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Summary: It is ascertained that reachable or controllable points of a dynamic system
in which a system equation is linear with respect to control variables can be obtained
even for cases with first-order state-inequality-constraint by using an effective optimizing
method based on linear programming.

With this method, controllable height regions of aircraft for spot landing are investi-
gated. The effect of flight parameters such as approach path angle and velocity and
the effects of the constraint quantities of elevator angle, angle of attack and pitch attitude
on the controllable region are made clear for a middle size turbo-prop transport aircraft.

The widest controllable height region of the model aircraft at 1/3 naut mile point from
landing spot is obtained at the approach velocity of 1.125~1.175 V, irrespective of
approach angle.

A safety margin factor which is the ratio of maximum allowable steady flight length
to the total approach and landing flight length in statistical meanings is introduced and
effects of the approach speeds and angles to this factor are discussed.

[t may be concluded that the slope of the glide path of the conventional aircraft
(—2.5~—3.0deg.) in ILS is reasonable in view of safety and that, if selected carefully,
the location of this glide path to an objectvie touch down point can be held to the specified
point without any adjustment due to the degree of skillfulness of the pilot. This adjust-
ment seems to be required for more shallow approach path angle.

NOTATION

a: lift slope
element of coefficient matrix A

a;:
b;;: element of coefficient matrix B
¢: vector specifying performance index
¢: mean aerodynamic chord
e: vector specifying final state
f: function of x, u
¢g: state constraint,

gravity acceleration
9w constraint for angle of attack
h: height (m)
h: non-dim. height (24/¢)

* Kawasaki Heavy lndLlsiries, Ltd. Gifu Works (In-Service Training Course for Engineers
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number of blocks of variational control
time (sec)

non-dim. time (¢/7)

time at pi, q,i+

safety margin expressed by time

small variation of ¢, T

m dim. control vector

i-th transformed control vector

control at i+ or i—

n dim. control vector

n dim. control vector

n dim. state vector

i-th element of x

performance index

small variation of x, x,, x°

coefficient matrix of equation of motion
coefficient matrix of equation of motion

function giving controllable region, or
matrix specifying final state

matrix specifying final state
identity matrix

lift

terminal manifold

safety margin factor

matrix constraining state
reachable region, or

distance to touch down point

wing area

approach velocity

stall velocity

aircraft gross weight

lift coefficient

reference angle of attack
angle of attack

variational angle of attack
stall angle of attack
reference approach angle
approach angle

variational elevator angle
variational pitch attitude
pitch attitude of aircraft
damping ratio

air density

undamped natural frequency
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o, : variance of height
o;: variance of approach angle
T time (¢/20)
#(z, 1), ¢: transition matrix
¢: discrepancy from final condition
7,¢;: adjoint vector
2  Hamiltonian
U: setof u
(+): differentiation with respect to time
( )': transpose matrix or vector
( )™': inverse matrix
( )m: mean value
( )x: reference state
( Jmaxomm: Mmaximum and minimum value
( ): initial or reference state
( )s: final state

1. INTRODUCTION

The study of safety or reliability of aircraft seems to become more important
than before, because even a small accident in flight means loss of large human life
for the super sized aircraft such as Boing 747.

Contingent fatal accidents had followed one after another in the sky of Japan
in 1966 and such terrible and gigantic scale accidents had never been experienced
except in war. In these accidents, the one in landing phase whose cause is pre-
sumed as pilot miss means by a tacit consent that the study of aircraft operations
or pilot’s maneuvers is very important.

If we consider an operation of transport aircraft, the flight phase can be parti-
tioned into three phases such as take-off, cruise and landing. From the view point
of the control, the landing phase is conspicious in the sense that the aircraft must
be controlled to a specified narrow region or point.

In this paper, allowable region of approach height and desirable approach path
of aircraft in landing phase will be studied in the sense of safety. The study was
motivated by those successively happened accidents in Japan.

Many studies related to the safety of aircraft in landing phase have been done.
One of the important directions of studies in theoretical treatment is the discussions
based on the stability theory [/-5]. But the analyses of the low speed flight prob-
lems such as back side phenomenon of SST, STOL etc. by the stability theory do
not include the discussions about the transient behaviours of the aircraft like flare.

Another distinct direction of studies is the application of optimal control theory,
which is splitted into two phases. One is based on deterministic treatment and
the other is on stochastic treatment. The application of well known regulator
problem [6] to the automatic flight control system is considered to be the important
former fruit in the sense of safety, because the stability around given nominal path
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guarantees the safety itself [7]. Lately, it was shown that the regulator problem was
applicable to nonlinear systems [8] and, also, the weighting matrices appearing in
the quadratic performance index of the regulator problem were reasonably deter-
mined in engineering sense [9-70]. So it may be considered that the regulator
problems are refined and are in practical use now [/7/]. However, these studies
or theories about regulator problem can not teach us the method of determination
of the nominal landing speed or path of aircraft.

One of the significant study in deterministic sense was performed by Komoda
[/2—-13]. He deals with the controllable regions of engine failured helicopter and
investigates the control procedures corresponding to the boundary of that regions.
It seems to be remarkable in the sense of safety to use the concept of control-
lability, but such analytical study is not easy but needs deep insight about the
objective dynamics and understandings of mathematical theory of optimal control.

The stochastic optimization technique is, on the other hand, important for Fujii
and Shen proposed a paper [7/4] including pilot lag in control and errors in ob-
servation and investigated the minimum deviation from the objective state. But
likely to stability theory, the unsteady flare maneuver is not included in that paper.
Any way, as above mentioned, the flight path in approach has not been physically
clarified or theoretically determined in relation to safety of the aircraft operation.

Present study is one of the trials to determine the approach path of the aircraft
by considering the human safety and comfortability. The determination is per-
formed by adding statistical considerations to the controllable height regions ob-
tained for spot landings by numerical optimizations. This paper consists of three
main subjects: investigations on the easicr numerical method of obtaining the
controllable region, the numerical expression of the controllable region of conven-
tional aircraft in spot landings and the desirable approach speeds and paths in view
of statistically safe landing.

It must be pointed out that, in this paper, errors of the values of aerodynamic
derivatives of equation of motion of aircraft, errors of instruments, effects of gust
on control surfaces of aircraft and control misses of pilot are not contained ex-
plicitly and assumed that the stability and mancuverability of aircraft may be left
out of consideration.

2. CONTROLLABLE AND REACHABLE REGIONS

Mathematically speaking, the possibility of comfortable landing of an aircraft at
a specified flight time T depends on whether the aircraft is always inside a T-
controllable region or not, which is a set of initial state being controllable to a
specified final state in time 7 under all constraints posed on state and control
variables. Since one of the purposes of this paper is to investigate the 7-control-
lable regions of aircraft in the landing phase, knowledge about the nature or equa-
tion of T-controllable region is necessary. Now a T-reachable region can, by
similar way to T-controllable region, be defined as a set of final state to which a
specified initial state is reachable in time 7 under all constraints. In this section,
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A Fundamental Study on Safe Landing 215

the equation of T-controllable and reachable regions will simply be derived from
the geometrical stand point, and the nature or mutual relations between them will
be mentioned.

2-1 T-Controllable and T-Reachable Regions

Equations of the boundary of T-controllable and reachable regions were already
introduced by Snow [15], but in the process of reduction of the equations he used
some skillful but complicate techniques in treatment of control variables. Here,
according to clarify the geometrical meaning, the conditional differential equations
that may be called quasi Hamilton-Jacobi-Bellman equation (H-J-B equation) will
be introduced and the mutual relation between T-controllable and reachable regions
will be discussed.

(T-Controllable Region)

Let us consider the boundary of T-controllable region for a final manifold

M(x,t,)=0.

C(x, T)=0. (2-1)

Then the boundary of T+dT-controllable region related to above equation as for
the same manifold can be expressed as

Clx—dx, T+dT)=0 2-2)

where —dx is an increment vector being reachable to a point on the C(x,T)=0
in time dT. Here, a gradient of C, C,, is a vector defined to take minus direction
of C=0 (Fig. 2-1). The condition that C(x—dx, T+dT) attains its maximum
value at the point x—dx is needed because a point or points on C can coincide with
the boundary of locally controllable region dC but the boundary of C can not
intersect the boundary of dC. Of course, vector dx must satisfy the system equa-
tion of motion. Thus, the condition that must be satisfied in the controllable
region are rearranged as follows:

max. C(x—dx, T+dT)=0 (2-3)
Cx, T)=0 (2-4)
X=f(x, u) (2-5)

Eqs. 2-3~2-5 reduce to limiting form of

max. (—C,f+C,)=0 (2-6)
where
€| 9C OC aC| . _aC
ox,  dx, 0x, ot

This is the desired relation describing the nature of T-controllable region with
respect to M(x, t,)=0.
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FIG.-Z—I. Controllable region Fic. 2-2. Reachable region

(T-Reachable Region)
Similarly, two reachadle regions governed by R(x, T)=0 and R(x+dx, T+dT)=
0 can be considered. A gradient of R, R,, is defined to be vectored to the plus
direction of R=0 (Fig. 2-2). Considering the nature of the boundary of locally
reachable region dR, we can obtain the following relations:

max. R(x+dX, T+dT)=0 2-7)
R(.X, T) =0 (2——8)
X=f(x, u) (2-9)

These are reduced to next equation by taking limiting process.

max. (R, f+R,)=0 (2—-10)
where
R,— aRﬂj VaRW’ . oR , R,— oR .
0x,  0x, 0X ot

This is the equation of the boundary of the T-reachable region with respect to an
initial manifold M(x, t,) =0.

If we consider a supposed calculation process of obtaining the coundary of T-
controllable region in reversed time, then the movement of the objective system
is reversed as if the system is started from the manifold M(x, ¢,) =0, and the H-J-B
equation to which the boundary of controllable region obeys is turned to

max. (C,f+C,)=0. 2-11)

This equation coincides with Eq. 2-10 which expresses the boundary of T-reach-
able region. From this fact, it is conludingly to say that the reachable region
obtained by using the reverse time and the initial condition of M(x,#) =0, is
nothing but the controllable region with respect to the initial condition of M (x,¢,) =
0[75].
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(Nature of the Reachable Region)

Following characteristics of the reachable region are well known [/6]:

1. If a system is linear and the set of control variable is bounded and convex,
then the set of reachable region is also bounded and convex.

2. 1f a system is linear and the set of control variable is bounded and closed,
then the maximum principle [22] gives the necessary and sufficient condition
for the surface of the reachable set.

Unfortunately, in the current state, we can scarcely know about the mathe-
matical natures of the reachable or controllable regions if a state variable con-
straint is added to a dynamic system such as an aircraft in airborne. On the other
hand, it is exceedingly difficult to solve Eq. 2-3 or 2-7 directly in due considera-
tion of computing time or high core memories of the computer [/7-19]. The
development of new numerical approach to the controllable or reachable regions
of such dynamic system seems to be still valuable.

3. Two PHASES OPTIMIZATION METHOD

In this section, a numerical method of obtaining the reachable points is dis-
cussed for a system with first-order state-inequalities in the sense of Bryson [24].
Since the present method is based on linear programming and, as will be described
later, this method consists of two step optimizing procedures, we want to call it
TPO method which is a short designation for Two Phases Optimization method.

First step in TPO method is to constitute a locally optimal trajectory which is
optimal for any impulsive variational controls. Second step is to optimizing switch-
ing points of the locally optimal trajectory. At a grance, the first step is con-
sidered to be unnecessary but as will be pointed out in later this process attains
the important role for the optimizations because it economizes the large amount
of computing time. Practically, time must be quantized into discrete increments
and the calculation should begin with large time increments and smaller time in-
crements should be taken by a degree as the growth of iteration number.

The TPO method has a clear limit that it can be applied only to the systems
having linear control input. That is to say, this method utilizes the character of
bang-bang control law which appears inherently in optimization of linear control
systems [22].

3—1 Control Constraints

3—-1-1 Formulation of the Problem
For the sake of simplicity, let us treat a linear system first. Here, the problem
is to find a control that transfers the state from x, to some desired terminal state

Dx(t;))+C=0 (3-1
so as to minimize the performance index of the form

X)) =c'x(t)), (3-2)
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under the restriction of a given linear system
X=Ax-+Bu (3-3)
where

ue U, t,: fixed.

3-1-2 Two Phases Optimization Method
The procedure of the TPO method is divided into the following three steps:

Step 1; Construction of Reference Trajectory

Since the TPO method is direct method, a reference trajectory which is an
arbitrary initial path satisfying all constraints is required to begin with the cal-
culation. This trajectory can easily be constructed by using a method which is
introduced by taking a transformation from Euclid space to Hilbert space (Appen-
dix A). In this paper, the method of obtaining the reference trajectory is to be
called Sinnott’s method naming after the reporter [23].

Step 2; Construction of Locally Optimal Trajectory in Narrow Sense

Hereinafter, the phrase “locally optimal in narrow sense” is used when the
trajectory is optimal for any impulsive variational controls. To find a locally
optimal trajectory, we consider first a variational control in a time interval which
is quantized into some equi-length increments. The number of increments should
be selected so as the variational controls in those increments can affect both of
final state and performance index, and smaller number is prefered to simplify the
discussion and to save the complexity of the computer program. In this time
interval whose position is arbitrary at this time, the optimal variational or impul-
sive controls are determined so as to make the increment of performance index
minimum satisfying the final condition. Then the time interval should be shifted
to time increasing direction by just one increment and the procedure should be
taken again. This process should be repeatedly executed. 1f the process reaches
the specified final time, the procedure should be returned to initial time and re-
peated again. The locally optimal trajectory in narrow sense is expected as the
converged result of these calculations. As a matter of course, the obtained control
has a bang-bang characteristics.

Step 3; Optimization of Switching Points

In this step, some variations to the switching points are provided to minimize
the accompanied increment of performance index or to improve the locally optimal
trajectory which is gotten as the result of Step 2. Iteration is necessary because
the variation of the switching points is restricted to one block of time increment
in one calculation and this procedure is based on the linear programming. The
converged results satisfy the final conditions and, in fact, have the bang-bang con-
trol characteristics which are derived by the maximum principle. Apparently, the
above calculation procedure results that the converged trajectory has better per-
formance index than those of neighbourhoods. 1f the above described iteration
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is converged, then the corresponding trajectory satisfies the necessary condition for
optimality of the problem formulated in 3—1-1.

3-1-3 Locally Optimal Trajectory in Narrow Sense

In this subsection, the locally optimal trajectory in narrow sense is shown to be
able to construct by using the linear programming,

The terminal state of the system described by Eq. 3-3 at the final time ¢, is

x(t)=o¢(t,, t,) [Xo + ftmgé“l(t, t,)Buydt

+ f tqqﬁ”(t, ty)Buydt + f tqu“l(t, zo)Buth] (3-4)
tp1 -

tq

where a transition matrix §(z, t,) satisfies

B(t, 1) =A(t, 1) (3-5)
¢(t09 to) =1 (3-—6)
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and ¢, is an initial time, (¢,,,¢,) is an arbitrary time interval, and subscript N indi-
cates the reference state (Fig. 3-1A). The candidate control u(#) for optimality in
the time interval (¢,,, ¢,) moves the termimal state to

) Ip1
x(zf)wgé(tf,tn)lxﬁ f ! ¢\ (t, ty)Buydt

N f "5t 1) Budt + f Yo, tU)Buth1. (3-7)
ty -

tpy

Accordingly, the variation vector of the terminal state by the candidate control
becomes

dx(t,)=x(t,)—xy(t))

— (L, 1) f a1t 1) Budt— ¢t 1,) f "9, t)Buydt.  (3-8)

tp1 ip1

Now, let us divide the time interval (¢,,, t,) into s equi-length increments. Then the
Eq. (3-8) is rewritten as

dx(t) =1, ro)[ Ll 6 tys s t)BUdE— 3 G (tyi s, tU)Bumdz]. (3-9)

i- itl
On the other hand, from the relation of

dx ;= Ax(t,;) + Bugyldt, (3-10)
we get
Buszt:dxpz——Ax(lm)dt. (3—] 1)

From Egs. 3-9 and 3-11, we obtain

dx(t)=¢(t;, tﬂ)[i1 ¢ty 115 t)Bu,dt

_ Z 6t ysns 1)dxys +Ax(tm)dz]] . (3-12)

Now, since the transition matrix ¢ has the characteristics of

¢(tf9 t0)¢A1(tpi+1’ to):¢(tf; t0)¢(t0> tpi+1):¢(tf7 tp71+1)7 (3_1 3)

¢! in Eq. (3—12) can be eliminated and the following new relation can be obtained:

dx(t,) = 21 B3t 1oy, DI Budt — (dx,,— Ax(t,))dr]. (3-14)

Applying this relation into Eq. (3—1), the variation of the performance index by the
candidate control u; is obtained as

dxo(tf)—_—c/dx(tf):c/[il o1, tpiﬂ){Buidt-—(dxpi—Ax(tpi)dt)}] . (3-15)
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Using a transformation of

ui:é:umax"“ui: (3—16)

the problem of obtaining the optimal impulsive variational control can be re-
arranged in summation form as follows:
Constraints

U

v

0 (3-17)

u U in—

max  “min

[y

=0, [=1~s (3-18)

D Y §(ty, ty, DByt — (dx,y;— Ax(t,)dD]—D 3 ¢t tyi, ) Bitdt =0
i=1 i=1

(3-19)
Performance Index

min. dx'= — ¢’ Z,l &(t7, i) Bidt (3-20)

where #; are the unknown controls.
This is a linear programming problem itself [27]. Solving this problem iteratively
until it converges according to the procedure cited in 3—1-2, we can obtain the
locally optimal trajectory in narrow sense.

3-1-4 Optimization of Switching Points

Here, both of the controls at discrete time increment of terminal point and at
opposite sides of each switching point are selected as the variational controls
(cf. 26). The final state of the reference trajectory is, as in 3-1-3, given by

-1 E(i+
=1

t1— s 1) —
Xyt =gty 1) [x(, + g ) Buydi+ 671, 1) Buydt
to+

i+

+ f P74, 1) Budt + ¢ty 1)(dx o — Ax(to)d)
L+

3

67t 10 (A, — Ax(tr D)+ 3 {57t 1)y
—Ax(t; )dt)+ ¢t ., t)ldx,;, ——Ax(ti)dt]}] , (3-21)

where t, t;,t; (i=1~s5) are switching times, wu,, v, ,u,,, -, u;_,us, ,u,, are the
controls at the switching points, ¢;,. are time just before or after the switching point
t=t; and dx,; ,;, is a movement of xy in a time difference before or after the switch

t;. The final point of the trajectory corrected by new variational controls is obtained
as same way

t1— s—1 bi+1)—
x(t) =gty 1) 5ot 470 WBuydt 67'(t, 1)) Buydt
Lo+ ti+

+ f ”_qi“l(t, t)Buydt+ ¢~ (1., t)Buydt+ ¢~ '(t, t))Bu, cdt
ls+

+ g {67 (t;, t)B;_dt+¢7' (¢, tO)Bqut}]. (3-23)
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From Egs. 3-21 and 3-22, we can obtain the variation of the final state of the
trajectory by applying new variational controls.

dx(t) =x(t,) —xy(t;) = —§(t, 1,) [¢~»(to ), — Ax(ty)dx]
+ ¢ty t)(dx,, , — Ax(t, )dt)
+ Zl {p7 (1, t)(dxy; — Ax(t; )dt) + ¢ (1, t)(dxy; , — Ax(ti)d[)}]
+ ¢t t&[«ﬁ“‘(to os L) Buydt + ¢~ (i, t,)Bu, dt

+ 30 {67 (s, t)Buy_-di+ 674y, 1)Bu,, .m}]. (3-23)

Using the characteristics of transition matrix, we can eliminate the inverse matrices
and obtain the next relation:

)= = [ 4074 10ty AX(U)AD 5 1)y, — A i)
+ Z {pts, t)(doxy, — Ax(t; )do) + @ty 1, N dxy;, — Ax(ti)dt)}]
+ ‘:¢(tf; ty,)Buydt + (i, t )Bu, )Bu, dt
+ Zl {¢(t;, t)Bu,_dt+¢(t,,1; )Bu,, dz}] : (3-24)

Now, the problem is to minimize the increment of performance index under the
restriction of Dx(¢;)+C=0 and ue%. Same transformations as the preceeding
section would be used, which are written as

aiiéumax"—uii‘ (3-25)
Thus, the standard linear programming problem for the optimization of switching

points is obtained as follows:
Linear Programming Problem

Constraints
o, Uy, 11, =0 (i=1~%) (3-26)
Unax — Ugnin — Uy Z 0 (3-27)
Upox — Ui — iy =0 (3-28)
Uy — U — ;=0 (i=1~%) (3-29)
Upax = Upin— U, =0 (i=1~s) (3-30)

D [ — (1, 10, )(dxpo— AXUAD + 31, 1), — Ax(t, 1]

+ g {9y, t)dxy; — Ax(t;_)d) + ¢t s, t;, )(dxy, —Ax(t“)dt)}]
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—D [¢(x 15 o )Bidt + ¢(t;, t)Bid, At
+zl (6(t,, t)Bit,_dt+(t,, zi+)Bai+dt}] 0 (3-31)
Performance Index
min. dx'= —¢’ [¢(t,, to)Bitydt + §(t,, 1,)Bil, dt
+z;1 {8t 1)Ba,_di + 61, rﬂ)Ba“dzﬂ (3-32)

Solving this problem, we can improve the switching points. Hence the switching
points are movable only one time increment in each calculation, the iteration proce-
dure is necessary. When the variation of performance index is converged, the
corresponding trajectory may be regarded as locally optimal in an ordinary sense.

When the system contains high dimensional control variables, additional itera-
tions should be taken reciplocally for each element of control vector in order to
save the computing time. Namely, only one element of the control vector should
be taken as a variational control in a series of optimizing calculations and this
optimization should be continuously taken by turns for each control element until
the convergence of performance index for all control elements is assured. These
modifications saves the increase of complexity of computer programs for the higher
control dimensional problems because the program is obtained simply by adding
a little change to that of scalar control problem.

3-1-5 Extension to Nonlinear Problem

The TPO method can be applied to nonlinear problem if the control variables

are still linear in the system equation.
In this case, the system equation, instead of Eq. 3-3, is expressed as

%={(x)+ Bu, (3-33)

and the other conditions are same as those stated in 3—1—1. The variation of the
final state from the reference state is

dxt)) =3, §(t,, 1+ d)Bv,di (3-34)
Vi=U;—Uy; (i=1~k) (3-35)
B(t, 1) =Ff-4(t, t) (3-36)

G(to, 1) =1, (3-37)

for k variational controls. Using Egs. 3-2, 3-3 and 3-4, the optimal correction
of the control variables can be stated likely to the case of linear systems as follows:
Constraints

This document is provided by JAXA.



224 A. Obata

D 3] ¢lt;, 1, +di)Bu,dt=0 (3-38)
vtz u,, =1~k (3-39)
Ivi + uNi é umax (i - ] ~ k) (3_40)
Performance Index
min dx'=¢’ 3 ¢(t,, t;-+ d)Bo,dt (3-41)
T=1

What is different from the linear case is the dependence of the transition matrix
#(t,1,) on reference controls and trajectory which vary with each iteration (Eq.
3-36). This difference means the necessity of large increase of computation time
in nonlinear case.

3-2 First-Order State-Inequality-Constraint

3-2—1 Formulation of the Problem

As for the oscillatory systems in state constrained space, we can not know in
advance that how many times the optimal solution rides on the boundary of the
constraint. It is difficult to solve these problems by indirect method due to the
sensitivity and complexity of boundary value problem [20-25]. These problems
can be solved by modifying the TPO method, if the optimal trajectory on the con-
straint boundary can be determined analytically.

We consider the minimization of the performance index of Eq. 3-2 subject to
Eqgs. 3—1 and 3-3 under the additional state-inequality-constraint

3 .. '
()0 (3-43)
ou

3-2-2 TPO Method with First-Order State-Inequality-Constraint
Calculation procedure of the TPO method for state constrained problem is
shown below.

Step 1: Construction of Reference Trajectory

Using Sinnott’s method, we can construct from an arbitrary initial trajectory
a proper reference trajectory which satisfies all necessary constraints. If we do
not require the optimality to the reference trajectory, it is not so difficult to satisfy
the state constraints.

Step 2: Construction of Locally Optimal Trajectory in Narrow Sense that
Satisfies the State-Inequality-Constraints
The process of the construction of solution in this case is same as that of the
state free case fundamentarily. A new restriction that controls must satisfy ¢=>0
at the beginning of the continued time interval of g <0 should be added. If the
controls satisfying the above new restriction do not exist, a trajectory which is
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optimal on the constraint boundary should be constructed to move on the boun-
dary from the time of g<O0 to the time of ¢>>0. After the exit point, the same
procedure as state free case should be taken. The method of iteration itself is also
same as the state free case. The impulsive variational control is taken iteratively
to the time increasing direction in order. Doing above procedure, we can get a
solution for the trajectory in converged form satisfying the state constraints and
the locally optimality in narrow sense. Then we can go to the next step.

Step 3: Optimization of Switching Points

Here, only switching and exit points should be taken as variational control vari-
ables. In this step, proper number of iteration for the minimization of performance
index must be taken to improve the trajectory obtained in Step 2 without thinking
of state constraint.

Step 4: Iteration of Step 2 and Step 3

The procedure of Step 2 and Step 3 must be taken repeatedly. If the per-
formance index in Step 2 shows the oscillatory nature, reduce the number of itera-
tion in Step 3. [If this nature doesn’t diminish even in one iteration number in
Step 3, the smaller value of performance index should be regarded as the ptimal
value.

3-2-3 Locally Optimal Trajectory in Narrow Sense

The constraints that must be added in this case to the formulation in section
3—1-3 are shown below.

On the state constraint boundary, next relations must be satisfied:

g=Px+q=0 (3-44)
g=Px=0 (3-45)
Substituting the following relations:
dx=(Ax+ Bu,)dt (3-46)
Uy = Uy — Uy (3-47)
into Eq. 3-45, we can obtain
P(Ax+ Bu,,,— Bii;)dt=0. (3-48)

This is the new restriction that should be imposed at the time of ¢ <O0.

3-2-4  Optimization of Switching Points

The method of variation of switching points should be treated entirely same as
the state free case. Using Eqs. 3-26 and 3-32, the switching points and entry
or exit points can be revised. Additional variational controls are required at the
exit point to determine the way of movings of the trajectory at that point; keeping
along or departing from the constraint boundary.
3-3 Numerical Examples of TPO Method

3-3—-1 Control Constraints

Example 1. Oscillatory System
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System Equation
X, =x,+u (3-49)
X, = —X,— X, + U, (3-50)
Constraints

1u,]<0.85, |1,|<0.85, x,(0)=1.0, x,0)=1.0
(1) +x()=0.15  1,=8.192

Performance Index
min. x°(¢;) =x,(¢;) (3-51)

Since the Hamiltonian and adjoint equations are written as

H = — X+ X:0 — (X, + X))y + (= 1+ )y + oy (3-52)
d=¢, (3-53)
95 =1 “‘Sbl + Sl’za (3-54)

the optimal control law derived from the maximum principle is described as below:
ulopt:Sign (_1 +¢1) (3“55)
Upopy =SIN ¢, " (3-36)

These relations show that the optimal controls are bang-bang, and that the switch-
ing interval of the optimal controls is half the natural frequency of the system.

The numerical results gotten by giving the variation controls #; and u. recipro-
cally are shown in Fig. 3-2. We can see that the numerical result satisfies the
optimal characteristics obtained by the maximum principle.

3-3-2 State Constrained Case

The flow chart of the TPO method in the state constrained case is shown in
Fig. 3-3. There, the procedure which corresponds to state free TPO method is
simply expressed as

TPO in state free

Example 2. Oscillatory System Having Velocity Limit
System Equation

%, =X, (3-57)

X, = —Xx,—X,+ U (3-58)
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Constraints

u|<1.0, x(0)=1.0, x,0)=1.0
x(t)=0.1,  {,=8.192

g=x,+0.820
[ 9=120) (359
Performance Index
min. x"(¢,;) =x,(¢,) (3-60)

The maximum principle says that the optimal solution in the state free region has
bang-bang characteristics, but it doesn’t teach us anything about the entry and
exit points. Calculated results by the TPO method are shown in Figs. 3—4~3-6.
In this calculation, three kinds of discrete time increment are taken: total time is
constructed by 32, 128 and 512 meshes. Illustrated in Fig. 3—4 are aspects of

1.0+ >0 / ) xi
v’y Yi g0 /~/128Meshes No.1 I s ,;I/’“‘ ]
#1.0__:[1]5W Exit L___\L‘/“‘»»\‘M_/MJ
/ / 2 -E \\\ ‘_’,// m
| N r
3 N - N
\\D'\ J_]
47 1 s ///' U
.
5 N e a
pa— |
6 ‘ N\ e 7
— \___ o
7 [ J
; | p— J
8 L d
— i

Fic. 3-4. Movements of entry and exit points in Example 2

LS 2
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[w] 1.0
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g=2-10.8=0
2 ==min.x (1)

il' =8192 (’6j
_}

1.0¢ Entry]

771'3 @D |Exit a3 {\(4 &

Fxit ]
FiG. 3-5. Numerical example of TPO method in state constrained case:
converged trajectory and control
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FiG. 3-6. Aspect of convergence of TPO methop in Example 2

movements of switching, entry and exit points in 128 time meshes with the increase
of iteration number. Solid line shows the improved results at Step 2 and broken
line shows the results of Step 3 in the sense of 3-2-2. In Fig. 3-5, the converged
result at 512 time meshes is shown on the phase plane. It is interesting to note
that the first entering to the state constraint boundary is reflected immediately,
and the final exit from the boundary is smooth. The aspect of convergences is
illustrated in Fig. 3—-6 for each time meshes.

3—4  Characteristics of the TPO Method

Merits of the TPO method may be described as follows:

1. The procedure can easily be understood in theoretical view point.

2. The problem of obtaining the reachable points with first-order state-inequal-
ity-constraint can be solved directly when the optimal trajectory on the
constrained boundary can be determined analytically.

3. Arbitrary time meshes may be selected according to the user’s purposes as
far as the high speed memory of the computer is not violated. When the
purpose is to obtain the qualitative aspects of optimal trajectories in short
computing time, a coarse time mesh should be selected, on the contrary,
when a correct optimal solution is desired, fine time mesh should be selected.

Demerits of the TPO method can be listed as follows:

1. The method is only applicable to the problems of obtaining the reachable
points of linear control systems. In other words, the optimal solution of
the problem must be bang-bang.

2. Computer program must be complex for the problem with state inequality
constraint.

3. The optimality in global sense can not be discussed with this method.

As we have seen, the TPO method has several features. When we are interested
in the controllable regions of aircraft in spot landing, the angle of attack constraint
stands as an unovercoming barriers in our way of investigation because of its first
order characteristics in sense of Bryson. This is the motivation of development of
the TPO method. In this paper, concrete calculations about aircraft landings are
executed by the TPO method.
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4. NUMERICAL PROCEDURES FOR OBTAINING THE CONTROLLABLE
HEIGHT REGIONS OF AIRCRAFT IN LANDING

Before the discussion of the effects of approach velocity and path angle on safe
landings, it is necessary to obtain the controllable height regions of aircraft in land-
ing. Although the controllable regions for all variables in state space are desirable
for the present discussion, it is unrealizable to obtain such regions specifically for
high dimensional problems with state constraints as those of aircraft landing.

In this paper, we assume that the aircraft is in steady state at initial time. The
method of obtaining the controllable height will be discussed under this condition.
We use velocity U and approach path angle y as the parameters which specify
the steady state of the aircraft.

4—-1 Equation of Motion of Aircraft

The longitudinal linearized equation of motion of aircraft which contains the
moment equation [28, 33] will be treated for simplicity, for we want to know the
control law of aircraft in short period of time. We neglect the change of air den-
sity with respect to height and the ground effect to landing performance of the
aircraft.

A differential equation of motion in vectorial form is given by
X=Ax-+ Bu. “4-1

If we consider the short period mode only, each element of state vector and co-
efficient matrices are given by

x,:‘lxl: xza x:;a x4]

x,=0,x,=40, xazl},x4:h

14
ap .- -d b,
12
Ay gy Ay, b
A , B= ,
[ Ay Ay on b41

where § and # means nondimensional incremental pitch angle and height, u means
incremental elevator angle and (‘) means the differentiation with respect to non-
dimensional time 7.

4—1-2 Formulation of the Problem

The problem is to obtain the upper and lower limits of the controllable height
of aircraft that assures safe landings at a specified point on run-way, under the
restriction of control quantity, angle of attack and presence of the ground. In this
paper, the approach speed of aircraft is assumed to be maintained constant for
simplicity and for the convenience of the discussions in section 5. Lateral motion
is neglected here. Also, we require the aircraft must satisfy the next final condition
for the rate of descent at touch down.

h(t;)=—0.3m/s 4-2)
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Pitch angle and pitch rate at touch down are to be investigated for each trajec-
tory whether they are allowable values or not.

4-1-3  Aircraft Models

Hereinafter, a middle size transport aircraft with twin turbo-prop engines is
designated as aircraft-1 which has following six flight phases:

1. Max. dynamic pressure flight
(15,400 ft height, 295 kts speed)
2. Max. velocity flight
(13,600 ft, 245 kts)
3. Cruising
(20,000 ft, 180 kts)
4. Wave off
(151 kts, gear up)
5. Approach-1
(110 kts, gear down, 20 deg. flap down)
6. Approach-2
(97 kts, gear down, 35 deg. flap down)

Since we pay attention to landing approach, the 4-th to 6-th phases are con-
sidered to be important. We choose 6-th phase mainly among them as our numeri-
cal example, and the other two phases are calculated only for the sake of com-
parison.  Stability derivatives which are translated into coefficient form such as
A or B are shown in Table 1. The stability derivatives of another middie size
aircraft model designated as aircraft-2 are also shown in Table 2 for comparison.

4-2  Upper Boundary of Controllable Height Region

The fact that Eq. 4-1 doesn’t contain the height term in right hand side indicates
that corresponding trajectory keeps same forms irrespective of initial or final height
if the same controls are taken. Thus, we can obtain a point of the initial upper
boundary of controllable height region by changing the sign of performance index
of the minimum height problems in order time for given steady state initial con-
ditions and final descent rate. That is to say, the upper boundary of controllable
height is given by adding the inverse sign of the final height to the reference path*.
The final height is obtained by solving the following problem:

X=Ax+ Bu (4-3)
x(ty) =x, (4—4)
Xy(17) =xy; (4-5)
min. x"=x,(¢,) (4-6)

* This method is applicable only when the ground does not exist on the way to the touch
down point or when, as a results, the optimal path does nct have the negative rate of
descent. When the optimal path has the negative rate of descent, we must reformulate
the problem as follaws: The max. height is given as the solution of inverse time maxi-
mume height problems with #=0.
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4-2—1 Constraint of Elevator Angle
It is sufficient in this case to add the next control constraints on the clevator
angle to Eqs. 4-3~4-6 for obtaining the upper boundary of the controllable region.

uzu 4-7)

max

u=>u (4-8)

== “*'min

Points on the boundary of controllable height region for the elevator angle con-
straints can easily be obtained by using the TPO method. The solution of the
maximum initial height problem for the case of

U, —0.195 4-9)
u. ——0.255, (4-10)

with the initial condition of level flight and with the flight distance of 1/2 naut mile
is shown in Fig. 4—1. This figure shows that the optimum controls for the maxi-

0.2

u(de) l -]

(rad)0 0.25 0.5n.m,
--0.2

T

T

10 aom.az’/ (rad)
22 (k) /
0 0 :
N \ /
—10l —0.2- (m/s*)

Fi6. 4-1. Optimal control and trajectories for maximum initial height: aircraft-1,
approach-2, U=49.9m/s, 7y=0y=—2.5deg., —0.255<6,<0.195
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mum initial height are constructed by the steps of initial full nose down and second
full nose up and final short time elevator full down maneuvers. The final maneu-
ver indicates that the instantaneous lift of tail wing should be utilized in strictly
speaking.

4-2-2 Attitude Constraint

Fig. 4-1 shows, however, the minimum pitching angle of the aircraft from the
maximum height is excessive for the transportation of passengers, so we need to
set the attitude angle constraint if a long time flight becomes an issue.

Attitude constraint is given by

0=06,,. (4-11)
This is, by using the nondimensional pitch angle x,, rewritten as follows:
Xy = Xa s 4-12)

which is the second-order state-inequality-constraint. The TPO method can not
be applied directly to the problem having second-order constraint. Although the
well known method to attack these problems is to treat the entry and exit points
indirectly by using the jump condition of the maximum principle, we would try
to solve here by the direct method because of the some peculiar nature of the
stated problem. Let us assume that an optimal path in case of attitude constraint
is made of three segments: interior segment of a bounded space which moves to
entry or from exit point named subarc 1 or 3 and segment on the constraint boun-
dary named subarc 2.

Subarc 1. (Optimal Path Before Entering the Constraint Boundary)

The entering conditions that guarantee the movability of a point along the attitude
constraint boundary are expressed by using 2-nd order characteristics of the con-
straint as

X=X, (4-13)
%,=0. (4-14)

Unreachable to the
Constraint

- \0 L % 0.2n.m.

—0.1 » )
8 (rad) p

—0.2| . —

6=-15° | i

0.05 _
u(radg 0.1 0.2n.m. l
—0.05-

Fic. 4-2. Optimal trajectories which enter into attitude constraint smooth:
min A, aircraft-1, approach-2, yy=0,=—2.5 deg.
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0 031 0¥2n.m.
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6 - —15°
0.05
u{rad) | ] W
0 P w
U LJO-I U U 0.2n.m.
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Fic. 4-3. Construction of optimal trajectory which enters into attitude con-
straint smooth and does not violate the constraint before the entry:
min /1, aircraft-1, approach-2, y,=0,=-—2..5 deg.
0.06
. 0.04] ﬂ
(8e) 0.02f !
(rad) 0 ‘\ + t ; | 0
—0.02!- 0.25 0.5 0.75 l .On.m.
~0.04/
—0.06-
0 : i
X3 N
<0)g‘;_
d) e — - —
(radly 3l 6=-15
Fic. 4-4. Optimal control and trajectory which gives upper height gives

upper height boundary in attitude constrained case: aircraft-1,
approach-2, U=49.9m/s, yy=0,=—2.5 deg., |3, <0.055

With the trial and error method, it is probably concluded in this case that only one
optimal subarc which satisfies Eqs. 4—14 and 414 at the entry point exists (Figs.

4-2, 4-3).

This is the aforementioned peculiar nature.

Subarc 2, 3. (On and From the Constraint Boundary)
The following relation is utilized to determine the controls to move along the

constraint boundary:

X, =ay, X, 4 AypX, + ay3x,+ b ,u=0.

(4-15)

We can get the optimal subarcs by the TPO method as was described in section
3-2-2, because the remaining problem is only to determine the exit and switching
points. Calculated results for the case of 1.0 naut mile distance, approach-2 phase

and &= —15°

is shown in Fig. 4-4.

4-2-3 Angle of Attack Constraint
Wing angle of attack can be written as

a=a,+ '«

(4-16)

where «, is the angle of attack in trimmed state and “« is variation from «,. By us-
ing nondimensional rate of ascent 4 and variational pitch angle of aircraft 6, the
non-dimensional rate of ascent is expressed as

h=0—"a (4-17)
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From these two equations, we have
a=a,+0—h. (4-18)
This can be reduced to
a=ay+ X,—X,. (4-19)
Therefore, we have next condition as the angle of attack constraint:
I 2 — X+ X5+ (nax— 09) 2 0. (4-20)

This is a first-order state-inequality-constraint because

Gy = — X+ Xy= — X, + (ayX, + Ay, + Ay Xy + by u) (4-21)
o — by 0. (4-22)

Unfortunately, our TPO method is applicable to this problem in only partial
case, for the control power of the aircraft is some times too small to move the air-
craft at once along the constraint boundary. This aspect of affairs is easily under-
stood by the next relation (Table 1):

TABLE 1. Coefficient Matrices of Fquation of Motion of Aircraft—1

1. Approach-2: flap down (35deg.), U:==49.9 m/sec

—0.001140 —0.05602 0.001132 0.0 —0. 002600
A 0.0 1.0 0.0 0.0 B 0.0
1 0.05162 0.07023 —0.05220 0.0 0.003260
0.0 0.0 1.0 0.0 0.0
2. Approach-2: flap down (20deg.), U=56.6 m/sec
—0.001770 —0.05414 0.001765 0.0 —0.002607
A 0.0 1.0 0.0 0.0 B 0.0
T 0.05287 0.06787 —0.05332 0.0 0.003268
0.0 0.0 1.0 0.0 0.0
3. Wave off: flap up, U=77.7m/sec
—0.001834 —0.04906 0.001838 0.0 —0.002624
4 0.0 1.0 0.0 0.0 o 1 00
1 0.04797 0.06151 —0.04734 0.0 0. 003290
0.0 0.0 1.0 0.0 0.0
1by| <1 (4-23)

On the other hand, as for this prolbem, the jump condition of the maximum
principle is applicable in principle, because the maximum principle considers the
arbitrary variations at the entry point unlikely to the TPO method. However,
it is very troublesome in practice to obtain the numerical solutions for many cases
by the maximum principle when the optimal entry point changes its location in state
space according to the final time change such as the case of the angle of attack
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constraint for the aircraft.

Consequently, it is extremely difficult to treat the problem exactly in any numeri-
cal sense for the investigators who want to know the effect of angle of attack con-
straint on the width of the controllable region. The relation between angle of
attack and control constraint is inquired hereafter to lead the simplifications in
calculation.

We presume, from the nature of constraint and of optimal trajectory without
state constraint, that the optimal trajectory can be paritioned into following three
types:

I. u_..=u

min =

Control quantity is too small to violate the angle of attack constraint.
I, u U=

min 1= = “min 2
Aircraft can move along the angle of attack constraint boundary at
once without violation in any time. It can be solved by the TPO
method.

min 2 g umin z umin 3
Pilot of an aircraft is required to take counter control stick movement
for a moment just before the entry point to the constraint boundary.

1t is difficult to treat in this case.

min 1

I, u

wherein u_; , denotes the elevator angles that coincides with the ones giving angle
of attack constraint in steady state, and u,;,, denotes the critical elevator angle
below which is can no longer move along the constraint boundary at once, and
u,;,, denotes the absolute minimum elevator angle determined from the horizontal
tail stall or mechanical limits.

In Fig. 4-5, these circumstances are shown. From this figure, it is understood
that in type II or 11l, the time interval of the control u_,, , is comparatively short
to the total flight time, because this interval apparently depends on the aircraft
response time. Therefore, the effect of control in this interval is considered to be
not so large when the considering flight time is sufficiently long. 1In this paper,
taking the assumption that the condition

umin - umin 1 (4°'24)

is held, we would treat this case exactly and investigate the effect of angle of attack
constraint on the width of the controllable region qualitatively. The value of u,_,_,
is determined by executing several calculations of state-free-height-minimization.

4-3 Lower Boundary of the Controllable Height

4-3-1 Without Thinking of Presence of the Ground

The problem, in which the presence of the ground is not considered without
touch down point, is the simplest case and corresponding to the case for the air-
port on some plateau. This case is prefered first because this contains the funda-
mental numerical procedures needed also in the problem including the constraint
of presence of the ground. The performance index is
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max. x'=ux,(¢,). 4-25)

A trajectory corresponds to a point on the lower boundary of the controllable height
region for the same example as the one in 4-2—-1 is obtained by the TPO method
and is shown in Fig. 4-6.

4-3-2  Presence of the Ground

When the ground exists, we can no longer simply translate the optimal trajectory
in parallel as stated in section 4-2. We must, accordingly, reformulate the problem
in another way to treat analytically. This is, however, considered to be difficult
problem. To proceed on our way of investigation, we are to depend on rather
numerical approach in this study for this problem; if some point can not be clari-
fied by analysis, we are to try to make it plain with the aid of many numerical
calculations.

As a matter of convenience for the discussions in the following paragraphs, we
call the optimal trajectory as A-type which has contacted with the ground surface
already before it reaches the specified final touch down point and call the another
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optimal trajectory as B-type which has not touched the ground surface except at
the touch down.

I. A-Type Optimal Trajectory

A given final time is denoted by ¢, and the optimal trajectory until the point of
contact to the ground surface is by S;. The remainder part of the optimal solution
is denoted by S.. S; trajectory satisfies the following conditions at contact point:

h=0 (4-26)
h=0 4-27)

In this place, let 6§, be the pitch angle of the aircraft at this contact point and A, ;,
be a point on the lower boundary of the controllable height region with the presence
of the ground. If the initial condition x,, final conditions x, and ¢, are given, then
h,;, is represented reasonably as

Pogin = Pin(Xg5 X5, 17). (4-28)

Further, when x, and x, do not change, £, can be regarded as function of ¢, as
follows :

hmin - hmin(tf) (4'—29)

Hence this case has a singular nature that some times the optimal solution is not
determined uniquely as will be shown in later, we add new variable §, which shows
the aircraft attitude at the contact point as a parameter designating the contact con-
dition, and we would try to discuss numerically about the relation among 4., 8, and
L.

I-1. Sufficiently Large ¢,

When there is a sufficient distance to the touch down point, 4_;, can be obtained
by next proposition:

(Proposition)

Let ¥ be the optimal trajectory satisfying h=/A=0 at ¢, and having min. height
loss nature, and let S, be the proper trajectory satisfying the given final conditions
and initiating from the end point of S¥. 1f there exist S§ and S,, the initial height
of S is a point on the lower boundary of the controllable height region.

(Proof)

Let a trajectory S, exists, which has less initial height than that of $¥-+S,. Since
this trajectory must be contact with the ground (A-type is assumed), a sub-trajectory
S, which is a segment of S, before the contact point, having less height loss than $*
must exist. This contradicts the assumption. Q.E.D.

The trajectory S¥ and S, can be calculated as below: S is a solution of the maxi-
mum height problem in order time. This corresponds originally to the minimum
height loss trajectory to 4=0 of the final-time-free problem.

Since the time free problem can not be treated directly by the TPO method, many
maximum height problems with different final time ¢, must be calculated in order to
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find the optimal final time. Calculated example is shown in Fig. 4-7 for the case
of aircraft-1, approach-2 and y,= —2.5deg. Thick solid line indicates the trajec-
tory S, is required only to translate the aircraft from height zero to touch down point
and is not required any optimality. Using Sinnott’s method, this is easily constructed.
S, is calculated based on S and is shown in Fig. 4-8. We call these trajectories as
A-I trajectory.

The total flight time t, is expressed by

Let us consider that the total flight time ¢, becomes gradually short. We should use
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FI1G. 4-7. Optimal trajectories which enter into ground tangentially and give
maximum initial height: aircraft-1, approach-2, 7,==0,=—2.5deg.,
13,] <0.055, R<1/9 n.m.
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FiG. 4-8. Matching of optimal trajectory S¥ and suitable trajectory Sy
aircraft-1, approach-2, yy=0,=-—2.5 deg., |6,/ <0.055
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ro=—2.5deg., h(t;)=0.0, |3, =0.055
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S# as the optimal subarc if it is possible to exist. However, since f, is determined
independently to ¢,, the length of ¢, should be adjusted to that of 7,. As clearly in-
dicated in Fig. 4-8, it becomes more and more difficult to construct the trajectory S,
within the limit of the given control constraints when the length of z,, becomes short.
From this fact, we can presume that it becomes impossible to construct trajectory S,
when t, is smaller than some critical value ¢¥. Physical explanation may be described
as below:

Tt becomes difficult for the aircraft to keep the floating inclination in less than
time interval ¢, because of the excessive pitching attitude ¢, at the end of SF¥. The
solution of maximum and minimum heights, which are solved with the initial con-
dition of S* value and with final time 7, as parameters, are shown in Fig. 4-9 for
aircraft-1, approach-2 and 7,= —2.5deg. The above mentioned discussions are
Supported numerically by the fact that the region bounded with shaded line allows
us the existence of S,.

-2, 1, <t}

When ¢, becomes smaller than #%, it is no longer possible to contain Si in the
optimal trajectory. Also, since even in this case, sub-trajectory S, must be optimal,
S, must be one of the trajectories which have a final attitude 6, on the h,,, curve of
Fig. 4-9. If we try to solve this problem, it seems to be necessary to employ the
procedure described in the following paragraph:

We choose a suitable point on /4, curve of Fig. 4-9, then S, and the final values
are determined and also #,, is determined at the same time. Taking the final time
f,, as a parameter, maximum and minimum height problems should be solved to
obtain the reachable region and to obtain the time 7%, which corresponds to the zero
height point of the boundary of reachable region (Fig. 4-10A).

We can ascertain at least that for time interval ¢,>1¢, 4%, the aircraft can be
controlled to the designated point from the selected height %, ;,, because the optimal
trajectory containing S, as the sub-trajectory and satisfying all restrictions are reason-
able in ¢,>1, +t*% (Fig. 4-10B). Doing above calculations for all points on o
curve of Fig. 4-9 or for all of S, the lowest boundary of height for the arbitrary
time ¢, being less than #* can be constructed from the calculated set of sub-optimal
points on height-time plane (Fig. 4-10C). Let a trajectory on the lowest boundary
be A-II.

By the way, it is difficult in number of calculations to execute the above men-
tioned procedures. In this study, we are rather interested in the range of existence
of the A-II trajectories than the strict solution, so it seems to be adequate to con-
sider like following:

Choosing a point on #,,;, curve of Fig. 4-9 as a initial condition of §, and solv-
ing the maximum and minimum height problems with respect to many 7,,, we can
obtain the results similar to Fig. 4-11. 1In this figure, at the region of R>R’, true
height boundary must be lower than 4, because k,,;, guarantees the safe landings
in R>R’. On the other hand, it is evident that any control can not realize the safe
landings from the lower height than A, which is initial height of S¥. So, the true
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minimum height is greater than 4%,. The region surrounded by shaded boundary
shows the one which contains the minimum height. The range of this region is only

Scm in real scale. We think there is no technological avantages to discuss further
about the solution A—II.

Il.  B-Type Optimal Trajectory

When the final time 7, becomes sufficiently small, it is not necessary to consider
the effect of presence of the ground because it becomes possible to get as the solu-
tion of maximum height problem the optimal trajectories which no longer contact
with the ground surface before touch down.

The lower boundary of the controllable height and its range are calculated about
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Fig. 4-10. Explanation diagram of getting the A-II type lower height boundaary
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Fic. 4-12. Upper and lower height bonndary and corresponding trajectories:
aircraft-1, approach-2, yo=—2.5 deg., |8,]<0.055

those aforementioned trajectories of A-I, A-Il and B types and are shown in
Fig. 4-12. In spite of the different meanings of those three types and of the
necessity of nuisance calculations, the lower limit of the controllable height does
not have the notable differences among them. Consequently, it seems reasonable
to regard the lower boundary of the controllable height region as constant in height.

4-3-3 Angle of Attack and Attitude Constraint

Pitching angle is not so severe in this case, and the angle of attack constraint
should be treated by the approximate method like the one used to get the upper
height boundaries.

5. CONTROLLABLE HEIGHT AND SAFE LANDING

In this section, we show firstly the state of the calculated controllable height
boundaries of a conventional aircraft in spot landing. There also shown the effects
of the some approach condition such as approach angle or velocity on the width
of controllable height region. The landings from wider controllable region evi-
dently bring us higher degree of safety and reliability. Accordingly, it is considered
to be meaningful to know the relation between these regions and conditions.

Secondly, based on the calculated controllable height regions, we discuss the
desirable control method or approach paths from the view point of safety. A
medium size turboprop transport aircraft is chosen as a model all over the numeri-
cal calculations. The method illustrated in details in section 4 is used to obtain
the controllable height region of the aircraft.

5-1 Effect of Parameters on Controllable Height Region

5-1-1 Controllable Height Region with Elevator Constraint
We consider the transportation of passengers. We take the elevator angle con-
straint which gives rather narrow vertical acceleration limit such as

|h|=<0.3¢ (5-1)
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Several numerical trials make us sure that the corresponding elevator angle con-
straint to the above numerals is

|u|=0.055 (5-2)

I.  Controllable Height Regions for Rather Long Time Flight
The calculated controllable height regions under the constraint of Eq. 5-2 for
1.0 naut mile are shown in Figs. 5-1~5-3. In these figures, abccisa shows the
ground surface and solid lines show the lower and upper boundaries of controllable
height in which the lower one under the presence of the ground is parallel to the
ground surface. Broken lines indicate the optimal trajectories from the upper and
lower height boundaries.
Fig. 5-4 illustrates the variational control and state variables. The results of
above calculations bring us followings:
1. When the aircraft is far from the touch down point, the controllable height
region is very wide.
2. When the ground exists, the steeper descent path presents the wider con-
trollable height regions.
3. Irrespective of the approach distances, the controls which give upper and
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FiG. 5-1. Controllable height boundary and corresponding trajectories for
70=0.0deg.: aircraft-1, approach-2, U=49.9m/s, [J.]=<0.055,
h(17)==—0.3m/s (continued)
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FiG. 5-2. Controllable height boundary and corresponding trajectories for
ro=—2.5 deg. (continued)

This document is provided by JAXA.



244 A. Obata

y 1 L S — -
0 1.0n.m.) | 0.75 . {0.5 ‘**/0’25:;"‘ N ])O.Q
lower Boundary(With Giround) \,\‘ . ‘,"\\»\0\‘ I«u:c]_\ own
200} ‘ ! Coyonnt R Point
‘ N athout o™
[ oY
” \)u\“\(\t\‘
400 e ¥
R WO .
600"

Fic. 5-3. Controllable height boundary[and corresponding' trajectories for
7o=—>5.0deg. (concluded)

« 0.05F '1

(()‘(,’) 0 b -

(rad) 0.25 0.5 0.75 1.0n.m.
—0.05%

0.002 —
o 0 ; :/ . !

T

%ot

Y N
m/s?

FiG. 5-4. Optimal control trajectories for for upper height boundary: aircraft-1,
approach-2, U=49.9 m/s, 7y=0,=-—2.5deg., |8,/ £0.055, R<1.0n.m.

lower height region have same patterns.
Now, only next restriction is provided as the final condition in optimization.

h=—0.3m/s (5-3)

Therefore, whether the other state quantities such as pitch angle or pitch rate of
the aircraft violate the ordinary value or not should be made certain. Final pitch
angles and pitch rates in the optimal trajectories are plotted in Fig. 5-5. This
figure means that the model aircraft, controlled so as to maximize or minimize the

This document is provided by JAXA.



A Fundamental Study on Safe Landing

6

0.2+

(deg/s) !

0.1y f
0
o1t !/

0.2/'

7
/

245

Fic. 5-5. Aircraft attitude and its rate of change at the touch down point:

aircraft-1, 70=0.0~—5.0deg., R<1.0n.m., |3,/ <0.055
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Fic. 5-6. Controllable height boundary and corresponding trajectories for
70=0.0deg. and R=1/3 n.m.: aircraft-1, approach-2, U=49.9 m/s,
|01 <0.55, h(ty)=—0.3 m/s (continued)

initial height keeping attention only to final rate of descent, is attended with good

attitude and pitch rate results.

study seems to have good control characteristics.

II. Controllable Height Regions for Short Time Flight

In this sense, the model aircraft adopted in this

The calculated results of controllable height boundaries for relatively short flight
distance of 1/3 naut mile are shown in Figs. 5-6~5-8. These figures show that
the controllable region for shallower approach path has wider bound, namely, the
controllable height region of —2.5 deg. approach path is wider than that of —5.0
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Fic. 5-8. Controllable height boundary and corresponding trajectories for
ro=—>5.0deg. and R=1/3 n.m. (concluded)

deg. path when the approach distance is less than 1/9 naut mile. Fig. 5-8 shows
also that in case of steep approach like y,=——5.0 deg., the controllable height
region diminishes before the touch down point. This means the necessity of flare
maneuver that compells the aircraft to more shallow path and elongate the control-
lable region. More details of the controllable region for y,=—2.5 deg. are shown
in Fig. 4-12 in previous section.

5-1-2 Effect of the Attitude Constraint
The optimal trajectories from the boundary of controllable height region for

OConm. ~_ 075 0.5 0.25 0.0

Lower Boundary

Fic. 5-9. Controllable height boundary with attitude constraint for 7r,=0.0deg.:
aircraft-1, approach-2, U=49.9m/s, |6, <0.055, h(t;)=—0.3m/s
(continued)
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FiG. 5-10. Controllable height boundary with attitude constraint for
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FiG. 5-11. Controllable height boundary with attitude constraint for
7o=—35.0deg. (concluded)

the elevator angle constraint of Eq. 5-2 have fairly margins for the wing stall, but
the optimal trajectory for the upper boundaries of controllable height region gives
extremely large attitude if the approach path becomes long. Such attitude as
6= —45 deg. should not be allowed especially in passenger transportations. There-
fore, it is necessary to obtain the controllable height regions with favorable attitude
constraint. The method of obtaining the controllable height region for this case
is already shown in 4-2-2. As the long time nose down control means the crash
of aircraft into the ground, the optimal trajectories giving lower boundary of con-
trollable height region do not violate the attitude constraint by the presence of the
ground. The results of the numerical calculations for the controllable height boun-
daries for the constraint of

O=—15° (5-4)

are shown in Figs. 5-9~5-11. Fine solid lines indicate the controllable regions
without the attitude constraint for comparison. Optimal trajectories are shown by
the broken lines and chain lines. The optimal control history from the upper
boundary is shown in Fig. 4-4 in previous section.

As might have been expected, the height of upper boundary of the controllable
region decreases considerably because of the attitude limit, and the most conspicious
point is the linear variation of the upper boundaries with respect to the distance
from touch down point.

5-1-3 Effect of Characteristics of Aircraft
1. Effect of Flight Phases in Approach

The typical flight phases in landing of aircraft-1 are phase-2, phase-1 and wave
off. ~Differences of dynamic characteristics are shown below using natural fre-
quency w, and damping ratio £.
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phase-1: %, =0.00398, {=0.858
phase-2: ] =0.00453, £=0.798
wave off: 2 =0.00405, {=0.758

Controllable height regions of each phase for less than 1/3 naut mile distance are
shown in Fig. 5-12 for the same control constraint. This figure shows that the
differences of flight phase affect little the controllable regions or optimal control
laws.
2. Effect of Difference of Aircraft

To assure the effect of difference of aircraft, the upper boundary of the con-
trollable region for aircraft-2 (Table 2) whose damping ratio { is equal to 0.5 is
calculated. The initial flight path angle is —2.5 deg. and the initial distance from

0 Approach--1
- \Q?)d/ ) ———Wave ()ff
N .  ——Approach--2

Distance to
Touch Down
Point (n.m.)

A)

Umas g™ P
: e | S !
0.3F .~ p* %
(Ll € +
| Optimal Control u
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Fic. 5-12. Effect of flight phases in approach: aircraft-1, U=49.9m/s,
|6,] £0.055, yo=—2.5deg.

TaBLE 2. Coefficient Matrices of Equation of Motion
of Aircraft-2

076 —0.6 0.01277 0.0/  |—2.375

0.0 1.0 0.0 0.0 0.0
A= 310 0.0 —0.4 0.0 B=I 1.0
0.0 0.0 1.0 0.0 0.0

TABLE 3. Approach speeds and trimmed
angle of attack

U (m/s) a (rad) a (deg)
52.5 0.05114 2.93
49.9 0.07464 4.28
47.5 0.09984 5.72
45.0 0.1312 7.52
42.5 0.1644 9.42
40.0 0.2099 12.03
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Fic. 5-13. Optimal control and trajectories giving upper height boundary for
aircraft-2: yy=-—2.5deg., R=1.0n.m.

the touch down point is 1.0 naut mile (Fig. 5-13). It is recognized that the
control pattern of aircraft-2 is similar to aircraft-1 in spite of its smaller damping
ratio. It is worth noting that in this case the terminal attitude becomes over 10.0
deg. This means that as for the aircraft-2 the terminal attiutde constraint is
required in optimization procedure to accomplish the safe landing, and therefore,
this necessarily means that the controls from critical condition are more difficult
than that of aircraft-1.

5-1-4  Approach Speed and Controllable Height Region

It is needless to say that the wider controllable region leads aircraft to rather
safer landings if the flying quality of the aircraft is not changed. The purpose of
this subsection is to make clear the effect of approach speed on controllable height
region with the constraints of angle of attack, control quantity and vertical accelera-
tion. It should be noted that the controllable region of aircraft at rather short
distance from the specified touch down point is an issue in this case, for the width
of the controllable height region is important around there for landing controls.
I. Angle of Attack Constraint

Low speed steady state condition needs high trimmed angle of attack. When
trimmed angle of attack is too large, the margin of angle of attack to stall is small
and it is unable to pull fully up the aircraft. Accordingly, it is expected that the
restriction of stall in the low speed approach makes the controllable height region
rather narrower.

Now, the reference state satisfies the relation

L=Wcosy (5-5)

Substituting next relations to above,

L:-%—pUzSCL (5-6)
CL:CLo+aa (5—7)

we get the following trimmed angle of attack equation:

This document is provided by JAXA.



250 A. Obata

TABLE 4. Angle of attack and corresponding aerodynamic

derivatives
a (deg) Cr, Cp, Cpa Cng
2.93 1.375 0.132 0. 6647 —0.045
4.28 1.52 0. 147 0.6647 —0.070
5.72 .67 0.162 0. 6647 —0.090
7.52 [.86 0. 180 0.6647 —0.130
9.42 2. 065 0.201 0. 6647 —0.165
12.03 2.345 0.240 0. 6647 —0.210
a=t [ HOEL . —C.) (5-8)
a\ (1/2)pS U*

From this relation, we can calculate the angle of attack corresponding to the speci-
fied steady flight velocity U and flight path angle y. Calculated angles of attack
for y=—2.5 deg. with parameter U are shown in Table 3. Aerodynamic deriva-
tives for the trimmed angle of attack are estimated from wind tunnel test data and
are shown in Table 4. The optimization of initial height can be done according
to the procedures described in 4-2-3, and the results for y,=—2.5 deg., R=1/3
naut mile, u,,,=0.11 and «,,,=12.0 deg. are shown in Fig. 5-14. This figure
shows the relation between elevator controls and angle of attack in the trajectories
from upper height boundaries with the parameter of approach speed U. As the
velocity decreases, we are noticed as expectedly that it becomes impossible to pull
large amount of control stick and the pilot is unwillingly obliged to continue to pull
small amount of stick for long time.
II. Control Constraint

If the control limit is determined from the mechanical limitation only, the width
of the controllable height regions at a specified point do not depend on the ap-
proach velocities. This is evident from the fact that the equation of motion is
governed by nondimensional time 7, and that the nondimensional time 7, real time ¢
(sec) and flight velocity U (m/sec) has the following relation.

max
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F1c. 5-14. Relation between approach velocity U and controls giving upper
height boundary: aircraft-1, approach-2, yy=-—2.5deg., #=0.11,
amax=12 deg.
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;o 2Ut (5-9)

c

I1I. Acceleration Limit
Since the relations between dimensional and nondimensional variables are

P AL (5-10)

¢’ 20° ¢
where A=[m], t=[sec], U=[m/sec], we have the next relations about nondimen-
sional rate of ascent and acceleration:

X= d/z 1 dh : ¢ = dih:: E" d'“’"h . (5-11)
dt U dt dt* 22U dr

From these relations, we can understand that under the same quantity of control
constraint, the greater the approach speed, the greater the variational normal ac-
celaration. Inversely to say, the same accelaration constraint needs the different
control limits according to each approach velocities. We can obtain the contours
of height boundaries for some variational acceleration limits in the phase plane
of U and h, because we can calculate from Eq. 5-11 the steady variational ac-
celeration in the nondimensional space using the optimal trajectories for several
control limits and approach velocities.

Consequently, from the discussion above, we can anticipate that the control-
lable height region becomes narrow at low approach speed region due to the angle
of attack limit and becomes also narrow at high approach speed due to the accelara-
tion limit and that the controllable region is restricted within some constantly
spreaded range because of the presence of the absolute control quantity restriction.
If these relations can be determined quantitatively for each aircraft, controllers or
pilots of aircraft can choose approach velocity which represents the most wide
controllable height region.

The calculated results for controllable height regions taking into account these
limitations are shown in Fig. 5-15. The flight phase is approach-2 and the flight
path angles are O~—2.5 deg. and the considering flight distance is 1/3 naut mile.
The controllable height boundaries under the circumstances of y,=—2.5 deg.,
u<0.11 and [%,]<0.5 g are shown by thick solid lines. The velocity range giving
the widest controllable region is 1.125~1.175 V, for the aircraft-1. As a rule, the
approach velocity giving the widest controllable region increases when the absolute
value of allowable control quantity increases. Of course, if we consider only the
wing stall constraint, the controllable region becomes monotonously wider as the
result of increasing of the approach velocity.

It should be noted that the relative relations between the approach velocities and
the controllable height region are not so affected by approach angles. This sug-
gests that the desirable approach velocity could be determined independently to

the approach angles.
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F16. 5-15. Controllable height regions related to approach velocity, acceleration
limits and control limits: aircraft-1, approach-2, yo=—2.5 deg., @max=
12 deg., R=1/3n.m.

5-2  Controllable Height Region and Safe Landings

In this section, a discussion for the desirable approach angle with respect to safe
landings is tried on the bases of the results of previous section.

5-2-1 Flight Patterns in Approach and Landing

In the automatic landing systems in practical use, the following approach and
landing patterns are used [29, 30]: Above 100 ft height, an aircraft can track the
glide path signal correctly, and approaches along the given glide path. In the
region of 100~60 ft height, the aircraft is commanded to maintain the constant
attitude because in this height region the signals of glide path becomes unstable
and the radio-altimeter is also unstable yet. At the final leg of landing phase below
60 ft height, the aircraft is commanded to execute an exponential flare, and finishes
the landing completely. In the manual landing state, simultaneous procedures
seem to be taken [3/]. The approach flight may be broadly divided into steady
flight and flare maneuver. As far as the aircraft stays in wide controllable region,
the steady flight approach is possible and more over desirable for its easiness and
reliableness.  On the other hand, when the controllable height region becomes
narrower than some threshold width, it is necessary for the aircraft to choose a
flight path so that the aircraft belongs to the widest controllable region in each
instant. This necessarily leads to flare maneuvers.

And yet, the timing of the commencement of flare is difficult. 1If it commenced
too fast, the time length of unsteady controls becomes too long, which is not desir-
able from the view point of safety because of the burden of long time precise con-
trol. If it commenced too late, the aircraft may probably be out of the controllable
regions. This is dangerous.

In the following discussions, the landing pattern are assumed to be constructed
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of steady approach and unsteady flare maneuver, and the angles and location of
the steady approach path are investigated in view of safety.

5-2-2 Approach Margin and Approach Angle

Proper choice of distance R from the touch down point makes possible to de-
termine ¢, that indicates the maximum time length of steady state flight from the
specified point (Fig. 5-16). If the distance R is fixed, we can understand that
the longer the time length ¢, the shorter the time length of flare. Now, which
is related to 7 and & is reasonably considered to show one of the measure of safety
margin in aircraft landing, for the long f, means casy control. By the way, it is
impossible to realize the specified approach angle 7 and height & exactly at the
point R. Accordingly, the actual approach angle and heights are presumed to
distribute probabilistically around the designated objective value y,, and 4,,. This
distribution is considered to be subjected to the influences of the tracking systems,
stuff, will or condition of the pilot, the strength of disturbances and commence-
ment time of tracking.

Following assumption is provided here to set forward the investigation.

Assumption: Actual y and A are in accordance with the normal distribution around
7m and h,,. The variance from the objective point 7, and h,, is ex-
pressed by ¢} and o7,

Using above assumption, we can define a statistical approach margin as

M, = ___t!___ts(rm, h,)P(y, h)dydh, (5-12)
S

where ¢, is flight time from point R and P(y, 4) is probability density function.
Here, let us provide a further assumption that

#=0. (5-13)

This means that pilots can attain his target perfectly for flight path angle 7, and
that the effect of the techniques of the pilots or effect of turbulence on the flight
path appears only in variance ¢3. It is obvious that to hold the slope of flight
path exact is easier than to attain the height exact at some specified point. Ap-
proach margin can be rewritten with this assumption as

_~Controllable
- Height Region

P
Touch
Down
Point

FiG. 5-16. Controllable height region and capable steady approach time #;
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| 1 |
M= | f W) o= (h—hm))dh. (5-14)
M, =1.0 says that the aircraft can realize the objective flight path with certainty
and besides can realize the safe touch down by steady flight only .

Generally, it is expected that the large value of variance o¢% makes M, small
which necessarily means small margins in landings or in approaches. We can cal-
culate the time t, on the bases of the results of section 5-2—1. The approach
margins at distance of R=1/3 naut mile are calculated by using Eq. 5-14 for
aircraft-1, approach-2, and are shown in Figs. 5-17~5-19.

In case of y=0.0 deg., it is better for approach margins to aim at lower objec-
tive height at R=1/3 naut mile if the value of variance ¢ becomes smaller
(Fig. 5-17). This tendency goes down with the increase of steepness of approach
angles. For instance, in case of y=—5.0 deg., the aircraft should aim at height
of h=30 irrespective of the variance ¢2, if it is wanted to make the approach
margin maximum (Fig. 5-19).

1.0t~

1.0}
0.8
6.25
My,
0.4!- 0.6}-
12.5
0.4
25.0
0.2
,~50.0 0.2
{ i ] ] L 0.0 ' ! ! ! | ' 1
0 2.0 4.0 6.0 8.0 10.0 0.0 40 80 12.0 160 200 240 280
hm }Im
FiG. 5-17. Relation between approach FiG. 5-18. Relation between approach
margin M, and objective height #,, at margin Mj, and objective height 4, at
R=1/3n.m. with respect to standard R=1/3n.m. with respect to standard
deviation o¢y: aircraft-1, approach-2, deviation 9;,:=—2.5 deg. (continued)

[0¢] £0.055, 70=0.0deg. (continued)
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1.0t
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0.4}

0.2
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0.0

1 i
30.0 40.0
hom

F1G. 5-19. Relation between approach
margin M, and objective height h,, at
R=1/3n.m. with respect to standard
deviation ¢ 7= -—5.0 deg. (concluded)
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J
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FiG.

FiG.
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Oy,

5-20. Relation between maximum

approach margin Mg .. and standard

deviation o¢j: aircraft-1, approach-2,

16,1 <0.055, R=1/3 n.m.

4.0

5-21. Relation getween maximum ap-
proach margin Mg, ,, and approach
angle 7: aircraft-1, approach-2, [d,|=
0.055, R=1/3n.m.

Further, when the value of ¢% is small, shallower approach angle is, and when
large, the steeper approach angle is desirable for the good margins (Figs. 5-17~

5-19).

In other words, rather shallower approach should be chosen if the aircraft

is controlled by a pilot with excellent technique, and rather steeper approach is

desirable for the unskillful pilots.

This document is provided by JAXA.



256 A. Obata

Then from these figures, we can calculate the desirable objective height and
corresponding safety margin if the approach angle y and variance ¢} are deter-
mined. Rearrangement of these figures are shown in Figs. 5-20~5-21 in which
the maximum value of the approach margin for %, are indicated on vertical axis.
Fig. 5-20 shows that the maximum approach margin decreases abruptly with the
increase of variance ¢%, and this tendency consists independently to approach angle
r. Fig. 5-21 shows that when the variance ¢% is small in the region of y=0~3.0
deg., the maximum approach margin is scarcely changed but when the variance
becomes large, the maximum margin is considerably changed with respect to ap-
proach angle. For example, the approach angle y=3.0 deg. gives almost maximum
approach margins in any time in the region of ¢,<6. This feature may also be
the theoretical support for the current establishment of the glide slope in ILS. The
desirable approach path that are determined from the maximum approach margins
corresponding to each variance ¢% for aircraft-1 are obtained and are shown in
Figs. 5-6~5-8.

The author considers that these way of thinkings would supply one of the bases
of arguments for determination of approach angle of the conventional aircraft.
Formerly, the approach angle was determined empirically without any mathe-
matical treatment,

As we have seen, it was made clear that the desirable approach angle in the
steady state approach could be determined by the value of variance o2.

It is worth while to note that in spite of linear equation and large allowable
control quantity, the results for approach margin specifically near maximum value
are not so different from actuality because in the neighbourhood of the point giving
maximum approach margin, the deviation from the steady state is not so large due
to the short time application of maximum or minimum control quantities.

6. CONCLUSION

Two Phases Optimization method based on linear programming is introduced
to calculate the controllable height regions of aircraft in landing. This method is
confirmed to be sufficiently effective for the problem of obtaining the points of the
boundary of controllable region of linear systems. This method is applicable to
the problem with first-order state-inequality-constraint.

The controllable height regions for spot landings of aircraft are obtained by
using the Two Phases Optimization method under the assumptions that the motion
of aircraft is governed by linear equation and is ruled by longitudinal short period
mode. It is made clear that the patterns of controls that give the boundary of
the controllable region are not affected by the differences of flight phases or
dynamic characteristics of the aircraft.

When the attitude limit is added as the constraint, the controllable height region
with respect to the spot landings becomes fairly limited compared to the attitude
free case. In this case, the controllable height region extends linearly with the
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distance from a specified touch down point. Nuisance numerical calculations are
needed to obtain the lower boundary of the controllable height region, but the fact
that this boundary can be regarded to be constant in height is accertained.

The controllable height region with respect to the spot landings for each ap-
proach velocity can be calculated approximately even when the quantities of ver-
tical acceleration, elevator control and angle of attack are restricted. The most
desirable approach velocity can be calculated to give the widest controllable height
region. Approach velocity of 1.125~1.175 ¥, gives the widest controllable height
region of a middle size turbo-prop aircraft under the proper assumptions.

Using the assumptions that the deviation from the designated approach path
obeys the normal distribution, the maximum expected time length to continue the
steady state approach flight is calculated. This time length can reasonably be
considered to express the margin of safety in approach. When the variance in
height from the specified approach path is small, the approach angle should be
shallow, and when the variance is large, the angle should be rather steeper in the
sense of good safety margin. Restricted to the model aircraft, following is ob-
tained in the limit of +0.3 g variational vertical acceleration: If the standard
deviation from the specified approach path is 1.0 meter in height, the desirable
approach path angle is —2.5 deg., and if the deviation is 3.3 meter, the desirable
path angle is —3.2 deg.

It may be concluded that the slope of the glide path of the conventional aircraft
(—2.5~—3.0deg.) in ILS is reasonable in view of safety and that, if selected
carefully, the location of this glide path to an objective touch down point can be
held to the selected point without any adjustment due to the degree of skillful-
ness of the pilot. This adjustment must be required for more shallow approach
path angle.
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Appendix A CONSTRUCTION OF REFERENCE TRCJECTORY [23]

A-1. Formulation of the Problem

Problem is to determine the controls and trajectories which satisfy the followings:
System Equation

X =f(x, u) (AP-1)

Terminal Condition
Dx(t;)+e=0 (AP-2)

where ¢, is fixed.

A-2. Discussion in Euclid Space

Let the distance vector from the arbitrary point x* in Euclid space be dx to the
surface

Dx+e=0 (AP-3)
and let, at the point x, the next relation consist:
Dx+e=¢ (AP-4)
As dx lies in the perpendicular surface to the
Dx+e=0, (AP-5)
it can be expressed by using the constant vector ¢ as
ox=D’c. (AP-6)
In other words,
D(x+6x)+e=Dx+DD’c+e=0 (AP-7)
consists. From Eqs. AP-4 and AP-7, we obtain next.
é6x=—D'(DD')"'¢ (AP-8)
Thus, we can obtain the amendment vector dx to the surface
Dx+e=0. (AP-9)
A-3. Extension to Hilbert Space

In Hilbert space, the inner product is defined as

(x(0), (1)) = f Yoy, (AP-10)

The variational equation of the system is, if f (x, u) is continuously differentiable,
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expressed as
ox =f.(x, wox+f,(x, uyou. (AP-11)

Let the transition is defined by @(z, ¢,) then using the fact that x=0, we obtain the
next relations:

5x = B(t,0) f ‘0-1(z, 0)f,(0)Sude
_ f ‘D1, 0)B(0, )f,,(0)oud=
— f ‘O(t, Of(2)su(z)dr (AP-12)

Now, so the required terminal condition is
Dx(t;)+e=0, (AP-13)

the problem is how to take the amendment control du to satisfy the above relation.
The variation of terminal state by the amendment control du is

dx(t,) = f Y01, O (Dduc)dr (AP-14)

Then, let the violating quantities by the control du be expressed by
Dx(t;)+e=4¢. (AP-15)

If the correspondance to Euclid space is taken, the relation of

(D, 0x)=—¢, (AP-16)
or
f Do, f oulz)de = — (AP-17)
0
is anticipated. Using the transformation of
D=Da(t,, )f,, (AP-18)
Eq. AP-17 becomes to
(D, 6u)=—¢ (AP-19)

On the other hand, from the correspondance to Euclid space, we can assume the
relation of

ou=D’c. (AP=20)

From Eq. AP-19,
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tf ~ o~

f PDedt=—g (AP-21)

0
or

tf ~ o~ -1 ~ o~ -1
c=— [ f DD’dt] P=— [(D, D’)] ¢ (AP-22)
0

can be obtained. This corresponds to the Eq. AP-8 in the discussion in Euclid
space. Substituting this relation to Eq. AP-20 we can get the following:

Su=— [ f "fﬁﬁ’dz] g (AP-23)
0

This is the amendment control to be taken.
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