D indicated by white circles. In this figure the stand-off distances were nor-
malized by the jet nozzle radius R,.

The computation required about 4 millisecond per one time cycle and one cell
.* using the same computer as in the previous section. The whole calculation took

about six hours for each of cases A and C, one hour for case B and three and a half
hour for case D. In the last case the most of the free stream region in front of
the bow shock was left without computation at each time cycle to save the com-
puting time.

5. DIscUSSIONS OF THE RESULTS

5.1. Supersonic flow past blunt bodies
3.1.1.  Asymptotic behaviour to the steady flow field

A bow shock wave is formed upon the body surface when the body impulsively
begins to move. In the two-dimensional circular cylinder case, the shock wave
moves forward with decreasing speed and approaches monotonically its final posi-
tion. But the final steady state was not attained within the computing time 1*=2 4.
The shock stand-off distance was approximately expressed as an exponential func-
tion of time and the extrapolated steady value was 0.52 R,. The moving shock
wave was attenuated from the start by diffraction waves originating from every point
on the body surface. The stagnation pressure showed an oscillation with small am-
plitude, the period of which proportionally increased with the shock stand-off dis-
tance. The period was characterized by a representative time t(=8,/c;-c../R, <
0.257) where ¢, is the sound speed behind the shock. This indicates that the
oscillation results from the pressure wave propagation between the shock and the
body surface. The pressure approaches steady state faster than the shock stand-off
distance does.

On the other hand, in the flat-faced cylinder case, the shock wave left the front
surface with nearly constant speed and overshot beyond the steady position then
approached the equilibrium position accompanying slow and large oscillation. The
stagnation pressure varied with phase opposite to the oscillation of shock stand-off
distance, i.e. pressure decreased as the shock moved forward and increased as the
shock moved backward. The period of the pressure oscillation coincided with the
twice of a representative time t(=R,/c,-c,/R,=0.62) which means the time
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the presence of the corner reaches the center line. Such oscillation of shock is in
contrast with the former case. Miles, Mirels and Wang [53] gavc a theoretical
required time for establishing the detached shock around an impulsively started
flat-faced cylinder. Their theory gives time #¥=2.92 for free stream Mach number
of 2.81 which agrees with the present result. However: their assumption that the
shock monotonically reaches the steady position seems to be a crude one when
we consider the oscillating behaviour of the shock found in the present calculation.

5.1.2. Steady flow field

The steady shock stand-off distance around a circular cylinder parallel to the
main stream agreed with the experimental results by Kim [54] and Ambrosio and
Wortman [55] and with the existing numerical results. A little difference of the
shock wave position at time t*=2.4 from Moretti’s calculation was due to the
remaining unsteadiness. But the shock shape itself was in good agreement and
seems to coincide with his result after a long time because it still keeps moving
forward slowly. Therefore the flow just behind the shock did not become steady
perfectly at this time while the flow near the body surface had already approached
steady state as indicated by the coincidence of the shape of the sonic line in
both results in Fig. 4. The sonic point on the surface was at $=47.5°. In spite
of the coarse cell arrangement in angular direction, the present calculation showed
a close agreement with other numerical and experimental results.

The contour plot of local Mach number qualitatively showed similar pattern
to Hamaker’s solution for infinite Mach number. Some distortion was recognized
in the region near the down stream boundary where the continuative boundary
condition was applied. However, the influence of the boundary condition did not
propagate deep into the upstream because the flow was purely supersonic there.
Distribution of the surface pressure also showed a favorable curve close to the
other existing results. The value of stagnation pressure p,/p. was 20.29 which
was about 3 per cent lower than the exact one 21.075.

In the flat-faced cylinder case, the shock stand-off distance 4,/R, (=0.632),
and the shapes of the shock and the sonic line were in better agreement with
experiments than in the former case. Contour plots indicate that the sonic line
leaves exactly from the body shoulder and surface pressure decreases to lower
than the critical pressure there. Surface pressure agreed with South’s numerical
solution by the method of integral relations. The comparison of the shock shape
between the present and his results indicates that the former gives reasonable shock
shape and flow field around the body shoulder and the latter does significantly
different shock shape from the experimental one. The region of low local Mach
number extends to the vicinity of the shoulder compared with the one past a
circular cylinder. Therefore the shape of the corner will have a large effect on
the flow pattern of the entire shock layer. A weak secondary shock is formed
behind the expansion around the shoulder. Compared with experiments' the pres-
sure distribution on the side surface indicates the shock originates from nearer
position to the shoulder than experiments. It may be caused by the insufficient
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body length used in the presnt calculation and neglected real viscosity effect which
may play main role on the separation and reattachment of the flow past the

shoulder.

5.1.3. On some numerical problems in the polar FLIC method

A large oscillation with wave length of 2 to 3 &r occurred in the region ¢=
40°~50° in the early stage of computation in the polar coordinates. This oscilla-
tion seems to arise from the nonlinear instability of the difference scheme because
the region includes the sonic line inside where the instability tends to occur as well
as at the stagnation point. However, it was damped down subsequently by the
dissipative effect of the truncation error terms and the solution converged to a
smooth one after all. Moretti [56] pointed out that the reflective boundary condi-
tion represents zero radial derviative on the body surface and it is physically in-
correct in general. He showed that correct pressure distribution across the shock
layer was not obtained and sometimes the solution became unstable when the
reflective boundary condition was applied. Applying time-dependent method of
characteristics to the calculation on the body surface and at the shock front, he
obtained a smooth pressure distribution across the shock layer using only a few
mesh points across it. Comparing with his results in Fig. 6, a reasonable distri-
bution is obtained when a fine mesh is used in the FLIC method even if the reflec-
tive boundary condition is applied. In the figure, the largest deviation of a few
per cent occurred on the stagnation stream line $=0°. This error was caused by
the accuracy of the method, cell size and cell arrangement, i.e. the stagnation
streamline is not located on the center of cell. The magnitude of the error, how-
ever, remained within the same order as that of two-dimensional problems in
other coordinates.

Oscillation of shortest wave length 2 &r is most hard to decay because the
amplification matrix becomes unity for such wave length as pointed out by
Houghton, Kasahara and Washington [57] who discussed the stability of Lax-
Wendroff scheme. The present calculation exhibits the same tendency as in their
case. Such shortest wave remained to the last in the vicinity of body surface.
But the oscillation became sufficiently small after all. Another oscillation just
behind the shock jump is unavoidable due to the continuous transition across the
shock in the present method.

Conservation of total energy in the computing region was checked throughout
the computation and it was confirmed that the net change of total energy during
the time increment 6t was less than 10~% of the total energy EZ in the computing
region. Therefore the total energy is conserved practically in the polar coordinates
as well as in the other coordinates.

5.2.  Supersonic opposing jet directed upstream against supersonic main stream

The results of the calculation indicate that there are two different types of flow
field. One of them is a steady flow field which was obtained asymptotically as
time tends to infinity. Such as example is case A. The other type is obtained
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for case C in which the flow field consists of ever-forward-moving bow shock and
periodic wave pattern inside the jet stream. The discussions are given as follows.

5.2.1. Asymptotic behaviour to the steady flow field

To establish the supersonic opposing jet flow, the normal shock wave formed
in the nozzle must be blown down into the main stream shock layer behind the
bow shock. The critical total pressure ratio to satisfy this starting condition is
determined for a combination of free stream and opposing jet exit Mach numbers.
When both Mach numbers are equal to 2.81, the critical pressure ratio is 1.177.
It can be shown that all the cases calculated satisfy this condition. Therefore
the calculated flow field can be regarded to represent the real physical phenomena
of the inviscid time-dependent flow. In cases A and D, a disc-like normal shock
wave called “Mach disc” appears in front of the nozzle exit as soon as the jet is
exhausted from the nozzle at start. Mach disc moves forward with nearly constant
speed and also does the bow shock in the main stream. The speed becomes slow
for the low total pressure ratio case. The computing mesh was coarse compared
with the scale of the region between the bow shock and the Mach disc. Therefore
it was not sufficient to get the fine structure of the flow field in this region. Con-
tinuity of pressure and discontinuities of density and internal energy across the
interface, however, were obtained distinctly as shown in Fig. 10(a) and (b). The
average surface pressure on the front side of the body decreased rapidly and
became lower than the jet exit static pressure in a short time. The lower the
total pressure ratio becomes, the more the time is required for the jet to become
underexpanded jet. The pressure continued decreasing until the flow became
nearly éteady. A vortex appeared in the vicinity of the edge of nozzle exit when
the jet started and soon it expanded over the front surface as the jet expansion
pushed it outward. The vortex is formed due to the presence of the artificial
viscosity because shear stress becomes large at the edge of nozzle exit when the
jet stream flows into the stagnant shock layer. The process will be similar in the
case of real fluid flow. The bow shock and the Mach disc gradually stop moving
forward at about time #*=6, then moving back a little, they become almost at
rest as shown in Fig. 17. The motion of the interface is almost the same, it,
however, exhibits slow and large oscillation until later time. Because of this, the
shape of the interface sometimes becomes concave near the axis as shown in
Fig. 10(d). Such remaining unsteadiness is confined in the stagnation region and
tends to decay slowly. The change of flow pattern with time becomes almost
negligible at about time t*=10 except for the interface region.

5.2.2. The flow field of steady type

The contour maps, the streamline plots and the velocity vector plots in Figs. 10,
11 and 16 represent the asymptotic steady flow field of cases A and D. The
steady flow pattern can be interpreted from those figures. The jet exit static
pressure is well above the surrounding external pressure and the jet flow is accere-
lated by expansion to form an exhaust plume similar to the one formed by a jet

L 13
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blown into still air. The jet is decerelated suddenly at the Mach disc. Total
pressure losses occur at the Mach disc in the jet stream and at the bow shock in
the main stream, respectively, to balance with each other at the interface. Rare-
faction waves originate from the nozzle edge and they are reflected along the jet
boundary to form a weak intercepting shock wave, the presence of which can be
identified by the change of local Mach number, pressure and flow direction al-
though not so obvious. A strong reflected shock appears from the intersecting
point of the Mach disc and the intercepting shock. The outer edge of the reflected
shock coincides with the jet boundary line calculated from the jet mass flux rate.
Although we used the term “Mach disc”, it is almost semi-spherically shaped in
contrast with the plane Mach disc formed in the underexpanded free jet into still
air. The radius of curvature of Mach disc Reyup/R;is about 3.45 in case A. The
shape of the interface is also semi-sphere except the oscillating part near the axis.
Neglecting this part, the stand-off distance of the interface from the body §,/R, is
about 2.90~2.95 in case A. The shock layer of the main stream is quite similar
to the one around a blunt body. It seems reasonable to replace the interface with
solid blunt body of same shape. The radius R;;r of the equivalent blunt body
and the radius of curvature R,,s of the bow shock were calculated from the
equivalent shock stand-off distance 4(=3d,—4d,) using the empirical formula of
Ambrosio and Wortman [55] for sphere as follows

4;/R;,=0.68~0.73, Rorr/Ry=3.17~3.40,
Rips/R,=4.74~5.80 for case A.

The agreement between these values and the plotted shapes of the bow shock and
the interface in the figures is fairly good. The shape of sonic line resembles the
one around sphere at Mach number range of 2 to 3 as pointed out by Hayes and
Probstein [58]. Shock jumps and stagnant values on the stagnation streamline are
compared with the theoretical ones on Table 3. The relative error is less than
4 per cent except for the pressure in front of Mach disc, of which error is due to
the artificial diffusion of shock transition and the influence of reflective boundary
condition on the symmetric axis.

TaBLE 3. Calculated values at the particular points on the stagnation
streamline, case A, *=10.

ggl\}jnghock Interface l%?;lcingisc ]léfafg}rle Disc
Pressure (318455) (igﬁ §415) (322271 ) (8I§gso)
Density (g 2337) (j, (1)3_5) (%I ;838) (8: §/725)
Mach Number| 030 _ (©.2197) @ 7137)

() Theoretical value using R-H relation and isentropic flow condition
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The relation between the stand-off distances and the total pressure ratio gives
a good agreement with the experiment of Hayman, et al. as shown in Fig. 19,
considering the difference of aerodynamic parameters. The calculated flow pattern
also agrees with their photographs. Although the average surface pressure co-
efficient C,,, on the body front surface is slowly oscillating, its mean value, —0.09,
of case A is very close to the measured value, —0.08, by Hayman. The present
calculation gives —0.045 as the side pressure coefficient while his experiment gives
—0.05 to —0.06. From these comparison, it can be said that FLIC calculation
gives good approximation to the surface pressure as well as the flow pattern in
spite of the method not taking into account the real viscous effect and the viscous
effect being predominant in this region as indicated by the appearance of large
vortex. This can be explained as follows. The artificial viscosity terms included
in the difference scheme play the qualitatively similar role as the real one. Although
the vortex itself is a product of viscosity, its motion is governed mainly by the
inviscid flow surrounding the vortex and the effect of difference of the forms
between the artificial and real viscosity terms becomes only secondary.

The jet stream decelerated to subsonic speed either by Mach disc or reflected
shock flows along the interface turning its direction to downstream and expands
again to supersonic speed impinging upon the side surface of the body with an
angle of about 20 degrees. “Reattached shock wave” appears in the vicinity of
the body shoulder which turns the flow direction to downstream. The corner of
the body becomes a stagnation point and the shock wave is detached a little bit
from the body surface. When total pressure ratio is high, subsonic region upon
the side surface extends to the downstream boundary although it is confined in a

thin layer. The presence of strong reattached shock seems to cause such
phenomena.

5.2.3. Comparison of cases A and B

As mentioned above, the influence of downstream boundary condition propagates
upstream through the subsonic layer upon the body surface and this may cause
the change of the pressure in the vortex region which have significant effect on
the shape of jet exhaust plume. Another deteriorating influence from the upper-
side boundary condition propagates along Mach line which originates from the
intersection of the bow shock and the boundary and reaches to the subsonic vortex.
To study these problems, case B was calculated in which the computing region
was extended to x*=+4 in axial direction and to r*=5 in radial direction. We
were compelled to sacrifice the accuracy of solution by making cell size twice of
that in case A, because of the insufficient computer memory. The bow shock
intersects the upper boundary far behind the front side of the body in case B and
the local Mach number there is 2.4 as shown in Fig. 12. Therefore the area
affected by the boundary condition is limited to the vicinity of the upper boundary.
At the downstream boundary the flow recovers supersonic speed and the effect
of the boundary will not propagate upstream. Compared with case A, the time
history and asymptotic steady value of the average surface pressure (Fig. 18)
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becomes almost same. Shapes and positions of the bow shock, the Mach disc and
the sonic line and the distribution of the flow variables also can be regarded the
same with case A when we take into account of the coarser mesh (Fig. 10(b),
and 12). It may be concluded from the above comparison that the boundary
conditions of case A have no significant deteriorating influence upon the numerical
solution.

5.2.4. The flow field of unsteady type

Another different type of flow field was obtained in case C, in which the nozzle
to body radius ratio R,/R, was 0.25, the total pressure ratio p,;/p,.. was 2 and the
free stream and jet exit Mach numbers M_ and M ; were both 3.00. Strong Mach
disc was not formed in the jet stream. The bow shock wave began to move
forward from the front face of the body with nearly constant speed when the flow
was impulsively started. It seemed to keep moving forward all the time as shown
in Fig. 17 while the bow shock stopped at about time #*=6 in the other cases.

When the jet starts, the surface pressure at the front side of the body is much
higher than the jet exit static pressure and yet the opposing jet starting condition
is satisfied, supersonic jet accompanied by oblique shock from the nozzle edge is
formed. The oblique shock is weaken as the jet stream pushes itself into the main
stream. A vortex appears from the start as in the steady type (shown in the serial
plots in Fig. 15). Since the nozzle exit radius is small in the present case, the
vortex is confined in the vicinity of nozzle exit. It takes some time for the vortex
to extend all over the front surface. Therefore the average surface pressure de-
creases slowly compared with the former cases. The asymptotic equilibrium
pressure was 0.117 in the unit of pressure coefficient which was slightly lower
than the jet exit pressure 0.1588. The nozzle radius was represented by only five
cells and the computing mesh was not fine enough to investigate the details of the
flow pattern such as the structure of the jet stream and the stagnant region between
the bow shock and the jet stream. The contour maps at various times (Fig. 13
and 14) indicate that the stagnant region is confined in a small region of the width
of about 0.6 R, and its structure does not change with time as the jet keeps
moving forward. The pressure jump at the bow shock was close to the theoretical
value 14.45 which R-H relation gives for the shock Mach number of 3.54. Here
the shock Mach number was calculated from the inclination of the curve in Fig. 17.

The periodic pattern of shock waves and rarefaction waves was established in
the jet stream soon after the jet started and was left behind the head of the jet.
No external boundary condition have any influence on the formation of such wave
pattern, because it is established long before any disturbance from the upper
boundary reaches the vortex or the body along Mach line (see Fig. 13(f)) and
local Mach number at the downstream boundary is supersonic throughout the
computation. When the radial width of the computing region was decreased at
time #*=9, no abrupt changes of the flow pattern and aerodynamic characteristics
such as the surface pressure was observed and the periodic wave pattern continued
until the last computing time t*=12. Therefore this flow pattern seems to arise
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from the particular aerodynamic conditions applied. It will continue at least until
the jet total pressure losses by shocks and artificial viscous dissipation will balance
with the main stream total pressure loss at the bow shock.

Romeo and Sterrett observed in their experiments that the bow shock was
removed far from the body in a certain range of total pressure ratio. The large
shock displacement collapses momentarily and the strong shock pattern like case A
appears and then returns to its position far ahead of the body. The unsteadiness
is also characterized by irregular oscillation in lateral direction. They explain that
the jet flow cannot expand sufficiently so the pressure balance with the main stream
by total pressure loss at a normal shock does not occur, and viscous dissipation by
mixing process is required to reduce the kinetic energy and to balance with the
main stream in this case. There are a number of factors which can cause deviation
between theory and experiment such as three-dimensionality, nonuniformity, effect i
of real viscosity and the like, the results of the present calculation may not be '
directly compared with the experiments. The process of the formation of the flow
pattern obtained in case C, however, seems to show remarkable similarity with the
experiment by Romeo and Sterrett. The axial oscillation of the bow shock wave
was not obtained in the present calculation. This is because the calculation time
corresponds to a very short time of the order of millisecond when transformed to
real physical time. It may be regarded the present result as only a part of un-
steady solution.

5.2.5. On the parameters to determine the type of flow field

It is determined by the selection of aerodynamic parameters and initial condition
which type of the flow field is obtained in the calculation. Compareing case C
with case D, the initial condition is not same. The former used the impulsive
start condition and the latter used steady blunt body flow solution. Time history
of the average surface pressure in Fig. 18, however, indicates that the pressure
decreases at first and then becomes near-equilibrium for a while soon after the
start and again begins to decrase in case C. The velocity plots of this intermediate
equilibrium state at time ¢*=1.0 to 1.5 shows that the vortex is still confined in
the vicinity of nozzle exit and the flow pattern outside of the vortex is very like
the flow without jet. It is conjectured that the unsteady type of the solution will
be obtained in case C even if the blunt body flow solution is applied as the initial
condition, although the practical computation will prove it.

The other factors are the aerodynamic parameters, the Mach number of the
free stream M, and of the jet M, and the nozzle to body radius ratio R;/R,. Total
pressure ratio p,;/P.. was two in both cases. The magnitude of shear stress and
strength of vortex will be represented by a numerical Reynolds number R, defined
by velocity u;, density p;, nozzil exit radius R, and the coefficient of truncation
error terms &,, which reduces to (2 R;/dx). So the numerical Reynolds number is
not a function of the flow variables and it merely represents how fine the com-
puting mesh describes the shape of body and the structure of flow field. In the
present calculation the numerical Reynolds number does not differ so much be- &
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tween the both cases and will not have a little influence on the formation of the
flow field. The flow Mach numbers also do not differ so much to cause the for-
mation of different flow type. Hayman obtained the steady type of the flow field
in experiment in the same range of Mach numbers as the present cases at the
total pressure ratio above 2.6. Considering these points, it is conjectured that
cases C and D lie near the critical transitional zone where a little deviation of
Mach number, nozzle to body radius ratio or total pressure ratio changes the type
of the flow field. The critical point for a particular parameter will be determined
if numbers of cases are computed by changing the parameter. However, such
calculation is not an efficient way of analysis in present days and the obtained
result will not give the exact critical value for the parameter found in the experi-
ments because of many a factor different from the experiments.

6. CONCLUDING REMARKS

To conclude the present study it was shown that the aerodynamic problems con-
taining highly complicated time-dependent and asymptotic steady flow field are
numerically obtained by applying one of the computer experiment methods known
as the Fluid-in-Cell method: (1) supersonic flow past a circular cylinder per-
pendicular to the main stream, (2) supersonic flow around a flat-faced circular
cylinder parallel to the main stream, and (3) supersonic flow around a flat-faced
circular cylinder with a supersonic opposing jet from the nose.

The time asymptotic behaviour and the steady flow field obtained in cases @9)
apd (2) show close agreement with those of the existing theories and experiments.
It was also shown that the FLIC method was extended to the plane polar coordi-
nate system in case (1) and the extension proved to be practical as well as the
existing method in the other coordinate systems. The method will be similarly
extended to the spherical polar coordinate system.

In case (3), the existing method was applied to the opposing jet problem and
it becomes clear that the method can produce sufficient informations to investigate
such highly complicated flow field. The calculation shows that two different types
of flow field appear according to the governing parameters given as the boundary
conditions such as free stream and jet exit Mach numbers, nozzle to body radius
ratio and total pressure ratio of the jet to the free stream. One type is a steady
flow field with a Mach disc in the jet stream and a bow shock similar to the one
in front of a blunt body in the supersonic flow. The other is an unsteady flow
field with ever-forward-moving bow shock and periodic wave pattern in the jet
stream. The both types of the flow field agree qualitatively with the ones observed
in the experiments. However, only a few number of cases were calculated in the
present study and more numerical calculations and detailed investigation will be
needed in order to determine the dependence of types on the forementioned
parameters.

This document is provided by JAXA.



50 N. Hirose

ACKNOWLEDGEMENT

This work was carried out as the doctoral thesis while the author was a post-
graduate student at the Institute of Space and Aeronautical Science, University
of Tokyo. He wishes to express his sincere gratitude to Professor R. Kawamura
for his helpful advices and encouragement throughout. He also would like to
thank Assistant Professor N. Satofuka of Kyoto Technical University for useful
discussions and comments. Acknowledgement is also given to Mr. K. Seki and
author’s colleagues at Kawamura Laboratory for their eager assistances on the

preparation of the paper.

The calculation were performed on Hitachi HITAC 5020F at the Data Pro-
cessing Center of the Institute and a part of graphical reduction of data was also
performed at the Computer Center of the National Aerospace Laboratory.

Department of Aerodynamics

Institute of Space and Aeronautical Science
University of Tokyo, Tokyo

October 1, 1971

REFERENCES

[1] Chu, C. K., ed.: “Computational Fluid Dynamics,” AIAA Selected Reprint Series,
4, (1968).

[2] “Symposium on Computer Simulation of Plasma and Many-Body Problems, Williams-
*burg, Virginia, April 19-21, 1967,” NASA SP-153, (1967).

[3] “Proceedings of the WMO/IUGG Symposium on Numerical Weather Prediction in
Tokyo, November 26-December 4, 1968,” Technical Report No. 67, the Japan Meteoro-
logical Agency, (1969).

[{4] Richtmyer, R. D. and Morton, K. W.: “Difference Methods for Initial-Value Problems,
2nd ed.,” Interscience, New York, (1967).

[5] von Neumann, J. and Richtmyer, R. D.: “A Method for the Numerical Calculation
of Hydrodynamic Shocks,” J. Applied Physics, 21, pp. 232-237, (1950).

{61 Ludford, G., Polachek, H. and Seeger, R. J.: “On Unsteady Flow of Compressible
Viscous Fluids,” J. Applied Physics, 24, pp. 490-495, (1953).

[7] Lax, P. D.: “Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical
Computation,” Comm. Pure Appl. Math., 7, pp. 159-193, (1954).

[8] Rusanov, V. V.: “The Calculation of the Integration of Non-Stationary Shock Waves
and Obstacles,” USSR Comp. Math. and Math. Physics, 1, pp. 267-279, (1961).

{91 Bohachevsky, I. O. and Rubin, E. L.: “A Direct Method for Computation of Non-
equilibrium Flows with Detached Shock Waves,” ATAA J., 4, pp. 600-607, (1966).

[70] Bohachevsky, 1. O. and Mates, R.: “A Direct Calculation of the Flow about an
Axisymmetric Blunt Body at Angle of Attack,” AIAA J., 4, pp. 776-782, (1966).

[11] Lax, P. D. and Wendroff, B.: “Systems of Conservation Laws,” Comm. Pure Appl.
Math., 13, pp. 217-237, (1960).

{I2] Richtmyer, R. D.: “A Survey of Difference Methods for Nonsteady Fluid Dynamics,”
Technical Note No. 63-2, National Center for Atmospheric Research, (1962).

{131 Burstein, S. Z.: “High Order Accurate Difference Methods in Hydrodynamics,” NON-
LINEAR PARTIAL DIFFERENTIAL EQUATIONS, W. F. Ames, ed., Academic
Press, New York, pp. 279-290, (1967).

This document is provided by JAXA.




Numerical Calculations of Aerodynamic Problems 51

[I41 Rubin, E. L. and Burstein, S. Z.: “Difference Methods for the Inviscid and Viscous
Equations of a Compressible Gas,” J. Computational Physics, 2, pp. 178-196, (1967).

[Z15] Lapidus, A.: “A Detached Shock Calculation by Second-Order Finite Differences,” J.
Computational Physics, 2, pp. 154-177, (1967).

[/6] Thommen, H. U.: “Numerical Integration of the Navier-Stokes Equations,” Z.A.M.P.,
17, pp. 369-384, (1966).

[/7] Rusanov, V. V.: “On Difference Schemes of Third Order Accuracy for Nonlinear
Hyperbolic Systems,” J. Computational Physics, 5, pp. 507-516, (1970).

[18] Burstein, S. Z. and Mirin, A. A.: “Third Order Difference Methods for Hyperbolic
Equations,” J. Computational Physics, 5, pp. 547-571, (1970).

[19] Evans, M. W. and Harlow, F. H.: “The Particle-in-Cell Method for Hydrodynamic
Calculations,” LA-2139, Los Alamos Scientific Laboratory, (1957).

[20] Amsden, A. A.: “The Particle-in-Cell Method for the Calculation of the Dynamics
of Compressible Fluids,” LA-3466, Los Alamos Scientific Laboratory, (1966).

[21] Daly, B. J., Harlow, F. H. and Welch, J. E.: “Numerical Fluid Dynamics Using the
Particle-and-Force Method,” LA-3144, Los Alamos Scientific Laboratory, (1965).

[ Q‘ [22] Gentry, R. A., Martin, R. E. and Daly, B. J.: “An Eulerian Differencing Method for
Unsteady Compressible Flow Problems,” J. Computational Physics, 1, pp. 87-118,
(1966).

[23] Gage, W. R. and Mader, C. L.: “Three-Dimensional Cartesian Particle-in-Cell Calcu-
lations,” LA-3422, Los Alamos Scientific Laboratory, (1965).

[24] Butler, T. D.: *“Numerical Solutions of Hypersonic Sharp-Leading-Edge Flows,” Phy-
sics of Fluids, 10, pp. 1205-1215, (1967).

[25] Harlow, F. H. and Pracht, W. E.: “Formation and Penetration of High Speed Collapse
Jets,” Physics of Fluids, 9, pp. 1951-1959, (1966).

[26] Rich, M.: “A Method for Eulerian Fluid Dynamics,” LAMS-2826, Los Alamos
Scientific Laboratory, (1963).

[27] Butler, T. D.: *“Numerical Calculations of the Transient Loading of Blunt Obstacles
by Shocks in Air,” AIAA J., 4, pp. 460-467, (1966).

[28] . Moretti, G. and Abbett, M.: “A Time-Dependent Computational Method for Blunt
Body Flows,” AIAA J., 4, pp. 2136-2141, (1966).

‘ [29] Masson, B. S., Taylor, T. D. and Foster, R. M.: “Application of Godunov’s Method
to Blunt-Body Calculations,” AIAA 7., 7, pp. 694-698, (1969).

[30] Hirose, N.: “Numerical Calculation of Shock Tube Flow by Two-Material Fluid-in-
Cell Method,” Bulletin of the I1.S.A.S., University of Tokyo, 7, pp. 385-402, (1971).

] \ [311 Landshoff, R.: *“A Numerical Method for Treating Fluid Flow in the Presence of
Shocks,” LA-1930, Los Alamos Scientific Laboratory, (1955).

{321 Harlow, F. H.: “The Particle-in-Cell Method for Numerical Solution of Problems in
Fluid Dynamics,” Proc. Symp. Appl. Math., Vol. 15, A.M.S., pp. 269-288, (1963).

[33] Burstein, S. Z.: “Finite Difference Calculations for Hydrodynamic Flows Containing
Discontinuities,” J. Computational Physics, 1, pp. 198-222, (1966).

[34] Kaplan, M. A. and Papetti, R. A.: “An Analysis of the Two-Dimensional Particle-

i in-Cell Method,” RM-4876-PR, The RAND Corporation, (1964).

’ [35] Courant, R., Friedrichs, K. O. und Lewy, H.: “Uber die partiellen Differenzengleich-

? ungen der mathematischen Physik,” Mathematische Annalen, 100, pp. 32-74, (1928).

[36] Van Dyke, M. D.: “The Supersonic Blunt-Body Problem - Review and Extension,” J.
Aceronautical Sciences, 25, pp. 485-496, (1958).

[37] Vaglio-Laurin, R. and Ferri, A.: “Theoretical Investigation of the Flow Field about
Blunt-Nosed Bodies in Supersonic Flight,” J. Aeronautical Sciences, 25, pp. 761-770,
(1958).

[38] Fuller, F. B.: “Numerical Solutions for Supersonic Flow of an Ideal Gas Around
Blunt Two-Dimensional Bodies,” NASA TN D-791, (1961).

[39] Lomax, H. and Inouye, M.: “Numerical Analysis of Flow Properties About Blunt
Bodies Moving at Supersonic Speeds in an Equilibrium Gas,” NASA TR R-204, (1964).

¢ . [40] Swigart, R. J.: “Hypersonic Blunt-Body Flow Fields at Angle of Attack,” AIAA I,

This document is provided by JAXA.



52 N. Hirose

2, pp. 115-117, (1964).

[41] Hamaker, F. M.: *“Numerical Solution of the Flow of a Perfect Gas Over a Circular
Cylinder at Infinite Mach Number,” NASA Memorandum 2-25-39A, (1939).

[42] Uchida, S. and Yasuhara, M.: “The Rotational Field Behind a Curved Shock Wave

¢ Calculated by the Method of Flux Analysis,” J. Aeronautical Sciences, 23, pp. 830-845,

i (1956).

[43]1 Belotserkovskii, O. M., ed.: “Supersonic Gas Flow Around Blunt Bodies, Theoretical
and Experimental Investigations,” NASA TT F-453, (1967).

[44] Moretti, G.: “Inviscid Blunt Body Shock Layers—Two-Dimensional Symmetric and
Axisymmetric Flows,” PIBAL No. 68-13, Polytechnic Institute of Brooklyn, New York,
(also on AD-672543), (1968).

{45] Kendal, Jr.,, J. M.: “Experiments on Supersonic Blunt-Body Flows,” J.P.L. Progress
Report No. 20-372, Jet Propulsion Laboratory, (1939).

[46] South, Jr., J. C.: *“Calculation of Axisymmetric Supersonic Flow Past Blunt Bodies
with Sonic Corners, Including a Program Description and Listing,” NASA TN D-4563,
(1968). .

[47] Watt, G. A.: “An Experimental Investigation of a Sonic Jet Directed Upstream
Against a Uniform Supersonic Flow,” Technical Note No. 7, Institute of Aerophysics,

Univ. of Tront, (1956).

[48] Charczenko, N. and Hennessey, K. W.: “Investigation of a Retrorocket Exhausting
from the Nose of a Blunt Body into a Supersonic Free Stream,” NASA TN D-751,

(1961).

[49] Hayman, L. O. and McDearmon, R. W.: “Jet Effects on Cylindrical Afterbodies
Housing Sonic and Supersonic Nozzles Which Exhaust Against a Supersonic Stream at
Attack from 90° to 180°,” NASA TN D-1016, (1962). ‘

{50] Romeo, D. J. and Sterrett, J. R.: “Exploratory Investigation of the Effect of a
Forward-Facing Jet on the Bow Shock of a Blunt Body in a Mach Number 6 Free
Stream,” NASA TN D-1605, (1963).

[51] Cassanova, R. A. and Wu, Y. C. L.: “Flow Field of a Sonic Jet Exhausting Counter

; " to a Low-Density Supersonic Airstream,” Physics of Fluids, 12, pp. 2511-2514, (1969).

 , [52] Taylor, T. D. and Masson, B. S.: “Supersonic Flow Past Blunt Bodies with Large
Surface Injection,” IAF Paper RE-42, (1968).

[53]1 Miles, J. W., Mirels, H. and Wang, H. E.: “Time Required for Establishing Detached
Bow Shock,” AIAA J., 4, pp. 1127-1128, (1966).

[54] Kim, C. S.: “Experimental Studies of Supersonic Flow Past a Circular Cylinder,” J. »
Physical Society of Japan, 11, pp. 439-445, (1956).

[55] Ambrosio, A. and Wortman, A.: “Stagnation Point Detachment Distance for Flow
Around Spheres and Cylinders,” ARS J., 32, pp. 281, (1962).

[56] Moretti, G.: “The Importance of Boundary Conditions in the Numerical Treatment
of Hyperbolic Equations,” PIBAL No. 68-34, Polytechnic Institute of Brooklyn, New
York, (also on AD-681365), (1968).

[57]1 Houghton, D., Kasahara, A. and Washington, W.: “Long-Term Integration of the
Barotropic Equations by the Lax-Wendroff Method,” Monthly Weather Review, 94,
pp. 141-150, (1966).

[581 Hayes, W. D. and Probstein, R.: “Hypersonic Flow Theory, Inviscid Flows, Vol. 1,”

Appl. Math. Mech. Vol. 5A, Academic Press, New York, Chapter 6, (1966).

®

This document is provided by JAXA.






