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Roll Coupling Moment of Deflected
Wing-Body Combination
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Summary: A method of analysis based on the slender-body theory has been developed
to investigate the characteristics of the roll coupling moment due to the flow induced by
deflected wings and cross flow. The method makes use of conformal mapping of the
well-known hydrodynamics and numerical integration. Flow patterns on the wing have
been obtained in the form of elliptic integrals and are shown for various values of span
to body radius ratio X. Calculatios have been performed for uniformly canted and
elastically deflected wings in planar and cruciform wing-body combinations. It is shown
that there exists a considerably wide region (from the root to 50~57 percent of the wing
span) where induced velocity has negative sign for the elastcially deffected wings. Roll
coupling moment coefficients are also presented for wing-body combinations of various
values of .
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»

nondimensional distance between elastic axis and center of pressure

of wing

incomplete elliptic integral of second kind of amplitude ¢ and

modulus &

complete elliptic integral of second kind

incomplete elliptic integral of first kind of amplitude ¢ and modulus &

complete elliptic integral of first kind

torsional rigidity of wing panel
free-stream Mach number

local static pressure

free-stream static pressure

D—Dy

pressure coefficient

difference in pressure coefficients
free-stream dynamic pressure

semispan of wing
perturbation velocity components along x,y and z axes
free-stream velocity

complex potential in & plane
coordinate axes fixed in the fluid

principal axes of symmetry of missile

coordinate axes, in which z’-axis is in the direction of incident flow

y+iz

angle of attack

included angle between V' and missile longitudinal axis
angle of sideslip

ratio of specific heats

local wing deflection

deflections of horizontal and vertical wings

(6,—4,)/2
q.c’eC; . |G
sla

polar coordinate angle of the point in the ¢ plane corresponding to the

wing and body junction in the £ plane

plane in which wing-body cross section transforms into unit circle

velocity potential in &, », { system
velocity potential
velocity potentials associated with «, 3, d,, 8., a,

respectively

stream function
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1. INTRODUCTION

The present paper deals with some Kinds of the roll coupling moment in the
wing-body combination, in which the wings are uniformly canted to the body
longitudinal axis and/or deflected elastically by aerodynamic load. The problem
will be approached on the basis of the slender body theory. An analysis of slender,
lifting, planar wing-body and cruciform wing-body combinations was presented by
Spreiter in Ref. 9. Theoretical investigation of roll characteristics of slender cruci-
form wings was also reported in Ref. 2. Several other analyses of rolling-moment
characteristics of cruciform wing and wing-body combinations were made in the
decade of 1950. Rebner treated the rolling cruciform wing with subsonic leading
edges; Bleviss made an analysis for the case of the cruciform wing having super-
sonic leading edge; Graham [7] evaluated the rolling moment for the case of the
cruciform wing-body combinations in the limiting case of an infinite number of
fins; Tucker and Piland [8] developed a method of obtaining approximate linearized
solutions for the damping in roll and calculated the approximate coefficient of
damping in roll for configurations having rectangular and triangular wings.

Graymor and Dugan [5] have calculated the damping coefficient due to dif-
ferential wing incidence for slender wings and wing-body combinations.

Qualitative explanations for the second order pitching (yawing) and rolling
moment of various kinds can be found in Ref. 1.

The problem of the dynamic coupling in pitch and roll is important in the design
of the spin-stabilized rocket, in which the spin is imparted to the vehicle by canting
the tail fins. An example of this type of coupling is found in Ref. 4, which
describes the flight behavior of a certain type of Aerobee sounding rocket. Spin
rate increases with time in the powered flight while the frequency of pitch (pre-
cession) decreases and when the frequency of rolling motion coincides with the
pitching motion, the spin ceases to increase, and even decreases, causing an abrupt
change of flight direction with almost zero spin. This phenomenon is important
from the view point of flight safety, but it has not been sufficiently understood yet.
It is suggested in Ref. 4 that separation at wings, elastic deformation of wing
and/or body, malalignment in wing attachment and/or thrust are mentioned as

conceivable reasons for this dynamic coupling.
We assume a steady flight condition with a constant crossflow which is constant

in magnitude and direction. The first order rolling moment produced by canted
wings is considered to be in equilibrium while the second order rolling moment
may play an important role when the precession rate and spinning rate coincide.

The present analysis considers the second order coefficient of rolling moment
due to cross flow for wing incidence which is constant (case 1) or increasing
(case 2) in span-wise direction. For cruciform wing-body combination, cross
flow is different from that of planar wing-body combination, because of the panel
interference, and these two cases are treated and compared in the present report.

The application of the slender body theory reduces the problem to that of
finding the velocity potential of two dimensional flow of an incompressible fluid
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about a cylinder with fins. The fins is replaced by uniform source and sink dis-
tribution in case-1, and by a distribution in which the strength of source and sink
is increasing in span-wise direction in case-2. It is convenient to determine the
potential by means of a source and sink distribution on a circle in the transformed
plane.

2. THEORETICAL FORMULATION

2.1 Basic equations

Let the cartesian axes &, 5, { be a set of axes fixed in the fluid. The pressure
and density for the fluid are related through the isentropic law

—e;.::const. (2-1)
0
7 being the ratio of the specific heats.
Let ¢ be the velocity potential function. The complete nonlinear equation
for ¢ is

[Ci —(r— 1)((903 +w>](¢ee+%v+%c)

=0 +(020e: + 070, + 000 (2-2)
+ 2(905§0a905r; + 0,900,090 0ce)
+ 2(§D:’§0€r + %%r + SDCSDCr)

¥

The symbol r represents time and C., is the speed of sound in the air at infinity.
With reference to Fig. 1-1, let %, , Z, be axes fixed to the body at time ¢ and X
be parallel to the uniform velocity ¥, of the fluid at infinity as seen from the body.
To obtain the potential equation in the &, 7, € system to the X, y,Z,t system, we
transform the coordinates by following formula:

x:$+V0f
y=yg
(2-3)
z=¢
t=rt

From the equation of ¢ with respect to &, 7,C, t we obtain a new equation for @
which is related to ¢ as

D=V, Z+o (2-4)

The new potential equation is;

e NG
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[c—G—D(o.+ S e | AR

_—:(Drn +((D§:(pr.z‘ +@§@” +@g(p25) (2-5)
+ 2(@;B(pﬂ¢l‘[] + @g(pz‘(pm + @2@1‘@2.3)
+2(0,0,,+ 0,0, +,9.,)

where

9 5 - — 1 o
Ci=CL+ —?"é—uUﬁ

The sound velocity C; corresponds to stagnation condition. The velocity com-
ponents are

=V, +id, O,=0, O,=Ww (2-6)

where i, 7 and W are perturbation velocities. If we assume that the perturbation
velocities are small compared to V, and neglect all the terms higher than the first
order, then we can derive from Eq. (2-5) the linearized potential equation;

(Dm‘(l —Mg) + Q)py +d)zz = —clg‘@u + 2M0

D, 2-7)

where M, is free-stream Mach number. .
Bernoulli’s equation for the compressible potential flow in the &, », {, ¢ sytem can
be expressed as:

. f DL, T (2-8)
0 2

where
4 =i +¢; + ¢t

For a steady flow with the pressure and density related by Eq. (2-1), Bernoulli’s
equation becomes

_r P a _ ¥ Pr 9k (2-9)

We define the pressure coefficient P as

p=_P"P (2-10)
1/20,V5

From Egs. (2-9) and (2-10) we obtain

2 — 2 /(r—=1)
P =[1- T2 (L) |71 (2-11)
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D
Expansion of Eq. (2-11) yields the power series:

P=_2M+M1(EZ§M)Z+... (2-12)
U; )

This relation is expressed in terms of @, 7 and W and the final result for steady flow
is

~20 | BBV o 6 )
p ; +o( 2 2-13)
v, t v, v, (

If we assume that the body is sufficiently slender or M,=1 equations to be solved
are simplified as:

Opy+0,,=0 (2-14)

p=_ 28 _ U4W (2-15)

Eq. (2-14) is the two dimensional Laplace’s equation.

2.2 Coupling effects

The linearized basic equations have been derived in the preceeding section.

The quadratic terms of the Bernoulli’s equation are essential in calculating the
coupling effect. An example of a coupling effect is the rolling moment originated
by planar wings due to sideslip of body at a fixed angle of attack. Such a rolling
moment is produced by interference between angle of attack « and sideslip 8 and
is proportional to «p.

There are many kinds of coupling effects and some of them have been analyzed
in Ref. 1. Here we will consider some types of coupling that occur between the
effect of body thickness, angle of attack, angle of sideslip, symmetrical deflection
of wing panels. We difine §, and §, as follows.

582————61;53 , 52: 52;54 1
0,—0, , 5 = d,—0,

2 2

(2-16)

o
O0q—

where 4,, 8,, 0, and g, are deflection angle of wings shown in Fig. (1-4). These
may be function of y or z. Trailing edge down is taken to be positive for 4, and
d,. Positive values of g, and §, correspond to a movement of the trailing edges of
the wings to the right.

As shown in Fig. (1-3), let us assume that the body longitudinal axis is inclined
at angle «, with freestream. Let the component of freestream velocity V, to the
body longitudinal axis produce a perturbation potential @o- Let the velocity of
crossflow Va, be resolved into components ¥, and V.8 as shown in Fig. (1-3),
and ¢,, p, the perturbation potentials for unit velocity in z, y directions, and ¢,,,

Y

This document is provided by JAXA.



Poll Coupling Moment of Deflected Wing-Body Combination 335

L
¢,;, be the potentials for unit symmetrical and unit asymmetrical detlections of the
horizontal wing.
The total perturbation potential can be written as a summation of each potential
=0, +ap, ‘*‘1890;3 +6t‘906¢ + 6a§05a 2-17)
The pressure coefficient P can be given by Eq. (2-15)
_ p+p
1/2)o, V5
(1/ )apo : i ; otz s 18
= _2(% cos 022 — @ sin 22 —[(»io—)‘—i—(—-f-)']
(ax+“ oz S"ay) ay) " \az
We will calculate the coupling eftects on the basis of this equation. The local
pressure difference across the horizontal and vertical wings are given by [P], which
- denotes the difference of P on the lower and upper sides of wing. The symmetry

properties of the velocity components and body-wing boundary conditions con-
siderably simplify the results. To distinguish two sides of the wing panel, we put
superscript + to the velocity components and pressure on the lower side of hori-
zontal panel and superscript — to the same quantities on the upper side. In con-
sidering body-wing boundary conditions and the symmetry properties of velocity
components, the relation between the perturbation velocities on the upper and
lower sides can be expressed as follows:

Uy =ug; Ug=—U; Uj=U; Uj=—u; U;,=—1u;
Vi =7, Ve =—07 vp=w; v =—0; V5= —0;,
. W= —w; wi=w] Wi =w; wi=w; w; =w;, (2-19)
dz \*
d:

Here complex sign = in §, expression means that — sign refers to the right panel
L and + sign refers to the left panel. For the lower surfaces of the horizontal panels,
the velocity components are

ut =ug +ouy + pug +o.u; 40,17,
v =g +av; +pv; + 0,05, + 0,75,
dz

+
W+:(—d—-—-) '—a_53$5a
X

(2-20)

and for the upper surfaces of the horizontal panels, the velocity components are

U~ =u; —au; + puy —o.u;, —o.u;,

V=0, —avi +pu; — 0,05, — 0,05,
(2-21)
W= — (_di) " a—5,70,

dx
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© @
The pressure coefficients for the lower and upper surfaces are
(S ] + + . + Q1 —(n*® +2
Pr= 2 aw" cos p—a 0" sin ) — (v +w*?) (2-22)
P~ = —=2(u" 4+ a.w” cos p—a v sin @) — (v w™?)
The pressure difference on the horizontal panel is given by
[Pl=P*—P~
= —dau; —40.u5, — 40,15, —deevivy +45(1 — U7 )av;
+480.(1 —v})vi +4ap(l —v v} (2-23)
+ -\ +
(2] i) v (4) e
dx dx
The first three terms are linear, representing the effects of angle of attack, pitch-
ing and rolling. The others are the coupling terms. A similar expression is ob-
tained for the vertical wings. ¢ 8
uy=u; ur=u; Ug=—uy Uj,=—U; Uui=—u;
Vi=—v; vIi=v] Vi =—0; V5L =v;, v =5,
:(dy) —0 —1 —0 =0 (2-24)
dx
wi=w; wli=w; W= —w; wi=w; Wi = —wj;,
and the pressure difference for the vertical wings is also given by:
[Pl= —4Bu; —4d,ui, —4pwiw;
—4o Wy w}r —45,8wiw?
v @ 64 e‘B [ ﬂ (2_25)
—4“5“);(1 +wg) —4dad,w;, (1 +w;)
—40,0,W;5, w5,

For the cruciform wings, the same argument can be developed and the results
are summarized in Table 1. There are three types of coupling moment in roll as v
shown in Table 1, i.e. «f coupling, d, coupling and the coupling between angle
of asymmetrical deflection and the effect of body thickness. In Ref. 1 af coupling
is analyzed in detail. The coupling between angle of asymmetrical deflection and
the effect of body thickness is considered to be canceled by roll damping effect in
equilibrium condition. We will focus the study on S5, coupling in the present

paper.

3. CALCULATION OF POTENTIAL FOR CROSS COUPLING

Let us calculate the perturbation potentials ¢, and ¢,, to find the -3, coupling term.
Conformal mapping is useful for obtaining a potential about some cross section from
the known flow about circular cross section. Here we transform a planar wing or
a cruciform wing in physical plane of complex variable & =y 4 iz to a circle in the

0
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transformed plane of the complex variable o=5§+in.
The transformation equation from planar mid-wing and body combination into
a circle is written as;

@ (.  a o R ) 1 ( a )
Lt = — ) =t — ——]=R 3-1
+J’ 2(6‘{— .Y)(R+0 ‘ 7S+s -1

where s denotes semi-span length of a wing and a denotes radius of body. Without
loss of generality, we put R=1 for brevity. Then the right side of the first of the
Egs. (3-1) is reduced to ¢ +R’/0.

Two-dimensional incompressible flows are described by the two functions of a
real variable, the potential function ¢ and the stream function ¢ which can be
described by the complex potential function W(Z') defined by

W(Z)=p=i¢d (3-2)

If the velocity components parallel to the y and z axis are denoted by v and w,
these are related to the complex potential as follows:

daw

dp _ 9¢
e == —
oy 0z (3-3)
_a.g_D_: -—__a_g{,.. - W
0z ay

The complex potential W(Z) in the 2 plane can be transformed to the complex
potential W,(0) in the ¢ plane by employing the transformation relation. If the flow
field at infinity is undistorted, the direct relation of velocity components in & plane
and ¢ plane is

oo AW, _ AW 42
Y de dZ do
=(v—iw)\ az exp (i arg d,@f) (3-4)
do o
=v—Iiw

This equation insures that the tangency condition at fixed boundaries is maintained
during the transformation.

Now" consider the planar wing-body combination at zero angle of bank. We
assume that wings lie on y axis. The uniform flow is assumed to be in the direc-
tion of z axis. The complex potential for circular cylinder in uniform flow in
¢ plane is

W(o)=—iV, (a — %) (3-5)
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The complex perturbation potential due to angle of attack is given by Egs. (3-1),
(3-5) and

Velocity component on z axis for unit cross flow is given by performing differenti-
ation on W, by £ and set & equal to z.

z(l— f‘ ) (3-7)

21T

When the uniform tlow is assumed to be in the direction of y axis, we can obtain
v, in the same way as:

¢

i
ik

(3-7

These perturbation velocities will be used for determining the pressure difference
on cruciform and planar wing. .

In the previous section the expressions are presented for the perturbation poten-
tials ¢ induced by the deflection of wings. Here we apply again the method of
conformal mapping to obtain the concrete formula of the perturbation potentials
¢;, _The author has considered two cases of ¢, One is that the deflection angle
is constant along y axis. (case-1) This case can be seen in the missile configura-
tion, in which the attitude of the missile is controlled by varying the deflection
angle of wings. The other is that the deflection angle is increasing along y axis.
(case-2). This case will be discussed later.

Case-1 1f a source and a sink of strength m are located on the circumference g
of a circle shown in Fig. (1-6), then the circle is a stream-line of the resulting
flow. The source and sink will be transformed into “doublet” located in line seg-
ment on y axis, if the flow is transformed into z plane by means of Eq. (3-1). The
flow induced by the doublet at Yo is normal to y axis and at all other region on the
line segment normal velocity is zero. This means that wing surfaces are stream-
lines with the exception of the y, and the boundary conditions are satisfied. In
the ¢ plane the complex potential of the source and sink located at g=ei’ and
c=e g

— etllo
W o= 3-8)

At the corresponding point in 2 plane % = Yo, there is outflow of m/2 above Y axis

4
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and inflow of m/2 below y axis. The flow across infinitesimal length dy, is
w(v,)dv,, therefore, by continuity equation of flow

din=2wdy, (3-9)

From Eq. (3-3), we have

dm=2wdy,= —292_dy,= —2d¢ (3-10)
78\)0

The potential for distributed doublet on circumference of the circle is given by
integration from 6,=0 to 6,=¢,

fo=pt

o€ ip, (3-11)

W(o‘):—-—l—f —
3 g—e i’

0o=0
where y denotes the polar angle of the point in the ¢ plane corresponding to hori-
zontal wing and body juncture. We substitute o=e’’ in Eq. (3-11).  Integration
is performed by part, and

i0 __ei(:r+y)

0 __ pin
W)= —1 [gb(#) log "= 4 ¢+ ) log =
T e’ —e - e

g __e~£(1r+;z)

B J‘# ¢lsin + i(cos § —cos 6,)] d6. — f”**‘ ¢lsin 6+ i(cos 6 —cos 6,)] dé ]
cos § —cos b, " J cos 8 —cos 6, ’
(3-12)-

where imaginary constant has been omitted.
We denote the real part of the complex potential by ¢, and in consideration of the
reflective symmetry of doublet distribution.

¢(7T+00) = —Sb(ﬁo) (3"13)

The velocity potential ¢(4) can be expressed as
1 [ (ei() ___eiy)(ew +e—ip) ]
0)=—— lo
90( ) T Sb(#) g (ew___e—-'ip)(eid +eip)
_2sind (¥ $(6,) cos b,
T J cos’f—cos’ 6, )

(3-14)

0

for all value of 4.
From the equation of transformation Egs. (3-1) and (3-10), ¢(6,) can be ex-
pressed in term of 6, as

$(0) =V8,y,=V35,(cos §,+ v cos® 6, — cos® )
MU

$(p)=V8, cos p (3-15)

Substituting Eq. (3-15) into Eq. (3-14) and after some :calculation, the velocity
potential ¢ is expressed by
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&
o(0) = — V. [ —2a arctanh (i}l}ﬁ)
T sin g
‘ S 3-16
2sing U~ ®  cos? 6,df, [ v/ cos%6, — cos’ ) )] ( )
cos® § —cos® 6, ) cos® §—cos® 0, ’
Cauchy’s principal value of integral must be taken at §=6,. Evaluation of the
integrals in Eq. (3-16) yields for the velocity potential on the horizontal wing
surface.
(@)= -—-Kf;i[—2a tanh“( sin 0 )
T sin ‘Lt
(3-17)
+2 cos 6 tanh~! (M> —{—7r(1 +.2—”—> sin 0]
tan g T
This formula was originally obtained by Dugan (Ref. 5). We define for the sake -

of simplicity, a new variable
Y =cos @ (3-18)

The velocity component v on the wing surface can be deried by differentiating
¢ by ¥ and the result is

09 __ Vi, VY& l2 tanh“‘[—a— 1_Y'f]
oy r Y+/Y—&? Y 1 —a? .
(3-19)
(2 ]
T V1i=Y?
The curves of velocity distribution v(y) are shown in Figs. (2-1~3), where pa-
rameter 2 is the ratio of a semi-span to body radius a.

Case-2 In order to calculate the coupling moment in roll induced by elastic
deflection of wing due to crossflow, let us analyse the deflection angle of a elastic, T
supersonic wing fixed at the wing root, and twisted by uniform flow. The flow is
assumed to be steady so that the wing panel is in equilibrium condition. The
rigidity of material of wing panel is assumed to be constant in x and y directions.
We denote chord length, nondimensional distance of center of pressure from elastic
axis and the torsional rigidity of wing panel about the elastic axis by ¢, e and GJ,
as shown in Fig. (1-5).

The fundamental equation determining the twisted angle distribution of a wing
panel is

4 ( G ﬁi) = —q,c?eCy (a+5) (3-20)
dy dy

The boundary conditions at the root and tip of the wing are

=
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5=0 at y=a, D _0 at y=s (3-21)
dy

Now we assume that the wings are rectangular and the rigidity of wing panel is
constant. We define 4 by A*=gq,c’eC,,/GJ, then the solution of Egs. (3-20),
(32D is

6(y) =«altan /A(s —a) sin Ay +cos Ay —1] (3-22)

By this equation it is seen that the angle of elastic deflection is sinusoidally distri-
buted. Stream function ¢ is given from Egs. (3-1), (3-10) as:

p=—Ve{— 11 tan (s—a) cos A(y,—a) +—11— sin A(y,—a) —y,
/

Z.

(3-23)

The rigidity of the wing material is usually chosen sufficiently large so as to avoid
the wing panel flutter. Therefore, if / is assumed to be sufficiently small com-
pared to unity, we can expand Eq. (3-23) in the power series of (yo—a) as follows;

¢=—ValK,yy—a) +K,(y,—a)+- .-} (3-24)

where

K, =

A A

s—a, K,=— 2 (s—a),
3 (s—a) 2 7 (s—a)
By use of this equation we can solve Eq. (3-14) in an analytical form. We can
obtain the stream function ¢(y,) in the form of power series of (y,—a) for a more
general shape of wing if we know the wing deflection angle 6(y,). Therefore the
present analysis is applicable to the case of a more general shape of wing by de-

termining the suitable values of K, K,, - - -. If we use the Eq. (3-24) to the first
order, the stream function for the case-2 can be obtained by
¢=K,(y—a)’ (3-25)

Eq. (3-25) can be expressed in terms of d, by transformation relation Eq. (3-1),
and we have

$(6,) =K, (cos 6,++/cos? B, —cos? —cos p)* (3-26)

As the stream function ¢(f,) for the case-2 is obtained, the complex potential
can be calculated in the same way as in the case-1. The stream function ¢ is zero
at the root of the wing, so the first term of the left side of Eq. (3-14) is dropped
for the present case.

The velocity potential is also calculated just in the same way as in case-1, but
the integration is not limited to the elementary functions. Elliptic integrals which
appear because of the distribution of varying strength of source and sink on the
circumference of circle, plays important role in this case. Cauchy’s principal value
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is, of course, taken in integration. After tedious calculation (Appendix) the velo-
city potential is given by:

(@) = —K1< 4sin g > {sin p+ cos’ 0 tanh-! (_Sfﬂ i )
4 sin ¢ sin g

—cos #Lﬂ +cot 4 tanh~* ( tan g ) + f_]
tan s

2
— K(sin g) cot 4 (sin® p — sin® §) ”"[ ( '1( an 6 ) . sin ;z) (3-27)

_ E(sin #)-F(sin“l( sin 4 ) sin /l)
K(sin 1) sin g

+ K(sin g)(sin’ p—sin® §) + E(sin ;z)}

where K(k), E(k), F(¢, k) and E(g, k) denote complete elliptic integral of the first
kind, the second kind, elliptic integral of the first kind and the second kind in
Jacobi’s form.

The velocity distribution is obtained by differentiating Eq. (3-27) by y, and
the result is

_do_ _ 4 Vi-a {[a( cos~ta )—7«/1—(1]1’
Yy T T R Y+\/Y2 \/ ¥ > %

+«/1—Y2[2Ytanh \/1 Yz —atmh \/ﬂﬂ_:%%]
a

-1

gt

S __az)[_2Y3+(a2+2)y+(a2_2y2)J (3-28)

x E(sin'l\/??j, JT:E)] —EW/T=a)|2v

t@—2vy 2T 19 (Sm”«/l L ‘“"")N

The curves of velocity distribution v are shown in Fig. (2-4~6) through the
parameter 4.

In the calculation stated above, the first term of the expansion (3-24) is used
for determining ¢. It is also possible to include higher terms in (3-24) and the
calculation can be performed in the same way. We have obtained the velocity
distribution v including the second term of (3-24). This approximation corres-
ponds to quadratically increasing doublet on the wing panel. The induced velocity
distribution for this case is given by

2 Y —a? [ _
vV, = — 6Y(1—-2Y* cos ta
2 T Y+,\/Y2 ,, ( )

+[6av1—a?—3z2Y*—1)]Y
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+12Y:/TZ 7 tanh- [", 11‘?]
Y | —a?

— I &
—12 /T—Y?tanh 1/ -1 .

—6a[K(~/ [Z@(—2Y* +(@+2)Y

E(sin 1=V, yT=a
1—a

F@—2ry LT

—at

—EWT=®QY +(@—2v) | =¥ F(sin™! 11 vi=a| ||
-

From Eqgs. (3-28), (3-29) v,, for the second approximation which satisfy the bound-

ary conditions at y=a and y=s can be obtained by choosing suitable value of K,

# and K,. The results are also shown in Figs. (2-7~9).

4. NUMERICAL CALCULATION OF THE ROLL COUPLING MOMENT

The local pressure on the wing panel can be derived by calculation the cross
product of the velocity components v, induced by wing deflection and the velocity
components v, induced by crossflow. As the velocity components v; depends
upon the number of wings because of wing panel interference, two typical cases
are considered in this paper: one is planar wing-body combination and the other
is cruciform wing-body combination. Some characteristic pressure distributions
are shown in Fig. (3-1~6) for the two cases.

The coupling moment in roll can be calculated by integrating on the wing panel
the product of the local pressure difference and the distance from the body axis.

M:Zcfs [Plydy

s (@-1)
ep =8qc [ (1 —vp)viydy

@

Though the integrated function diverges at the tip of wing due to 4/1—Y in the
denominator, as shown in Fig. (2-1~9), the value of integral can be proved to
be finite because of finiteness of numerator in the integral interval. Numerical
integration is performed in practice to attain the value of integral. To avoid slow
convergence in integration due to the singularity existing at the tip of wing, we
have divided the integral domain into two parts.

1/1(1/) 1Y — f f(Y) SO _av+ f ‘/f_g’_)__dy (4-2)

where ¢ is a very small parameter compared to 1. The first integral is calculated
by numerical integration and the second integral is to be calculated by expanding
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o]

the numerator of Eq. (4-2) at Y=1 and then integrate each term separately.
I:fl a(’!+al(Y”‘rl)+ v ’!Y
Vi-Y
o 5 (4-3)
=2qa,"* ——_g—ale“”+ ce
Expansion is limited to certain order in practice by choosing a suitable value of e.
The coupling moment appears as the second order product of v, and v;, so a
suitable definition of the moment coefficient should be considered. We define the
coupling moment coeflicient as the second derivative of C,, the moment coefficient,
by g and 4, as follows:
c,=M
2q,As |
. (4-4
0°C, C, 4 J“ ,
. = — (1—viHv eydy ™y
e ogas. P, sGs—a) J e hd

The coefficients are calculated and shown in Figs. (4-1~4). Simpson’s 1/3 rule
is chosen for the numerical integration mentioned above and a high speed com-
puter HITAC 5020 is used. The value of ¢ is changed from 0.1 to 0.001 to
confirm the convergence of integral in equation (4-3). To ascertain the value of
integrals we have continued to divide the interval of integral near the wing tip
smaller and smaller and the extrapolated results have been compared to the one
calculated by formula (4-3).

As can be seen by Fig. (1-3), the coupling moment depends upon bank angle
x- The total coupling moment produced by crossflow and induced flow by wings
for cruciform wing-body combination is given by adding torques on horizontal
wings and vertical wings. For elastically deformed wings, the total coupling mo-
ment appears if there is, in any sense, difference between the horizontal and vertical
wings. We have calculated C,;;, when span in horizontal wings s is different from
that of vertical wings s,,. In Figs. (4-3~4) C,;, with unequal wing span is re- t
presented through the parameter (s —a)/(sy—a). When (sp —a)/(sz—a)=0, it
corresponds to planar wing body combination and when (s, —a)/(s;; —a) =1, it cor-
responds to cruciform wing body combination with equal span.

5. RESULTS AND DISCUSSION

In Figs. (2-1~9) numerical results of velocity distribution v;, on a wing panel
are shown for various values of 2. All velocity v,, is normalized by w, which is
span-wise averaged value of w induced by doublet distribution. The extreme value
of 2, such as 100, is also chosen, though it may be practically meaningless, in order
to investigate the influence of span length and curvature of body on the velocity
distribution.

Figs. (2-1~9) show that there is a singular point, as stated before in Chapter 3,
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at the wing tip and v,, is zero at the wing root to fulfil the boundary condition. It
is also seen that all the v, are increasing function of y except some region near wing
root. The enlarged part of Fig. (2—1) shows that v,, Is negative near the wing root
and the negative region increases when 1 increases. For example, the negative re-
gion is 1.4 times of body radius (16% of wing span) for =10 and 6.9 times of
body radius (7% of wing span) for 2=100. Fig. (2-1) also shows that the absolute
value of the negative peak is increasing function of 2. This trend of velocity pro-
file can be explained by the fact that influence of wing tip on the velocity in the
wing root region becomes small for large 2 and the influence of body curvature dom-
inates in this region. For small 2 the appearance of negative region is limited in
so small region that it can hardly be recognized. In the extreme case when 1— 00,
there should exist negative velocity from the root to the tip and when 2=1 there
should be no negative region.

In Figs. (2-4~6) the velocity distributions of v,;, for case-2 are shown. The
boundary conditions and parameter values are same as in case-1 but varying
strength of doublet makes parallel flow component on wing surface and this is
clearly seen in the existence of considerable wide negative region in the velocity
distribution. In the first approximation of deflection angle of elastic wing when
strength of doublet increases linearly in y direction, this negative region is almost
57% of wing span for all 2 shown in Figs. (2-4~6). It can be said that 2 is
not an essential parameter with respect to the negative velocity region for the
case-2. In the second approximation of deflection angle of elastic wing when
strength of doublet increases quadratically in y direction the negative part is about
50% of wing span. Comparison with Figs. (2-4~6) shows, as can be expected,
that the velocity curves slightly shift to the root.

Figs. (2-10~18) show the stream-lines on the wing panel for the case (1)
and (2). Three values of 2, 2=100, 2, 1.1 are chosen for comparison.

Figs. (3-1~9) show the distribution of pressure difference (load) between
upper and lower surfaces of wing panel. All value of pressure is normalized by
the pressure §3,q,. The results are shown for planar and cruciform wing-body
combinations. As crossflow is interrupted by the vertical wing for cruciform
wing-body combination, the resulting pressure is lower in comparison with that
of planar wing-body combination. The difference of the load distribution between
the two wing-body combinations become smaller as 2 decreases because body
interruption effect becomes more important than wing interruption effect. It can
be also seen that all the peaks of negative region in the load distribution slightly
shift to wing tip as compared with that in velocity distribution. The shift is easily
recognized for large 2. This is because the crossflow velocity v, is monotonously
decreasing function of y in y>o and the difference in the shapes of pressure dis-
tribution and velocity distribution becomes remarkable when 1 becomes large.

Figs. (4-1~2) show the dependence of coupling moment coefficients C,;, on 2
for case-1, and the results are shown for planar wing-body combination and cruci-
form wing-body combination for comparison. The curve shows the coupling
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moment produced by two horizontal wing out of four wings in the cruciform wing-
body combination. It is known that the coupling moment Ci4, is a decreasing
function of 1/2.  C,;;,=0 when 2=1. This tendency can be explained by the fact
that the crossflow velocity v; approaches to zero near the body and C, 235, produced
by the coupling of v, and v,, becomes smaller when 2 decreases. It can also be
seen that C,;, for cruciform wing-body combination is about 709% of C, a3, for the
planar wing-body combination when 2 is large. But the differences decreases as 2
decreases and they are equally zero when 1=1.

In Fig. (4-2), C,;, for case-2 are represented. The vertical ordinate also refers
to Cy4, and horizontal abscissa to 1/2. The dotted lines represent the first approx-
imation of the sinusoidal doublet distribution and real lines represent C,;s, for the
second approximation. It is shown that general inclination of C,,, curve is similar
to that for case-1 and C, ;, value is smaller in case-2.

The value of / is designed so small and corresponding deflection angle of wings
are small except when wing divergence occurs. For example, if we assume the
values of the constants as follows,

q=1.0kg/em?}, e=0.01, C=1lm, C,, =2, GJ=0.89x 10*kg/m?
we have

A2=0.22 1/m’

For large 2 such as 100, Eq. (3-20) is no more valid. We have calculated Vi

only to know the extreme case of body-span ratio, though it is practically mean-
ingless.

In Figs. (4-3~4) C,, for cruciform wing-body combination with unequal span
length ‘are shown through the parameter (s, —a)/(s;—a). C,;;, increases when
(sy —a) /(s —a) decreases for a particular s, because cross flow become less inter-
rupted.  For constant (s, —a)/(sy—a), C,, is of course decreasing function of
1/4y.  For constant (s, —a)/(sz—a), it is shown that C,s;, has maximum value
in 0<1/2;<1. The maximum value of Cis, is 1.5 when 1/1,=0.5 for
(sy—a)/(sg—a)=2 and it is 1.05 when 1/2;=0.65 for (sy—a)/(sy—a)=4. The
interruption effect of vertical wing is very effective for (s, —a)/(sz—a)>1 when
1/2y is small. When (s, —a) /(s —a)— oo, C,;, should go to zero.

The value of C,;;, here obtained for the cruciform wing corresponds to the roll
coupling moment produced on the horizontal wing at the existence of the vertical
wing, which acts only to interrupt the flow around the body. It should be remark-
ed that no deflection of the vertical panel has been assumed in this calculation.

The roll coupling moment in the case where both horizontal and vertical wings
are deflected can be obtained as the sum of each contribution:

Crriom= Cl,sa,ﬂae + C;ad:aaé

When the four wings have identical span, Cy;, is equal to Cl... Therefore, the
roll moment will be produced in case-1 or in the case when there is any difference
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in the cant angles of the horizontal and vertical wings. In case-2, however, the
deflection takes place so as to satisfy the condition g3, = —ad;, therefore, C; o1 be-
comes equal to zero. We will compare -9, coupling moment presented in this
paper with the first order rolling moment by considering the flight condition of
««Aerobee’’ at the burnout time. The rolling moment and the damping moment
produced by cant angle of wings of the wing-body combinations are given in Ref. 2.

We will assume that 1=0.4 and the aspect ratio 4 =4 for brevity. By Ref. 5
flight conditions are given and the altitude is 40 Km, free stream velocity v =2000m /s
and roll frequency r is 0.8 r.p.s. The rolling moment coefficients are given as
follows:

planar wing-body combination cruciform wing-body combination
Cma: 1.6 Cl"ja.: 2.3
Cp=—1.0 Cpr= -—1.6

As shown in Fig. 1-7, the spin rate is very gradually increasing except few seconds
after launching. -3, coupling trerted in this paper appears under the roll-pitch
resonance condition and it may be reasonable that the magnitude of the rolling
moment should be compared with the summation of the first order rolling moments
which are nearly in equilibrium condition.

The summation of the first order rolling moment is expressed as

2sr

C,=C; X0, +Cip X
20,

Here we set s=0.75m, §,=10"=0.00145 (rad) refering to the typical sounding
rockets and we assume §, exists as malalignment of wing angle and that 9, =0.34,.
Then C, values are 0.0003 and 0.0002 for planar and cruciform configuration. The
magnitudes of 3-8, coupling moments are calculated by C,;5, X 8X 9, and we assume
that B=0.1. Then C, values for case-1 are 0.0001 and 0.0002 for planar and
cruciform configuration. The dynamic pressure is 0.05 kg/cm’ at the burnout and
K,=0.01. C, value for case-2 is 0.0003 for planar configuration. The coupling
moments calculated above are in the same order as the summation of the first order
rolling moments.

The coupling moment for the cruciform configuration is considered to be one-
tenth of this value, if the difference in the rigidities of the horizontal and vertical
panels is assumed to be 10 percent, therefore, this is not so important as the
moment caused by the wing angle malalignment. The burnout altitude of the
solid-propellent rocket is usually smaller than the above-mentioned value and the
dynamic pressure is in the order of a few kilograms per square centimeter. There-
fore, even difference of several percent in th rigidities of horizontal and vertical
wings can cause the roll-coupling moment in the same order as the summation
of the first order rolling moment. The discussion stated above shows that coupling
moment has considerable meaning in the flight of a rocket to which spin torque is
produced by cant angle of wings when roll-pitch resonance occures. In the real
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flight when the spin rate decreases a little, pitch angle varies and it will invite the
serious results.

6. CONCLUSION

The rolling moment produced by the cross-coupling between the angle of attack
or sideslip and the angle of the wing-panel deflection has been elucidated on the
basis of the slender-body theory.

The formulas for the roll coupling moment coefficient have been derived for the
planar- and cruciform-wing-body combinations in the two cases: 1) wing-panels
canted, and 2) wing-panels deflected by aerodynamic load.

The roll dynamic coupling which occurs on the actual sounding rocket is a very
complicated phenomenon, but the results of the present analysis will be useful in
estimating the effect of individual factors, such as the differences in the wing size,
aerodynamic characteristics and the difference in torsional rigidity of each panel.

The analysis of elastic deformation in this paper is essentially two-dimensional.
This will be permitted as a rough approximation for taking into account the effect
of wing deformation on the roll characteristics of the wing-body combination.
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APPENDIX
Eq. (3-26) gives
¢(0,) = 2K {cos’ §,—cos y cos §,+ (cos® , —cos® )"*(cos §,—cos 1)} (A-1)

Substituting Eq. (a-1) into Eq. (3-14) and considering ¢(z) =0
we can obtain the velocity potential ¢(6):

4K, sin 8
NH=_""1"""
(@’ .

I+ 1L,+1,+1) (A-2)

where I, I°, ; and I, are given as follows:

[ = :f #  cos’ 8,df,
: cos® § —cos’ 6,

I,= —cos s § #  cos’ 0,db,
cos® @ —cos® 6,

H 20 __ 2 ,\1/2 (A-3)
I,= § (cos® By —cos’ )" .z 6,6,
cos® § —cos* 4,
20 2 ,\1/2
I,= —cos p (cos® 6, —cos’ 1) cos 0,6,
cos? §—cos* 4,
The integrals I,, I, and I, are expressed by the elementary functions.
I,= — sin pu— cos* tan h“l( smﬁ)
sin ¢ sin
. I,=cos u {y—i—cot 0 tanh™! (M> } (A-4)
tan p
I,= —725 COS

We write sin §,=1¢, then the integral I, is rewritten as

ty (T 12)1/3(1 )1/" (tf, . tZ)(l . tz)dt _
- § § E—PW(E—)(1—1) (A=)

where ¢, and  are defined by

t,=sin
PO (A-6)
t=sin d
The transformation of the integral I3 into the standard form of the elliptic
integrals gives
dt
JE—B1—D

I,= ’ {tz+(22—ti“l)+(iz”‘ti)(p—"l)zz 1 Zz}
o _

_—_fl {tf,xz—{—cl +c, L dx

(A-T)
1 —(2/t)x } V1= —2£x%)

0
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where ¢, ¢, and x are defined by
a=t—r—1
== —1/)
x=t/t,

The first term in Eq. (A-~7) is expressed by use of the first complete integral
K (k) and the second complete integral E (k) as follows:

v X2x _p 1[— (‘/l_tor)),f},]lt#
VI=T=ex) ") JaI=o A=
(! dx _
_§ ¢(1_v2)(1_z23f2) (A-8)

~§ \/ L6 clv_K(t)-—E(t)

We denote the third kind of elliptic integral by IT (¢, k, n),

dg

f (14nsin? g)v/'1 —k*sin® ¢

:Jum 14 dx
) (1 4+nx)v ({1 =xH(1 — k%)

II($, k,n)=
(A-9)

where ¢ is an amplitude, k is a modulus and n is a parameter.
The integral I5 is rewritten by use of Egs. (A-7, (A-8) and (A-9) as

v

L=K(t,)— E(t,) +cK(t,) +c,IT (% t, — (_;f.) 2) (A-10)

In the last term on the right hand of Eq. (A-10), we have that n= —(,/P< —
which is called hyperbolic case. In the hyperbolic case of II(g, k, ), the parameter
n is conventionally rewritten by use of the function sn of the complex argument as
follows:

n=—kisn*(a+iK’, k) = —1/sn*(a, k)
where 0 <a¢ <K and K'=K(v1—k?).

For later convenience, we define u by

u=F(g, k)

Then, the third incomplete elliptic integrals is rewritten in the alternative form:

u lu “sn¥(u, k)du
(4, k, n)= f ¢ —— f ’
@, k. m) ) 14+ nsn®(u, k) ! . 1 4-nsn®(u, k)
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— K2 s (e 41K, k)sr*(u, k) )
sn(e+iK’, k)

:“‘i_f“ [ Ksi(ee+ iK', K)sn*(u, k) du
0

=U
ci(ae +iK’, K)dn(ee +iK', k)
. v Risn(a+iK, Ken(ae+iK’, k)dn(e+iK/, k)sn*(u, k) du
/ | —K2sn*(a+iK’, K)sn*(u, k) -
sn(e, k) J’“‘ 1,, .
=u— By k', k)sn(u, k
i e W J 3 kisn(ce +i Ysn(u, k)
X {sn(u+a+iK’, k) +sn(u—a—iK’, k)}du
si(ee, k) v o 1 .
=u— ——{Z K, k
enlee, Rydn(at, k) 5 (F etk b

—Z(u—a—iK', k) — Z(a+IK', k) + Z(—a—iK’, k)}du (A-11)

where Z(4, k) is defined as Z(g, k) =E($, k) ——%%-F(g&, x)
Then,
: 1 sn(e, k) L ‘e
eom=ut L P K', k
w ) U e D@ B Of (uta+ikKi k)

—Z(u—a—IiK', k) —2Z(a+iK’, k)}du
n _}_ sh(e, k)
2 cnle, k)dn(e, k)

+J’“[ dlog O(u+a+iK')  dlog B(u—d—iK') ]du} (A-12)

du du

=Uu

{-—25”(a-|—iK’, Ku

0
i sn(ee, k)
2 cn(a, Kdn(e, k)

=Uu

{—293’((\(—{—iK’, K)u

_ [log O+ e+ iK') —log Ot —ce— iK’)} |
0
We have that

cnadneo 1

Z(a+iK' k) =Z(a) + —riK (A-13)
SHo 2
and
O(u+iK')=iBH(u) (A-14)
where
logB=1 K _ 1, u (A-15)
4 K 2 K

H(u) is Jacobi’s Theta-function given by the expansion
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H@) =2 Z (=D exp—-xK”vK(H LD i _57_2 ,l,n-u (A-16)

n=0 Z

By Eq. (A-14), (A-15) we have

log O(u+a+ik") —log Ot —a—ik’) = log _M_:A ri—-  (A-17)

CH(u+a)

In the hyperbolic case (¢, k. n), i.e n< — 1, the third elliptic integral is given by

pme S@ [ |u2@ — L tog =), ] (A-18)
cn(a)dn(a) 2 ‘ Hu+a)!
Considering HEK =) ) » the third complete elliptic integral = (ﬁ t, ——t_> is re-
H(K +«) 2 r
duced to be
T £ sn(e, t,) .
_at y T — | — — £ K t ,JZ .,t
n‘( 27" t;,> cn(e, t)dn(a, t, [ t)2 (. 1,)]
= sin 0/sm £ [K(sin Nk (sin*(mmmsin 4 ) sin ;z):l
Vs’ 0/sim? pcosd sin p
(A-19)
The third integral I, is expressed by use of Eqs. (A-10), (A-19) as follows:
I,= —(sin® g —sin® §)K(sin p) — E(sin p)
+ (sin® g —sin® 6)* cot § K(sin p) (A-20)
| X [E(sin“1< s?n ¢ ) , sin /.z) —~MF<sin”‘<‘S§n 4 > , sin g )]
sin p K(sin ) sin p
Thus, the velocity potential ¢(6) is given as:
R .
()= _ 3K, sin 6{sm n+ cos 9 ta nh"1< an g ) k.
T sin ¢ sin
—cos ,a[(r + fﬂ) +cot @ tanh"( tan )
2 tan g (3-27)
+ K(sin g)(sin* g —sin® §) + E(sin p)
— K(sin p)(sin® g —sin’ §)"/* cot 4
X [E(sin'l( Sin 6 ), sin y) —£F(sin“1< sin § ) sin p)]}
sin y K sin p
®
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FiG. 2-7. Velocity distribution v;, for a deflected wing.
(second approximation)
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Fic. 2-9. Velocity distribution v;, for a deflected wing.
[(second approximation)
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Fic. 2-10. Stream-line on the wing 1=100, case-1.

Pl
Fic. 2-11. Stream-line on the wing 1=2, case-1.
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Fic. 2-13. Stream-line on the wing 2=2, case-2.
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Fic. 2-14. Stream-line on the wing 21=100, case-2.
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Fic. 2-15. Stream-line on the wing 21=2,
case-2. (second approximation)
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Fi1G. 2-17. Streamlines on the wing

A=1.1, case-2. (first ap-
proximation)

F1G. 2-16. Streamlines on the wing
i=1.1, case-1.
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FiG. 2-18. Streamlines on the wing

1=1.1, case-2. (second
approximation)
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FiG. 3-1.
combinations, case-1.
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FiG. 3-2. Load distribution [P] for planar and cruciform
wing-body combination.
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Fic. 3-3. Load distribution [P] for planar and cruciform

wing-body combinations.
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Load distribution [P] for planar and cruciform wing-body
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FiG. 3-4. Load distribution [P] for planar and cruciform
wing-body combinations.
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F16. 3-5. Load distribution [P] for planar and cruciform
wing-body combinations.
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Fic. 3-6. Load distribution [P] for planar and cruciform
wing-body combinations.
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Fic. 3-7. Load distribution [P] for planar and cruciform wing-body
combination case-2. (second approximation)
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Fic. 3-8. Load distribution [P] for planar and cruciform wing-body
combination case-2. (second approximation)
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F1G. 3-9. Load distribution [P] for planar and cruciform wing-body
combination case-2. (second approximation)
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Fic. 4-1. Roll couping moment coefficient Cyp3, for planar
and cruciform wing-body combinations (1).
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FiG. 4-2. Roll coupling moment coefficient Cjz3 for planar
and cruciform wing-body combinations (2).
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FiG. 4-3. Roll coupling moment coefficient C;p;, with unequal span length (1).
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Fic. 44. Roll coupling moment coefficient Cip3, with unequal span length (2).
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Fi6. 4-5. Load distribution [P] for cruciform wing-body combination having
unequal spans case-1.
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F1G. 4-6. Load distribution [P] for cruciform wing-body combination having

unequal spans case-1.
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Fic. 4-7. Load distribution [P] for cruciform wing-body combination

having unequal spans case-1.
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FiG. 4-8. Load distribution [P] for cruciform wing-body combination

having unequal spans case-2.
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FiG. 4-9. Load distribution [P] for cruciform wing-body combination

having unequal spans case-2.
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FiG. 4-10. Load distribution [P] for cruciform wing-body combination

having unequal spans case-2.
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