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Summary: A new form of sandwich core of high strength created by a topological
transformation of a single plane is proposed herein. The resultant core is to be manu-
factured from a single sheet through a plastic forming. The purpose of this proposition
is to present a sandwich core which has following principal characteristics; simplicity of
form, applicability to both flat and curved sandwiches, possibility of circulating fluid
between facings, the easiness of manufacture, the adaptability to large as well as small
scale core, and the isotropy or controllable orthotropy of shear modulus. This core,
designated as zeta-core by this author, is a sophisticated shell structure whose mid-surface
is characterized by a doubly corrugated surface combining a couple of facings. An
elementary analysis proves that the directional mean of shear modulus of zeta-core can
compete with that of honeycomb core of identical apparent density. and that it is possible
to design zeta-core of any orthotropy including, of course, isotropy in shear modulus. As
for the realization aspect, no essential difficulty was encountered in trial manufacture of
zeta-core from aluminum, plastics, and G.R.P. sheet materials. Furthermore, it can be
predicted that the cost of production of zeta-core is relatively low in comparison with
honeycomb core. It seems probable that the introduction of zeta-core of high shear
modulus which can be made of various engineering materials will open up fresh possi-
bilities for structural sandwich construction.

1. INTRODUCTION

The purpose of this study is to create a new structural form of core of sandwich
construction which can compete with the honeycomb core in rigidity-to-weight
ratio basis. Prospective characteristics of such a core are; the simple and continu-
ous geometric form, the applicability to both flat and curved sandwiches, the pos-
sibility of circulating fluid between facings, the adaptability to large as well as small
scale core, the easiness of manufacture, and the isotropy or the controllable ortho-
tropy of shear modulus.

This paper comprises of three sequential steps of the research on the subject,
and these are the proposition of a candidate form, analysis, and realization. The
first step is to select a best prospective candidate of core form which is seemed to
have necessary properties mentioned above. Since at this step, the detailed pro-
perties are, of course, not known yet, this process largely depends on the general
knowledge about core geometry. The second step is to estimate analytically the
elastic properties of the candidate; these are shear modulus, shear and compression
strengths and others. The last step is to discuss the problems such as manufactur-
ing, applications, and future study.

[137]
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138 K. Miura

2. Core ForM CREATED BY TOPOLOGICAL TRANSFORMATION OF A PLANE

The geometric form of the core of sandwich construction can be grouped into
three classes, such as the cellular form, the grid form, and the single surface form.
Typical examples which represent these classes are, in the same order, a foamed
plastic core, a honeycomb core, and a corrugated core. Due to the necessity of
circulation of fluid within the core, we have to aim at the core form of the last
category.

As is well-known, the corrugated core is usually made of flat sheet materials by
the corrugation machine through only bending deformation without substantial
amount of in-plane stretching deformation. Thus this process is essentially the
isometric transformation of a plane to a corrugated surface. In other words, such
core forms created by the isometric transformation of a plane can be characterized
by being developable surfaces.

The core form created by a single surface is not restricted to the developable
surface, because the present technology in sheet forming allows a rather large
amount of in-plane deformation. In fact, we have already some core forms created
through non-isometric transformation of a plane. Hence, it might be said that
whether the transformation is isometric or not will becoming less important in
future.

A further fundamental nature relating to the transformation of a single plane
to a core form is whether it is the topological transformation or not. The topo-
logical transformation (mapping) means the transformation of a original surface
to an image surface without changing the topological property. It is called these
two surfaces are in homeomorphic relation. For instance, making cuts, holes, and
contacts with itself, does change the homeomorphic relation. Being abandoned
its mathematical exactness, the topological transformation can also well describe
a kind of transformation of a surface in engineering sense. Strictly speaking,
pricking a single pin-hole to a continuous surface changes the homeomorphic rela-
tion. While in engineering sense of topology, we assume the understanding that
pricking a considerable number of pin-holes to such an extent that the macro-
scopic elastic property is hardly effected is considered to keep the homeomorphism.

It can be deduced from experience that the core structure having cuts on pur-
pose of obtaining versatility in form is generally unstable due to the free boun-
daries, and that the core structure having contacts with itself may gain the added
rigidity but loses simplicity of the structure. These core structures are clearly
aside from the purpose of obtaining the core of high strength with the simplest
possible form. Therefore, it is most desirable that the core form is created through
the topological transformation of a plane. Further necessary geometric natures
are; the image surface is bounded between a couple of parallel surfaces, and it is
to be expressed by a single-valued function referred to curvilinear coordinates on
the reference surface set midway between the parallel surfaces (Fig. 1). These
points being settled, we can now proceed with our problem of studying possible
geometric forms created by such topological transformation.
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FiG. 1. Core Form Created by Topological Transformation
of a Plane (Section)

Now, we denote the two-dimensional universal domains of a couple of facing
surfaces and the core surface by I, II, and III, respectively. The relations existing
between these domains are studied first in the following.

The sum of domains of facing surface 1 which are in contact with the core
surface I is called I’, and since this is the common set of I and III

I'=INII (1)

In the same manner as above, the sum of domains of facing surface II which are
in contact with the core surface II is called 11", and this is the common set of II
and III

IV=1INIII (2)

The sum of domains of core surface II1 which are not in contact with facing sur-
faces is called IIl’, and since this is the complementary set of the sum of I’ and

I in III
I = Cyp,(I' UID) (3)
The universal domain 1 is divided into I’ and its complementary set C(I’) as follows
I=1'UC(I) (4)
Similarly, II is divided into I’ and C(II") as follows
IN=11I'u C,1r") (5)

The universal domain III, that is, the core surface is divided into three parts as
follows

HI=1+1I"4III" (6)

In domain I1I, it goes without saying that I’ and II" not only satisfy the following
relation

Irnir=a (7)
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Zeta-Core Sandwich—Its Concept and Realization 141

but also they cannot be adjacent domains.

Using these relations, we can furnish important information concerning methods
of dividing domain III and thereby exhausts every possible forms of core surface.
Obviously I’ and C,(I’) must be the division, in a topological sense, of two-dimen-
sional space into two kinds of domains. Since I’ corresponds to the bonding region
of the facings of sandwich construction, such a division should be done by the
repetition of a finite pattern. This is somewhat similar to the tessellation of a
plane, but it should be noted that the concepts of length and angle exist no longer
in the topology. The most fundamental methods of such a division may be those
illustrated in Venn-diagrams of Fig. 2.

Fig. 2a shows the division of the universal domain into one-dimensional groups,
that is, the stripes. In this case, the complementary domain is also the stripes.
Fig. 2b shows the division of the universal domain into two-dimensional groups
composed of scattering circular domains and the matrix domain. These domains
are termed the spots and the lattice, respectively. Both are complementary with
each other. The more complicated division can be obtained by using multiply-
connected domains in place of circular domains, but such a division is not attrac-
tive to the present purpose. Resultantly, the form of 1’ should necessarily be
either of stripes, spots, and lattice pattern. The same can be said about the
domain II".

Both I’ and 11’ being determined in domain I11, it is easy to reach the conclusion
on the basis of Eqs. 6 and 7 that 111’ should necessarily be the matrix filling the
rest of the domain III. In addition, as I’ and II’ can not be adjacent domains,
the matrix should enclose every elements of I’ and II’. Eventually, the possible
divisions of core surface are schematically shown in Fig. 3. It is shown that there
are four types of core surfaces obtainable from the topological transformation of
a plane.

A plastic core which belongs to the type A configuration is shown in Fig. 4.

FiG. 4. Plastic Core of Type A Configuration
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FiG. 5. Double Layered Stressed-Skin Space Frame Structure using Pyramidal
Core which is considered to be Type C Configuration

This is made of thermoplastic sheets through a special forming technique. As for
type B configuration, the present author has not ever known the realized one. The
type C configuration has been used for the core of double layered stressed-skin
space frames which is considered to be a certain variation of sandwich construction
(Fig. 5). It is needless to say about the type D configuration.

3. PROPOSITION OF ZETA-CORE CONCEPT

With due consideration of the shear strength, manufacturing, and bonding, it
seems that the type D configuration may be the first choice for structural sandwich
used in high stress level. The corrugated core, a representative of type D, is
characterized really by high shear rigidity, but its orthotropic behavior is almost
inevitable. Then the idea of superposing two corrugations in mutually orthogonal
directions might be a natural approach to the problem of obtaining an isotropic
core.

Now it is assumed that f and g represent certain continuous, single-valued,
bounded, and periodic functions defined in orthogonal coordinates x, y, z.

z=f..(x),  (x—z plane) (8)
2=¢,.(y), (y—z plane) (9)
The product of these two functions

Z:f.rz(x)'gyz(y) (10)

This document is provided by JAXA.



Zeta-Core Sandwich—Its Concept and Realization 143

is really a doubly periodic function that is periodic in two mutually orthogonal
directions. However, the resulting surface described by this function is not a
form of type D as expected vaguely, and instead, it corresponds to the type A
(Fig. 6a). The instance of this form was introduced previously in Fig. 4. Because
of its intermittent contact with facings and low shear modulus, this core can not
be used at high stress level even if it may have attained the isotropy in shear rigid-
ity. Thus, this kind of approach to the problem proves to be misleading.

In fact, there is another method of superposing two corrugations in mutually
orthogonal directions [/] [2]. Now, a periodic function g is considered on y-zZ
plane as before. But, as another periodic function, the function 4 is considered
on x-y plane instead of x-z plane.

y:h‘“/(X), (x_y p]ane) (11)

The synthesized function

2=0,.ly—h,,(x)] 12)

is a locus of the periodic curve g,.(y) translating parallel along another periodic
curve h,,(x). This function really represents a surface, that belongs to the type D
configuratoin, having periodicity in two mutually orthogonal planes. Further, if
the amplitude of the function g¢,,(y) is taken to be constant, it figures a surface
that inscribes the two parallel planes (Fig. 6b). It seems there is no difficulty
about the generalization of this idea to the synthesis of similar surfaces in general

=<
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Fic. 6. Synthesis of Two Corrugations in Mutually Orthogonal Directions

curvilinear coordinates. There the facing surfaces are represented by a couple of
coordinatial surfaces. Tentatively, these core surfaces are called by the double
corrugation surface.

Now we must examine whether the core in the form of double corrugation sur-
face can really attain the isotropic behavior. Also other important requirements
as the core have to be checked. These are now roughly considered about a typical
core whose midsurface is represented by using a truncated zigzag function g,.(y)
and a zigzag function A,,(x) as shown in Fig. 7. The following Table 1 shows the
itemized comparison of this core with the single corrugation core.

So far as this table is concerned, this core looks very promising and is considered
to be worthy of studying further. It should, however, be noted that the truely
useful form of core will be limited to specified classes in double corrugation sur-
faces. In general, the function g¢,.(y) has more important role on rigidity and
strength than the function A,,(x). In the example shown previously in Fig. 7,
the truncated zigzag function g¢,,(y) is used together with a zigzag function A,,(x).
The resulting domain [II” of the surface, or the side of the double corrugation
surface, becomes a folded plate surface similar to accordion pleats. If it is used
together with a curved wavy function #,,(x), a wavy cylindrical surface will be
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TaBLE 1. Comparison of the core in the form of double corrugation
surface with the single corrugation core

Superiority or

Items of comparison inferiority Comments

Shear rigidity Same

Compressive rigidity Same

Shear strength Superior Good local stability
Compressive strength Superior Good local stability
Isotropy Superior Controllable orthotropy
Bonding Superior Zigzag contact surface
High temp. application Same

Arbitrary formablity Inferior Geometric restriction
Manufacture Inferior Need large extensional

deformation

resulted as illustrated in Fig. 8. In both cases, the side part of the core composes
a general cylindrical shell whose generators are inclined at a certain angle to
facings. Therefore, these will give very stable and rigid structures against loads
applied through facings. While, if the curved wavy function g,,(y) is used, the
resulting side part becomes either a cylindrical surface whose generators are
parallel to facing or a surface of double curvature depending on function A, (x).
In these cases, the side part is generally subject to considerable bending stress,
which is undesirable for thin core structures.

One of the important roles of the function A, (x) is that this is deeply relating
to the orthotropic characteristic of the core. In other words, the possibility of
obtaining an isotropic core will primarily depends on this function.

Now, we have attained the stage of giving a geometric definition to this category
of cores which hold common characteristics. Such a definition can be given to

Fic. 7. Relief of a Zeta-Core Form of Folded Plate Type

This document is provided by JAXA.



146 K. Miura

FiG. 8. Relief of a Zeta-Core Form of Cylindrical Type

the reference surface, the top (bottom), and the side part of the core surface on
referring to the relief of Fig. 9. The reference surface of the sandwich using this
core can be arbitrary and it includes free formed surfaces. Each periodic curve,
on facing surface, which determines the borders of top (bottom) part of the core
surface has an approximately identical phases with regard to the curvilinear co-
ordinates on the reference surface. The side part of the core surface is defined
by a ruled surface formed by translating a generating line intersecting two adjacent
periodic curves, each one on each facing surface. The ruled surface includes
folded plate surfaces, cylindrical surfaces, conical surfaces, and hyperbolic para-

Side

Facing Surface

Reference Surface

Facing Surface

F1G. 9. Relief of general Zeta-Core Form
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boloids.

It may be convenient to have an adequate designation for the core thus defined.
The *“double corrugation core” may be a candidate, but it is too lengthy to pro-
nounce. Since both capital and small letters of Greek alphabet Z and { remind
us of periodic functions g and £ or an overall impression about the core, the English
pronunciation of this letter, zeta, is adopted here like as ‘“‘zeta-core”.

4. PREDICTION OF ELASTIC PROPERTIES OF ZETA-CORE

4-1  Shear Modulus

The principal quantities relating to the elastic properties of core are the shear
modulus and strength, and the flatwise compression modulus and strength. Above
all, the shear modulus G,, or more specifically, the effective modulus of rigidity
of core in planes including normals to facings is an important as well as only
representative quantity. In this section, the shear modulus for the core whose
mid-surface is defined by a truncated zigzag function ¢,, and a zigzig function
hgy, that is,

2=,y —hyy (2]

whose configuration is shown Fig. 7, is obtained analytically.

The fundamental region of this surface is composed of four congruent rhomboids
and two congruent chevron patterns, when the symmetry in both functions g,. and
h,, is presumed, as shown in Fig. 10. However, this is not necessarily be required
in the analysis. The whole surface is constructed by two independent parallel
transfers of this fundamental region in mutually orthogonal directions.

For simplicity purpose, it is assumed here that the facings are infinitely rigid
as for both in-plane and bending deformations. The rectangular coordinates x, y,

/ Top
Side ({=3) / /

f

Side (i =4) -
- Side ({=1)

Bottom

/
- Side ({=2)

Fic. 10. Fundamental Region of Zeta-Core Form of Fig. 7
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z are taken so that x and y axises may lie on the facing surface 1I. Further, the
direction ¢ is defined which is ¢ radian counter-clockwise from x axis on x—y plane
(Fig. 11).

The strain of the core is now considered when the sandwich structure is subject
to a shear deformation 7,, in ¢—z plane. Because the deformation in the top of
core is that of the rigid motion of the facing, the strain in this region is zero. The
stress and strain distribution in the inclined side wall elements of rhomboidal form
is undoubtedly rather complicated. Because the present aim is to obtain a macro-
scopic elastic quantity with regards to shear property, and not to get detailed local
stress distribution within core elements, some adequate approximation can be made
without imparing an essence of the problem.

The approximation of membrane stress state may be acceptable since the thick-
ness of core element is usually very small compared with other dimensions. For
an arbitrary element i, the deformation applied externally from facings is the
relative parallel transfer of a pair of edges on surfaces I and 1I. Therefore, the
first approximation on the strain distribution, which can be compatible with the
displacements at facings, is the homogenuity of strain within the element i. If
these assumptions are accepted, the resulting strains in each element are equivalent
to the strains of the identical position in a hypothetical core made of a homo-
geneous continuum subjected to the said external displacements [2]. In addition,
these adopted assumptions are equal to those used for the elementary analysis of
honeycomb core frequently referred. In subsequent y value, for instance, theo-

Fig. 11. A Zeta-Core Sundwich and Coordinatical Axises
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retical and tested values are 0.625 and 0.7, respectively, for the ribbon direction
of honeycomb (see Appendix).

Now, a normal vector R,; (I;,m,,n;) is considered about the ith rhomboidal element
as shown in Fig. 12. Further, a couple of vectors R,; and R,; are considered, R,; on
the intersection of the x—y plane and the ith element, and R,; vertical to R,; on ith
element. The direction consines of these vectors are summarized in the following.

Roi [ lz m;, n@-]
R, [ my/(l—n)”,  —L/(1—n})", 0]
Ry [—lin; [ (1 —n)'2, —myn, [(1—n), (1—n3) /(1 —n)"’]

The shear deformation applied to the sandwich structure in the plane including z
and ¢ directions is denoted by y,. Thus, the shear strains y,, and 7,, of the
hypothetical core are related to y,, by the following formulas.

Y22 =74z COS ¢ (13)
Tye =7y SIN ¢ (14)

The strain components of the rhomboidal element i due to 7,, can be calculated as
the deformations of two vectors R,; and R,;.

The elongation ¢’ of any linear element 7’ of direction cosines I, m’, n’ through a
point of a deformed three-dimensional body can be given by

e =", +m", +n"e,+Umy,, +m'ny, +n'ly,, (15)

where ¢,, ¢, ¢, are unit elongations in the x, y, z directions and y,,, 7., 7, the three
unit shear strains related to the same directions [4]. The shear strain 7,.,.. between
linear elements ' and r” (I, m”’, n’’) which are perpendicular to each other is also
given by

Fi1c. 12. Normal Vectors of the ith Rhomboidal Element of a Zeta-Core Surface

This document is provided by JAXA.



150 K. Miura

rT,TU:2(511’1”+sym’m”+ezn’n”)

+ T_Ky(llm//+ l//’n/) + ?’?/z(m/n// +ml/n/) + 7,z:’:(’,l/l//__-l_ n//l/) (l 6)

The shear strain y,,; due to y,, can be calculated as the shear deformation of two
vectors R,; and R,;, which were originally perpendicular to each other before defor-
mation, by using Eqgs. 13, 14, and 16 as follows

T10i =7(—1; sin ¢+ m, cos ¢) (17

The normal strains of the element i are represented by the extensional strains ¢,
and e,; of the vectors R; and R,;, respectively. Therefore,

e, =0 (18)
€y =7 4.(—m;n; sin ¢ —1I;n; cos ¢) (19)
The strain energy of the element / in plane stress state is expressed by the
following formula.

U,= E 2')' (E%z + egi -+ 2"’511'521') +- g 7’%21‘1 (20)

aitl [ e
2(1 —y

-

where a; and ¢; represents the area and the constant thickness of the element, re-
spectively. It can be written in terms of direction cosines of normal vectors, the
direction ¢, and the applied shear strain 7, as follows.

1

U,= 7%%7’3«2[(;(—11 sin ¢+ m; cos ¢)*

+ 1 E..‘.Z (m;n; sin ¢+ [;n; cos gb)z] 21
—V
The total strain energy of the core is a simple summation of the partial strain
energy for each element and is given by

U= % T2z Z at; [G(—li sin ¢ + m, cos ¢)*

v vl_!?pz.(mini sin ¢ + L, cos g/;)ﬂ 22)

In the following, the calculation is made about the case where the fundamental
region can be defined. Since the whole surface is constructed by the repetition of
this fundamental region with the identical orientation, it is sufficient to consider
only this region in order to calculate the macroscopic elastic quantity of the core
structure. In this sense, the summation in above formula should be done only in
the fundamental region. Now the gross volume between facings filled by a funda-
mental region of zeta-core is denoted by v. The strain energy of the hypothetical
continuum of the same gross volume v and with the shear modulus G,, which is
subject to a uniform shear strain 7,,, is expressed by
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U:%r‘;szc (23)
Therefore, the effective shear modulus of the zeta-core is given by the following

formula

i Zr] [G(—-li sin ¢+ m; cos ¢)°
vV i

E : .

+ T (m;n; sin ¢ + I;n; cos ¢») 24)

—v

where the summation is done within the fundamental region.
Hereupon we introduce the concept of form efficiency of core that is a dimen-
sionless form of shear modulus defined by
G.

= : 25
H Ga (25)

where G is the shear modulus of the material of core, « is the spatial filling factor
of core [/][2]. The physical meaning of the form efficiency is explained in detail
in the Appendix, where typical p values for several cores are also shown. In
addition, the following reduction ratio is defined in order to exclude the top
(bottom) part of the core from the computation, because this dead volume does
not contribute to the strain energy.

(net volume) —_—(VOlume of top & bottom) (26)
(net volume)

p=

From Egs. 24, 25, and 26, the form efficiency of the zeta-core is given by the
following formula.

() = f_'l,_'ﬂ fz:] at; [G(wl sin ¢+ m; cos ¢)*

2. it

+ B ~(m;n; sin ¢ + L, cos ¢)* } 27

1 —?

As an illustrating example, the computation of form efficiency is carried out
about a zeta-core whose fundamental region is composed of four congruent rhom-
boids and two congruent chevron pattern as shown in Fig. 10. If an appropriate
rectangular coordinates x, y, z are chosen like as Fig. 10, the direction cosines of
normal vectors of four rhomboidal elements composing a fundamental region can
be expressed solely by a set of {*, m*, n*, which are assigned to positive, as follows.

R, ( I*, m*, n¥)
R, (—1*, m*, n¥*)
R03 (’*’l*, ’_m*, n*)

R, ( I*, —m*, n*)
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Substituting these data into Eqgs. 24 and 27, both the shear modulus and the form
efficiency of this zeta-core are easily obtained and the latter is shown in the fol-
lowing.

/z*(g/)):[o’[ (l*2+ 2’711*2”*2> sin* ¢ + (m*z + 20 ) cos’ 9/’] (28)

—y 1—v
For v=1/3, it can be written in even simpler form as follows.
L5 (D), 2y = PLA** 4 3m*Pn*?) sin? ¢+ (m*? 4 31%2n*?) cos? ¢l (29)

For coordinatial directions, the values of form efficiency are given as follows.

wrO = =g[mey 2] (30)
| — Y
w5 = =gl 2] (31)
L—Yy

4-2  Isotropy Condition and Maximum Form Efficiency

Since the design of sandwich construction is primarily effected by the elastic
property of the weakest direction, the isotropy of the core property is generally
desirable. In case of the previous example, the circular isotropy condition is
realizable when the following relation is satisfied between direction cosines of
normals of rhomboidal elements.

K2p%k2 K2pk2
prrg 2T ey 2T (32)
1—v 1—y
There are two cases that satisfy above relation and these are
Case 1. I* =m* (33)
L 1/2
Case 2. n*= ( 12 D) (34)

These cases are discussed in the following separately.

Case 1.
Substituting the isotropy condition into Eq. 28, the form efficiency is obtained
as a function of direction cosine n.

1 (14v)n*? n*t ]
Fo=h =+ — : 35
# ‘8[2 + 2(1—vy) 1—y 33
If v=1/3,

The dependency of the form efficiency x¥, on the angle of inclination of rhomboidal
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clements, cos™' n*, is shown in the curves of Fig. 13.
The maximum value of y, is given by

1, (14wy 1 (14 )72
i:{;r) max — — e, at n*= >
Hiso, ﬂ[z 16(1—y) 2
If y=1/3, it reduces to
2 1
‘Uiﬁo,max:ﬁ[g]a at n*: '3'1'/2

153

(37)

(38)

If a typical value of 3 is now assumed to 0.8, then (5o max = 0.533 for the inclination
angle of cos™' n*=53"44’, when v=1/3. This value is very close to the directional
mean value of honeycomb core, that is, 0.5. It is also shown in this figure that, if
the inclination angle is in between 45° and 60°, the form efficiency holds a suf-
ficiently high value. This fact is important because the tentative form of zeta-core

will probably fall under such a region of inclination angle.

Case 2.

The form efficiency corresponds to another isotropy condition is

1+v>
?k: -
/‘l}.SO ﬁ( 2

If y=1/3, it is

ti=p (%)

*

Hiso

O
IS
~

Form Efficiency .
~.

O
&Y
~.

@]
N
~

O
N
54°44'

\ | ‘
O 15 30 45 o0 75 90

Inclination Angle, cos™'n (deq)

O

(39)

(40)

F16. 13. Form Efficiency vs. Inclination Angle of an Isotropic Zeta-Core of Fig. 7
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Apparently this condition seems to be independent of / and m. But if the value
m/l differs greatly from 1, the fundamental assumptions of the analysis on which
this condition is based become uncertain.

It should be noted that these conditions of isotropy are based on the approximate
solution and that there is no guarantee these are the true isotropy conditions. The
same can be said about the magnitude of form efficiency. However, it is quite
sure that the true isotropy condition exists in the neighbourhood of predicted con-
ditions. In this sense, the trial and the error approach of manufacturing is con-
sidered to be the best way to find the true isotropy condition.

It may be added that designing core of any orthotropy, if required, is possible
by using Eq. 27.

4-3  Stress and Strength of Zeta-Core

There are several typical failure modes of sandwich construction which must be
considered in relation to core rigidity and strength properties. As for flat sandwich
panels, these failure modes include general buckling, shear crimping, face wrinkl-
ing, transverse failure, flexual crushing, local crushing, and intercell buckling. Be-
sides shear and compression rigidity, the primary controling factors affecting
failures are the core shear and core flatwise compression strengths. It is, there-
fore, necessary to evaluate these strength properties of zeta-core before advancing
from a conceptual study to a realization study.

First of all, it should be realized that the thickness of the core element is usually
considered to be very small compared with other dimensions. Therefore, the core
strength properties largely depend on the instability of the thin element composing
the core and not on the material failure strength,

In order to check the instability of thin elements of core, the stress distribution
within them has to be first investigated. For instance, in case of the zeta-core of
Fig. 10, the normal stress in the direction of vector R,;, and g,;, is given by the
following formula.

Gu= 1o~ mint sin g— Lt cos ¢) 1)
—Y

If we put ¢=0, =/2 into this equation, we have

ou= L —mind. @=r/2) 43)

In the first case, when ¢ =0, whether stress is tensile or compressive can be judged
by the following formulas, which are obtained by using the direction cosines of the
normal vectors R,; shown in page 151.

0,0,  i=2,3

44
agi<0, i:1,4 ( )
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In the second case, when ¢==/2, we have

gy >0, i=3,4

45)
7, <0, i=1,2 (

It became clear that this sign of the normal stress ¢,; depends on the direction
cosines of the normal vector R,; and the direction ¢ of the applied shear deformation.
It can be either positive or negative. The same can be said about the normal stress
0., though it is generally smaller. Needless to say, the shear stress z,,; is of primary
importance and can easily be calculated in similar manner.

Such stress state, apparently due to the inclination of composing elements of
this core, offers a marked contrast with that of the honeycomb core where the
simple shear stress condition prevails within its vertical cell walls.

The problem of instability of core elements, therefore, reduces to that of a rhom-
boidal plate simply supported at four edges and subjected to the combined normal
stresses and shear stress. This is undoubtedly a very difficult problem. These
solution available at present are about the classical buckling loads in case of pure
shear and that of uni-axial compression. This is an embarrassing situation.

Some insight into this problem can be obtained by comparing the zeta-core sand-
wich with the single corrugation type sandwich. Obviously, the buckling load for
single corrugation core is that of an infinite long strip plate of a width loaded com-
pression by two opposite edges which are simply supported, while the buckling
load for zeta-core is that of a rhombic plate of equal width simply supported at all
edges. Unless the rhombic plate has high aspect ratio, the buckling load for zeta-
core is certainly four orders of magnitude higher than that of the single corru-
gation core.

The post-buckling behavior of a flat element must also be considered. It is most
likely that the flat element may have an initial imperfection and it further reduces
the rigidity of it to some extent. A buckled plate, however, when it is supported
at all edges, can resist to further increase in load. In addition, since the reverse
stress condition always exists in adjacent elements as indicated in Eqs. 44 and 45,
the deformation can not easily advance further.

As far as the stability of core is concerned, the use of zeta-core having cylindrical
side parts may be beneficial. In any case, the design of core form is especially
effected by the stability consideration.

5. REAL1ZATION OF ZETA-CORE CONCEPT

5-1 Manufacturing of Zeta-Core

In the foregoing study on zeta-core concept, it has been shown that the core is
worthy of further investigation on realization aspect. In this respect, the manu-
facturing problem of zeta-core will be discussed briefly in the following.

Consider a continuous surface formed by taking away the top and bottom parts
from a zeta-core surface whose fundamental region is shown in Fig. 10. It yields
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F16. 14. A Developable Double Corrugation Surface
(Caution: Stabilize your vision so that the lighter zigzag
ridges may be looked valley ridges.)

a surface with really distinguished characteristics (Fig. 14). This surface, pro-
visionally named by the author “a developable double corrugation surface,” can be
developed into a plane, because the sum of vertex angles around any vertex is
always 2z radian. The particular geometry of this surface is given in some details
in the references [/], [2], and [3].

This surface has in truth been known before to peoples who had an interest in
paper folding art. This strange form might have attracted attention of structural
engineers and it led to the invention of such core by Géwice in France and Rapp [5]
in U.S.A. in the end of fifties. The foundation of the invention depends on the
fact that such a core should theoretically be manufactured from a sheet material
through an isometric transformation, that is, a bending working. It is true that
a model of this type can be made of a paper by hand, however, developing an
acceptable mass production method of the core can not be expected for a while.
The main difficulty is due to the general discontinuity of fold lines, which is an
intrinsic feature of the geometry of this surface. Another fault of this invention
is the absence of the parallel surface with the facing surface which is used for
bonding area.

The manufacturing of zeta-core is only possible through literally the topological
transformation of a flat sheet, that is, the press forming of a sheet which necessarily
includes both stretching in-plane and bending deformations. The amount of in-
plane stretching deformation is a increasing function of the inclination of side
element of core. The difficulty increases as this angle increases. Hence the angle
near 55° which gives the optimum form efficiency is a goal. It should be noted
that the flat top part of the core has an eminent alleviating effect on this difficulty.
Without this flat part, occuring of either excessive thinning or fracture in the region

This document is provided by JAXA.



Zeta-Core Sandwich—Its Concept and Realization 157

of sharp crest ridges of the core is almost inevitable. This is another reason why
above-mentioned core having a developable mid-surface is unable to manufacture
successfully even by a press forming.

The manufacture of zeta-core from thermo-plastic sheet was carried out with the
cooperation of Mitsui Toatsu Chemicals, Inc. We found no difficulty in trial
manufacture. The resulted zeta-core made of polystylene sheet and its sandwich
are shown in Fig. 15. The manufacture of zeta-core from aluminum alloy sheet
was carried out with the cooperation of Sumitomo Light Metal Industries, Ltd.
This case was naturally more difficult than the former, since the necessary defor-
mation is close to the limit of the formability of aluminum alloy. The resulted
zeta-core from aluminum alloy sheet and its sandwich are shown in Fig. 16.

Conclusively, it seems there is no essential difficulty which can not be solved in
manufacturing zeta-core of this type from plastics, G.R.P., and metal sheets. Also
it can be predicted that, due to the simplicity in forming process, the production
cost of zeta-core is relatively low in comparison with honeycomb core. Much
study should be done, however, before the effective manufacturing method of zeta-
core is to be found.

5-2  Applications of Zeta-Core

If we sum up the principal features of zeta-core predictable at this stage of

F1G6. 15. Zeta-Core Made of Plastic Sheet
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Fic. 16. Zeta-Core Made of Aluminum Alloy Sheet

study, these are as follows; the high shear modulus almost equivalent to that of
honeycomb core, the isotropy or controllable orthotropy in shear property, simpli-
city of its monocoque structure with no bonding within itself, and low cost of
manufacturing. Such characters are undoubtedly most desirable for general appli-
cations of sandwich constructions. Hence, the zeta-core concept may develop the
possibility that the sandwich construction is accepted by much wider field of indus-
tries than before as the primary load carrying members to an extent which is not
heretofore attained.

The possible applications of zeta-core which are deeply concerned with its
particular properties are now discussed briefly in the following.

The honeycomb sandwich can not generally be used for high temperature struc-
ture because of its difficulty in brazing and welding to facings. For high speed
air cruising vehicles the light weight stressed panels usable at an elevated temper-
ature environment is needed. Zeta-core has some apparent merits in this respect.
As for bonding, there is not any bonding within the core and also there is the
flat contact surface purposely designed for bonding with facings. Therefore, either
brazing or welding can be done firmly with ease. Another merit exists in the
configuration of zeta-core sandwich which facilitates the circulation of a fluid
within spaces between core and facings.

Another important feature of this core is the applicability to sandwich of free
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formed surfaces. The necessity of free formed surface shell structures is growing
in various fields and will be still increasing in future. In principle, the zeta-core
can be designed to meet with any free formed surface. Moreover, the core of
moderate single curvature can be made of a flat type zeta-core by bending.

The zeta-core can be used also as the stiffner for the stiffened panel structure.
It provides stiffening effect in two mutually orthogonal directions which is similar
of a waffle plate. The understanding of this interesting mechanism needs further
investigation.

There are some possibilities of using zeta-core for non-structural purposes such
as a shock energy absorbing structure and a heat exchanging element, but there
consideration is outside the scope of this paper.

In any case, however, much study should be done for the purpose of developing
the rational applications which take good advantage of particular properties of
zeta-core.

6. CONCLUSIONS

1. The geometric forms of the core of sandwich construction can be grouped
into three classes, such as the cellular form, the grid form, and the single surface
form. The last form, which is created by a topological transformation of a plane,
can further be grouped into four types.

2.  With due consideration of the shear strength, isotropy, bonding, and manu-
facture, the core form which is composed of side parts in inclined ruled surface
and top parts in zigzag form is considered to be the most promising one. The core
is designated by “zeta-core.”

3. It has been shown by an approximate analysis that the shear modulus of
zeta-core can compete with that of honeycomb core of identical apparent density,
and that it is possible to design zeta-core of any orthotropy including isotropy in
shear modulus.

4. The trial manufacture of zeta-core from both plastics and aluminum alloys
has beeen successful. 1t seems there is no essential difficulty in mass production
of zeta-core from these materials. Hence, the concept of zeta-core is completely
realizable.

5. Such features as simplicity, high shear modulus, isotropy, handling easiness,
and low cost of zeta-core are most desirable for general applications of sandwich
construction. Thus, the zeta-core concept may develop the possibility that the
sandwich structure is accepted by much wider field of industries.

6. Particular applications of zeta-core includes elevated temperature applica-
tions, sandwich of free formed surfaces, and shock absorbing structures.

7. Future study should include the effective production methods, the optimum
design, and the development of rational applications.

This document is provided by JAXA.



160 K. Miura

APPENDIX

Definition of Form Efficiency of Core Form

For the structural evaluation and comparison of cores in different forms, we
would first select a certain quantity which can reflect most of the important factors
involved in each case and then calculate the quantity to decide the evaluation.
Such quantity can be numerous and each of them has its own feature suitable for
a particular purpose. It will be convenient, however, if we could find a single
dimensionless quantity which can be used for the most general evaluation for the
core form.

The present author proposes the use of the “form efficiency” of core defined by
the following formula as such an evaluating quantity of most general nature.

p=-° (A-1)

In this formula, G is the shear modulus of the core material, G, is the effective
shear modulus of the core (or simply the shear modulus of the core), and « is
the filling factor of the space between facings which is given by the ratio of ap-
parent density to material density of core.

Introduction of this concept is due to the following idea. 1f we select a single
quantity which represents most important mechanical properties of core, we will
undoubtedly take the shear modulus of core. This consideration leads the thought
that the core efficiency should be defined as the one which is in proportion to the
dimensionless form of the shear modulus of the core, that is, G,./G.

Now we shall make clear what is considered to be a definition of “core form.”
The filling factor « for the usual cores is relatively low and is in between 0.1 and
0.01. It follows from this fact that the microscopic form of the element of core
structure can not be three dimensional, and instead, it must be at most two-
dimensional. This reasoning is supported by the observation that the majority of
cores we use are composed of shell elements, that is, the two-dimensional struc-
tural elements. Thus, the geometric form of a core can be expressed completely by
the core surface and the thickness of it. For a certain core surface, the filling
factor is logically in proportion to the thickness, or more specifically, the average
value of the thickness.

For thin shells, the assumption of the state of membrane stress is an first ap-
proximation. If we assume it, the total strain energy stored in the core by a given
deformation is in proportion to the average thickness, and thus, to the filling factor.
Furthermore, the total strain energy is in proportion to the effective shear modulus
due to its definition. Therefore, it can be concluded that the filling factor « is
essentially in proportion to the effective shear modulus G,. It should be noted,
however, that this linear relation is valid for neither very low nor high values of «;
the reason of it is rather obvious.

If we take the view that the core form means the form of the core surface
excluding the filling factor, and that we needs an evaluating quantity only for the
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core surface, such a quantity must be independent of «.
Then, it will require a little ingenuity to arrive at the following dimensionless
parameter proposed before.

G,
Gua

This is really a dimensionless quantity which represents the mechanical property
of a core and depends on solely the core surface and is independent of both
material and filling factor. The higher value of the form efficiency is of course
desirable.

A better understanding about the physical meaning of form efficiency can be
obtained by considering p values for a core form of Fig. 17, where cores of sequen-
tial decreasing of « are shown. Obviously x equals to 1 when « equals to 1, and
¢ approaches 0.5 as « decreases. Also from the previous argument, yp is almost
independent of @ when 0.01 <a<{0.1. With these information on hand, we can
compose a typical p curve in «-p coordinates as shown in Fig. 17.
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FiG. 17. Form Efficiency vs. Filling Factor for Grid Type Core

Now, let us calculate the x value of honeycomb core from theory and also from
the test result. The shear modulus of a honeycomb core of regular hexagonal type
is given by the following formula [6], on the basis of equal assumptions to those
used in the previous zeta-core analysis,

5 t T _
G.= EWEY (-b—> G, (L direction) (A-2)
G.—— 1 (L) G (W direction) (A-3)

V3 \b)
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where b is the length of a side of the regular hexagon and ¢ is the thickness of cell
wall. The filling factor « for hexagonal core is

=575 5) (A=)

From these equations, we have finally

p=-—=0.625, (L direction) (A-5)

p==—=0.375, (W direction) (A-6)

oolw oo]un

If we assume the mean values of y,, as an arithmetic mean of values for L and W
directions, we have
fn= L =0.5 (A7)
2

It is clear from these formulas, the form efficiency of honeycomb core is inde-
pendent of « and is inherent in the core form.

While, p values calculated from the tested result on shear modulus by Hexcell
catalogue [7] are plotted in Fig. 18. It is shown that except very low value of «,
the mean value of y is a very weak function of « and is close to 0.5. Thus it can
be concluded from both theory and test the form efficiency is a constant which is
intrinsic to honeycomb form. This fact provides an ample evidence that the con-
cept of the form efficiency is just what we expected previously. Hence, the concept
of the form efficiency is considered to be very useful for the evaluation of core
forms.
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Fic. 18. Form Efficiency vs. Filling Factor for Several Core Forms
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It should also be noted that the same relation but in the different arrange as
shown below

G,=paG (A-8)

can be used for the prediction of the shear modulus of a core of known form with
different filling factor and material. For reference, x values for several core forms
are plotted in Fig. 18.
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SYMBOLS

Symbols for primary concept

a area of a rhomboidal element
b side length of regular hexagon
¢ constant
f periodic function
g periodic function
h periodic function
[,m,n direction cosines
¢t uniform thickness of a rhomboidal element or a honeycomb wall
v gross volume between facings filled by a fundamental region of
zeta-core
x,y,z rectangular Cartesian coordinates

L1 --.

Young’s modulus

Shear modulus

metric vector

strain energy

filling factor of core

reduction ratio (see Eq. 26)

shear strain

normal strain

form efficiency of core (see Egs. 25 and A-1)
normal stress

Poisson’s ratio

shear stress

direction, ¢ radian counter-clockwise from x-axis on x-y plane
null set

domain

f.r. fundamental region

O a9 v AR oIS QAM

Subscript

c core property
i ith element

r linear element

Superscript

* quantity relating to a zeta-core whose fundamental region is com-

posed of four congruent rhomboids and two congruent chevron
patterns (see Fig. 10)
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