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Summary: The source flow expansion of single monatomic gases into a vacuum is
studied on the basis of the B-G-K kinetic equation. The analysis is made by means of
a numerical method proposed, in combining the discrete ordinate method. The actual
calculations are carried out covering a spatial region from the isentropic upstream to the
far downstream over a wide range of the Knudsen numbers, for both hard sphere and
Maxwell molecules. It is found that in the far downstream the velocity distribution
function is of asymmetric with respect to the radial velocity. The results for the macro-
scopic quantities are compared with the results of previous treatments, and found
to be in a reasonable agreement with the numerical experiment by means of the Monte-

Carlo method.

1. INTRODUCTION

In the free jet expansion into a vacuum, the flow is collision-dominated or isen-
tropic in the vicinity of the orifice, while it becomes free molecular or collisionless
in the far downstream from the orifice. Such phenomena appear in the exhaust
from vehicles such as artificial satellites or rockets at high altitudes. Since the free
jet expansion is rather complicated for the analysis, the expansion of gases from
a point source into a vacuum has often been treated in order to clarify characteristic
features associated with the phenomena. In fact, as pointed out by Sherman [/],
the spherical source flow model may be quite a good representation of events along
a jet center line. Quite apart from any applications these problems will contair
a very important feature of the transition from continuum to free molecular flow
in the absence of boundaries.

The problem concerned should be dealt with within the framework of kinetic
theory. To the author’s knowledge, it was done first by Brook and Oman [2]
based on the B-G-K kinetic equation. Unfortunately, however, some of significant
terms in the equation were ignored, so that the results are unlikely to be more
than a qualitative estimate. After this work the moment-method analyses were
performed based on the B-G-K kinetic equation by Edwards and Cheng [3] mainly
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focusing their attention to a far downstream region, and by Hamel and Willis [4]
based on the Boltzman equation by matching the near-field solution with the far-
downstream solution obtained with the hypersonic approximation. Recently an
analysis similar to that by Hamel and Willis [4] was made by Chen [5] by pre-
serving more higher moments. The results were found different appreciably from
those of Hamel and Willis [4]. The moment method in general involves some
uncertainty due to the arbitrariness in the truncation of higher order moments.

Although, in the present paper, we still retain the B-G-K kinetic model, we aim
to obtain a more straightforward solution for the kinetic equation with far fewer
approximations than the previous treatments. The solution is obtained by means
of a numerical method proposed here, in combining the discrete-ordinate method.
The actual calculations are carried out covering a spatial region from the isentropic
upstream to the sufficiently far downstream over a wide range of the Knudsen
number, for both hard sphere and Maxwell molecules.

2. FORMULATION OF THE PROBLEM

The problem that we pose is illustrated in Fig. 1; we have a sphere of radius r,*
from which gas is streaming with the velocity equal to the local speed of sound.
The gas is allowed to expand radially, so that as r—oo the density of gas will
approach zero; we will be specifically interested in those conditions, for which
source flow realises a supersonic expansion in the range r>r*. The problem then
is to predict the density, velocity, and temperature of the gas outward from the
starting point of calculation (r=r,) for the various source conditions.

To investigate this problem we use as our point of departure a numerical method;
that is, discrete ordinate method. This method will allow us to analyse the
problem without hypersonic approximation. We are specifically interested in two
points; one is the breakdown of the isentropic expansion, and the other is the
behavior of the expanding flow far downstream from the sonic radius. So we
will start the calculation from the radius r; where the local Mach number of the

r* : Sonic Radius
v . Reference Radius

Fic. 1. Source flow expansion.
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Spherical Source Flow Expansion into Vacuum 107

expanding flow is~2, i.e., r*<r;<2r*. The problem is one-dimensional in physical
space in that the distribution function f(r, 17, t) describing the state of the system
depends on r. The Boltzmann equation with the B-G-K collision model is chosen
as the basic equation. In view of the geometrial symmetry the expression for this
equation becomes in spherical coordinates (r, 8, ¢) as follows :

2 2
v, YotV of ViV, of V.V, o _ g g5 (1)
or r aV, r 3V,; r an

where F is the Maxwellian distribution pertinent to the number density, n, mean
velocity U and temperature T, i.e.,

F=nQzRT)~** exp [— QRT) " {(V,—U)*+ V3 + V2}] (2)

with the gas constant R. The collision frequency v is given for gases obeying visco-
sity-temperature relation poc T¢ where the exponent s depends on the intermolecular
force law, by v=nkT [y, where k is the Boltzmann constant.

Defining the radial and perpendicular temperatures, respectively, by

T,=(R)" [0, — UMV,  T,=@nR)" [Twevprar (3)

where V is the velocity vector, we have
T=(T,+2T,)/3

Let us introduce the following dimensionless variables referred to the quantities at
the radius r=r,,

r=rlr, n’'=n/n, U=U/U,
Vi=V,|V, Vi=V,|V,, Vi=V,|V,
T'=T/T,, T, =T,/T, T, =T,/T,,
f'=Wi/n)f, F'=(Vi/n)f, V=uv/u,

where the subscript 1 denotes quantities at r=r, and V,=(2RT,)2. Then the basic
equation (1) and the associated macroscopic moments are rewritten in terms of the
dimensionless variables. That is, Eq. (1) becomes

af/ Vlz + V/z a)(l V/ V/ af/ V/ V/ afl
V= J 4 e YV, — AJ(F —¥ 4
o T vl o, v, v A ED ()

Here F’ is the nondimensionalised Maxwellian distribution
F'=n'(zT)"" exp [-{(V;=S,UY+V+ VT, (2"
where nondimensional parameters A and S, are as follows :

4= tw _ kT, S,= U, (5)

- b
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The macroscopic moments are obtained as follows:
"= f PV, U=(s) f Vi
=200 [ Wi=svyrav,  Tp=w- [Twpyvorar, (6

T'=(T,+2T,)/3

The parameter A4 can be related to the Knudsen number Kn,=L,/r, where L, is
the mean free path at the reference radius. If the mean free path is given by

L=16__ m
S mn,(2zRT)"?

where m is the molecular mass, we have
A=(x)"?/2Kn, (7)

The parameters 4 and S, are not independent for the case when the expansion is
isentropic from the sonic radius up to the reference radius r=r,. For this sace a
pair of parameters 4 and S, is related to the source Knudsen number Kn which is
defined as Kn=L,/D, where L, is the mean free path at the stagnation and D the
diameter of the orifice from which an equivalent free jet expansion blows out.

The primes denoting dimensionless variables may be omitted without any con-
fusion, unless the specific note is provided. It is usuful to introduce two functions
ofrand V,:

L g V)=r f f taviav,  hevo=r | f "V vhiav,av, (8)

These functions [6] were first applied by Chu [7] in analyzing the unsteady plane
shock problem, and afterwards by other investigators [3], [8]1-[11] in analyzing
various rarefied gas dynamic problems. By integrating Eq. (4) over (V,, V,), using
the weighting functions r* and r/(V} 4 V%), we obtain

g 1 oh
y 99, L oh _ 4G 9
& T 3, uG—9) (9)
v, 2}’ 4 h=AWH—R) (10)

r

Here G and H are, respectively, the equilibrium values of g and A:

G=n(zT) "V exp [—(V,—S,U?/T, H=G-T (11)
and for abbreviation
h= af/ [ﬁ f f m(VﬂVg)Zde,,dV,] (12)
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Spherical Source Flow Expansion into Vacuum 109

1t should be noted that Eqs. (9) and (10) can be reduced to quite the same as
those derived by Edwards and Cheng [3]. The macroscopic moments are written
in terms of ¢ and 4 as follows:

n= f Tgdv, e, U= f “V.gdV, nSs,

=2 (me?ingr/ﬂ_l’ISfUz) /’1, Tp: hodVT/nr‘, (1)

T=(T,+2T,)/3

The set of equations (9) and (10) contains the term 7 still depending on the dis-
tribution f. To close a set of equatlons for g and 4, therefore we shall make an
additional assumption for the term /4. The integral in Eq. (12) can formally be
written as

| [ wevsaviav,=p[ [“wievosav,a,

where g is the weighting function of r and V,. In general, the B cannot be deter-
mined. If, however, the distribution function were of the ellipsoidal type

Ay S O
(xT,)"(2xT,) T, T,

then
B= 2T .

Of course, this is also varid for the equilibrium distribution, in which T=T,=T,.
We thus assume that the / of Eq. (12) takes the form

= 2T oh

14
r aV,. (14)

Then, in Eq. (10) the ratio of the term 4 to the first term takes the order
h|(V,h|or)~T,| V2

Estimating that, as will be seen from the results, the perpendicular temperature T,
may be close to the equilibrium value, the above relation becomes

h|(V,oh/0r) ~ (M, | M)

where M =U'(RT’)~"* is the Mach number (prime denotes dimensional variables).
We can see that the term 4 has no appreciable contribution over a far downstream
region of high Mach number. Since the approximation Eq. (14) for the term &
is valid in the equilibrium region near the sonic radius, it may cause no significant
error for the solution as a whole. It should be noted that a set of equations (9)
and (10) with this approximation for % still leads to the rigorous macroscopic
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transfer equations of mass, momentum, and energy.

Our considerations arc confined to the cases when the flow is in equilibrium
within a moderate distance downstream from the sonic radius. We now choose
a certain radius r=r; within that region, as the reference. On the other hand, the
density vanishes at infinite downstream. The boundary conditions are thus speci-
fied as follows:

r=1, gi=r""exp[—(V,—S),

15
h=z"exp[—(V,—S)]. (15)

3. COMPUTATIVE PROCEDURE

Following the discrete ordinate method which has already been developed for
the analyses of several rarefied flow problem (for example, see Reference 10),
the velocity space V, is represented by finite discrete points, say V, (n=1,2, 3,
««-,m). The application of the method reduces the set of governing integro-
differential equations, Egs. (9) and (10) to a set of ordinary differential equations.
That is, the resulting differential equations are

Vuldn i L aagr | =4xGu—g2) (16)
where
G,=n@T) " exp [—(V,—S,U)*/TI, H,=G,T (18)
and
y=nT"-9 (19)

Here g,, h,, G,, and H, represent g, h, G, and H evaluated at the discrete velocity
points V, (n=1,2,3, ..., m), respectively.
The boundary conditions become

r=1, g,=r"exp[—-(V,—8), h,=z""exp[—(V,—85)1 (20)

Thus, the problem reduces to solving Eqgs. (16) and (17) subject to the conditions
(20). This yields 2m equations with 2m discrete unkowns g, and A,,.

In the discrete ordinate scheme, the velocity V,, acts only as parametric variables.
Therefore the equations (16) and (17), respectively, for g, and 4, can be solved by
applying an ordinary difference scheme to physical space r. The reduced distribu-
tions g, and A, conveniently divided into a two-sided one; g for V,=0 and h* for
V,.=0. The difference form of Eq. (16) for g; becomes
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Ia@)—guCr—dr) | L foh*\ _ s
O T b e PG CHOR O NeTs
where 4r is the radial iricrement. Rearranging Eq. (21), we obtain

Va/dN)gi(r—4r) + Av()G (1) —r@h* [3V,),(r)

() = 22
g (r) V. Jdr s A (22)

In quite a similar way we obtain the difference form for A as follows :
i) = nl A0 = A1)+ AOIGEO) — QT [DER OV )a0) g

Vol dr+ Au(r)

Remembering the assumption that there exists an equilibrium region near the
sonic radius, we may choose the reference radius r=r, where the flow is moderately
supersonic. In the actual calculation, the reference radius r, was chosen such that
the flow Mach number there is ~2.0. For such a case the contribution of g5 (for
V,<0) is much smaller compared with that of g} even in the vicinity of the reference
radius. In the far downstream region, evidently the contribution of 9, become negli-
gibly small. In view of the aforementioned facts, both g; and 4: were not taken
into account in the present paper.

A. Method of Evaluation of the Derivative oh [V,
The reduced distribution # can be expressed in the form of

h=exp O(V,), (24)

in which 6(V,) is determined to fit. Consistent with the facts that function eow,)
takés a quadratic for the case of the equilibrium distribution, we approximate the
function ©(V,) around the point ¥, =V, by quadratic form as

oV,)=a+aV, +a,V3,

in which the coefficients a are determined so as to satisfy Eq. (24) at the three
neighboring points, say V,_,, V,, V,,,. Then, the derivative (8h/3V,), at the point
V.=V, can be evaluated from

oh/aV,=(a,+2a,V )h

The method proposed above was applied to the bimodal distribution of an analy-
tic form, and its applicability was assured from comparison of the calculated values
with the exact values.

B. Selection of Discrete Velocity Points

In a source expansion flow the profile of distribution function rapidly becomes
steeper with decreasing temperature in proceeding downstream. Accordingly one
fixed set of discrete velocity points is not efficient to fit all the velocity distribution
functions throughout the whole spatial region, because a great number of velocity
points is needed to do it.
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As shown schematically in Fig. 2, the spatial region may conveniently be divided
into several subdomains designated as Region 1, Region,. . . Suppose that in
Region k the radial temperature and mean velocity are represented by the averaged
values T* and S*, where the superscript & refers to the quantities in Region k. As
can be seen from Fig. 2, the T* and S* provide the measure, respectively, for the
spread and ordinate of the reduced velocity distribution function g. For Region &,
therefore the following set of discrete velocity points will be employed as an appro-
priate choice,

VE=(T¥"*.C,+ St n=1,2,3,...,m) (25)

Here C, is the discrete ordinate of thermal velocity, being chosen so as to fit the

O : Discrete Velocity Point

g
“"—-"ﬁ'Cn""" ~
O V¢
g
JT Ca
: >
5
/
//
—"”/ / ~
m——— \72-. Vf
2 =2 n
g Va S
“*‘f—ﬁs'Cn
/ /
/ |’
/ i
/ |
v |
-—” - , \\\\
= ! S —\/p
Vi & ve

Fic. 2. Sets of discrete velocity points.
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Spherical Source Flow Expansion into Vacuum 113

velocity distribution at the reference radius r=r;, and m is the number of velocity
points. In the present calculation the 10 velocity points are used, so that m=10.
In proceeding the step-by-step calculation in Region k, the intcgration for the
evaluation of macroscopic moments is carried out based on the set k& of velocity
points, by means of the ten-point Gauss-Hermite quadrature. The temperature
thus evaluated decreases from step to step. The calculation for Region k+1 is
initiated when one reaches the step where the temperature becomes equal to or
less than (T%.T%*1)"2, In the actual calculation, the temperature 7', ranged 1 up
to 1.0.107* and three sets of discrete velocity points were applied according to the
procedure mentioned above.

C. [Iterative Procedure

Following the difference scheme Eqs. (22) and (23), the evaluation of the
reduced distributions g} and 4} is advanced step by step, starting from the reference
radius. At each step, however, a number of iterations are required to reach a
solution. Suppose that we know all the values of quantities at the radius r—4r. As
the initial estimate of the quantities on the right hand side of Egs. (22) and (23),
their respective values at the previous step are employed, in which case the deriva-
tive ok} [0V, can be evaluated for the known A} (r—4r) by the method of Sec. 3A.
Using thet zeroth interate g; and A} thus evaluated, the new macroscopic moments
can be determined by applying the ten-point Gauss-Hermits quadrature to the
integration of Eqs. (13). Then, all the terms on the right hand side of Egs. (22)
and (23) are reevaluated. Such a procedure is iterated until a satisfactory con-
vergence has been assured for all velocity points; normally, three or four iterations
were sufficient to fullfil, for both number density and mean velocity, the conver-
gence criteria that the departure from the previous iterate must be less than 107¢
times their respective values. The accuracy of the calculation was estimated by
examining the constancy of mass flux. The error in the step-by-step calculation
accumulates as it proceeds downstream. The actual computation was stopped
at the point, beyond which the value of mass flux indicates a departure more
than 1% from that at the reference radius. This implies that the maximum
error in mass flux is less than 1%. The spatial region, thus computed with the
increment being 4r=r/100, was covered from r/r*=r,/r* to r/r¥*=10% where r*
is the sonic radius.

4. NUMERICAL RESULTS

In the present section as well as in the figures, the symbols for dimensional
quantities will be used. The HITACH 5020F digital computer was used for the
calculation. The numerical analysis was carried out for both hard sphere and
Maxwell molecules for various Knudsen numbers Kn ranged from about 3.0 to
1.0.107%. The Knudsen number Kn is one most commonly used in reporting free-
jet experiments, being defined as the ratio of stagnation mean free path to the
orifice diameter D. Since the orifice diameter D is related to the sonic radius r¥,
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we can deduce Kn to the Kn* (=L,/r*) as well as Kn; defined previously.

As mentioned before, the computation was started from the reference radius ry
where the flow is assumed to be in equilibrium. There arises a question as to
whether the solution depends on a choice of the reference radius r;. If the equili-
brium condition is valid at the reference radius, the solution should be uniquely
determined over a whole downstream region from the referencc radius. This may
be justified if the solution for the slight alternation of r; (for instance, for two
radii corresponding to M =2 and: 3) indicates no appreciable difference each other.
Otherwise, the solution is unlikely to be realistic from a physical point of view.
Although this will be discussed later in more detail, the assumption appears to be
valid for cases of Kn <1072,

A. Behavior of density

In Fig. 3 is shown profile of the density distributions for the various Knudsen
number Kn. The detail comparison of the density n with its isentropic value ng
is made in Figs. 4 and 5, respectively, for the hard sphere and the Maxwell mole-
cules. It can be seen from these figures that the density is greater than its isen-
tropic values throughout the expansion, for the stagnation Knudsen number Kn>1,
and also that the density nearly coincides with its isentropic values for the Kn less
than 1073,

B. Mean velocity and its terminal values
In Figs. 6 and 7 is shown the mean velocity U, respectively, for the hard sphere

1
. A {Hard Sphere)
10‘1:—
. L
- -
~
c -
102__—_‘
- o Ka=36
107
o Equilibrium—/
Lol A VEEEI
1 10 107
r/r*

FiG. 3. Number density distribution.
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1.08 Kn=3.6
1.06 -
- 36x107°

/ Kn=1.14%x107
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[ ; 3.6x107°
y
1.00 114 %1074
[ W N 1 L1t Lol b
098, 10 10° 10°

r/r* ‘
Fic. 4. Distributions of number density ratio (n/nz) (for hard sphere molecules).

110
181 Kn = 2.29
106 |- 229x 10"

~ Kn=1.29%107°

102 - / 2.29 %1072
1.00 ;\r / 7.23>x1073
= 7.23x107*
v O.98‘] L1 1 ””1”0 L 411111162 L1t 111|1;03

r/r*
Fig. 5. Distributions of number density ratio (n/ng) (for Maxwell molecules).

and for the Maxwell molecules. The velocity distribution along the radial line
is much closer to that of the isentropic expansion for the Maxwell molecules than
for the hard sphere. For both molecular models, the terminal mean velocity
depends on the Kn. In Fig. 8 is plotted the terminal velocity against the source
Knudsen number Kn. It follows that for the Maxwell molecules the kinetic energy
amounts more than 99.9% of the total energy for the Kn < 10-3, while for the
Kn>>10"* an appreciable amount remains as the thermal energy. The similar
trend can be seen for the case of the hard sphere, in which the critical value of
Kn is ~107*, The fact mentioned above implies that the transfer from thermal
energy to kinetic energy through the expansion is achieved by the collisions among
gases particles.

C. Temperature and its terminal values

The ratio of the temperature T to the sonic temperature T* is plotted against
the radius r in Figs. 9 and 10, respectively, for the hard sphere and for the Max-
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FiG. 6. Mean velocity distributions (for hard sphere molecules).
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Fic. 7. Mean velocity distributions (for Maxwell molecules).
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FiG. 8. Terminal mean velocity vs source Knudsen number Kn.
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Fic. 9. Temperature distributions (for hard sphere molecules).
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Fic. 10. Temperature distributions (for Maxwell molecules).

well molecules. For a fixed Kn the temperature distribution indicates a feature
much closer to that of the isentropic expansion for the Maxwell molecules than
for the hard sphere. In Figs. 11-14 are shown the distributions of the radial
temperature T, and perpendicular temperature T,. The behavior of radial tem-
perature T, is similar to that of the temperature T and the “freezing” of the radial
temperature begins to occur at more earlier stage in the expansion than for the
“freezing” of the temperature. Except the case of the Knudsen number Kn>10-2,
the perpendicular temperature shows no appreciable departure from its isentropic
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Fic. 11. Radial temperature distributions (for hard sphere molecules).
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Fi1c. 12. Radial temperature distributions (for Maxwell molecules).
value over a wide region (r<10%*). In proceeding a further downstream, the
perpendicular temperature T, begins to depart from the isentropic values, and
asymptotically approaches T,=const.(r*/r).

In Fig. 15 are plotted both terminal temperature 7_ and terminal radial tem-
perature T,. against the source Knudsen number Kn. These were evaluated
from the solutions obtained for the two different values of the reference radius
ry; one is the radius of the flow Mach number M=2.0, and the other the radius

&
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FIG. 13. Perpendicular temperature distributions (for hard sphere molecules):
—asymptotic straight line ~r-1,
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-
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Fic. 14. Perpendicular temperature distribution (for hard spere molecules):
—asymptotic straight line ~»-1.

of M=3.0. We can see from this figure that the temperatures T. and T,
indicate an appreciable dependence on the reference radius, for either cases of
hard sphere or Maxwell molecules, for Kn>10"2. As mentioned before, the pre-
sent solution may be considered valid only when it does not depend on the choice
of the reference radius. Therefore, we say the present results are of significance
for the cases of Kn<1072,
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5. COMPARISON WITH PREVIOUS RESULTS AND DISCUSSION

v

In Fig. 16 is plotted the terminal Mach number vs source Knudsen number Kn.
Hamel and Willis [4] found the formulae for the dependence of terminal Mach
number on the Knudsen number from their analysis. The comparison with the for-
mulae derived by the present results is made for the terminal Mach number M,
referred to radial temperature in the following,

Present Hamel and Willis*
for hard sphere M, =0.80 Kn—"*, —0.77 Kn~%%,
for Maxwell M,.=0.42Kn" "%, =0.42Kn~*%,

where M,.=U../(RT,.)"* and is approximately equal to M../(3)"*.

We can see that the present results are in an excellent agreement with those by
Hamel and Willis [4]. An analysis by the moment method similar to Hamel and
Willis’ was worked out by Chen [5] in taking into account more higher order
moments. However, his results indicate somewhat appreciable deviation from the
present results. Therefore, no better results are expected for the moment method
by preserving more higher order moments.

As regards the radial temperature, in Fig. 17 is made comparison of the present
results with the Muntz’s experiment [12] using the electron beam fluorescence tech-

&
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Fic. 17. Comparison with the results of Muntz!%: @ a=113,
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Fic. 18. Comparison with the results by F1G. 19. Comparison with the results by
Willis et al'® (for hard sphere molecules). Willis et al** (for Maxwell molecules).
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nique. In this figure the parameter «=0.413 Kn' introduced by Hamel and
Willis [4] is used. The experimental data for argon lic between the solution ob-
tained for the hard sphere and for the Maxwell molecules. In the analysis the
molecular model affects the solution only through the value of s, the exponent
contained in the viscosity-temperature relation. Bearing in mind the fact that
s=1.0, 0.8, 0.5, respectively, for the Maxwell molecules, argon and hard sphere
molecules, the agreement of the present results with the experiment appears to
be quite reasonable.

Willis and Hame [I3] found the profile of velocity distribution function by the
method of characteristics based on the EDF (ellipsoidal distribution function)
model equation for the hypersonic limite. As predicted by Scott [/4] et al. the
perpendicular temperature evaluated from the half width of the distribution func-
tion is found to be inversely proportional to the square of radius . In Figs. 18
and 19 is made comparison of the present results with the Willis and Hamels’ [13],

1.5 - e
1.0~
05}
OO .
Vr/ Vi
Fic. 20. Terminal velocity distribution function (Kn<1).
1.5
S1 S1lUw
|
|
G~
0.5 l
0 1 | L
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Fic. 21. Terminal velocity distribution (Kn<1).
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F1G. 22. Comparison with the results by Willis et ali3,

respectively, for the hard sphere and for the Maxwell molecules. In these figures
the coordinate X is one non-dimensionalised by the radius on which T, —T,=T,.
We can see the excellent agreement of the present results with the Willis and
Hamels’ [/3]. In Figs. 20 and 21 is shown the profile of the velocity distribution
function both for r=r, and r— oo, for the various source Knudsen numbers. For
the source Knudsen numbers large, the terminal distribution function g, shows
only a slight deviation from the equilibrium G., (see Fig. 20). By introducing

1
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Fic. 23. Comparison with the results by Bird!® (for hard sphere molecules):
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the ordinate C defined by C=WV,—-U)/(T,.)"?, the results are re-plotted in
Fig. 22, in which the distribution functions obtained by Willis and Hamel [13] are
also plotted. In contrast to the symmetric nature of the ellipsoidal distribution
assumed in the Willis and Hamels [/3] analysis, the distribution function obtained
in the present analysis indicates an asymmetric nature. This implies that the pre-
sent analysis may lead the results different from those by the Willis and Hamel’ [13]
analysis for the quantities pertinent to the higher moments (for example, heat
fluxs).

Recently Bird [15] conducted a kind of numerical experiments for the source flow
problem by means of the Monte-Carlo direct simulation method. In Figs. 23 and
24 is indicated comparison of the present results with those by Bird [/5] for the
cases of both hard sphere and Maxwell molecules. The Knudsen number Kn* is
defined as Kn*=L,/r*, where L, is the mean free path for the stagnation condi-
tion. It can be seen from these figures that as a whole the present results show
a better agreement with Bird’s [15] results for the Maxwell molecules than for the
hard sphere molecules. This is consistent with the fact that the B-G-K collision
model is basically relevant to the Maxwell molecules. In Fig. 25 a similar com-
parison to the previous is made for the several Knudsen numbers. It can be seen
that the agreement of the present results with Bird’s [/5] becomes much better for
smaller Knudsen numbers. If the Bird’s [15] results provide a representation of
the exact Boltzman solution, the agreement of the present results gives a support
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Fic. 24. Comparison with the results by Bird?® (for Maxwell molecules):
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F1G. 25. Comparison with the results by Bird!s (for hard sphere molecules):
®@=Tv/Ty, @=T/T,, ©==Tp/To-

for the applicability of the B-G-K kinetic equation to the source flow expansion
problem.

In conclusion the B-G-K kinetic equation has numerically been solved for the
source flow expansion of monatomic gases into a vacuum, with far fewer approx-
imations than the previous treatments. The results have been compared with the
previous ones, and, particularly, they are found to be in a fairly good agreement
with the numerical experiment of Bird. Finally it is hoped that the numerical
method proposed here will allow us to treat the rarefied gas dynamic problem based
on the kinetic equation subject to the cylindrical or spherical coordinates.
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