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Summary: Laminar boundary-layer flows of gas and liquid having a phase-changing
interface at their common boundary are studied theoretically to predict their aspect of
flow and thermal fields first in the steady state. By using these results and examining their
perturbed fields with small wavy disturbance, the disturbance flow fields and the hydro-
dynamic instability of the system are investigated.

The phase-change at the interface has a considerable effect on the velocity and tempe-
rature profiles, thus on the coefficients of skin-friction and heat-transfer at the interface.
Intense evaporation decreases the velocity and temperature gradients at the interface.

The wavy disturbances on the interface have influence on the heat-transfer at the inter-
face by one order of magnitude less than on the skin-friction. The small wavy disturb-
ance fields show a hydrodynamic instability similar to that of boundary- layer flows on a
rigid wall.
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NOMENCLATURE

wave velocity (U.,,)

specific heat

undisturbed steady stream function
amplitude of disturbance stream function
amplitude of disturbance temperature
gravitational acceleration (U%/1,)

=W, L(T,..—T,.)* | (RT}), Hy=W,/P,,
amplitude of disturbance concentration
amplitude of disturbance pressure

latent heat of vaporization

rate of phase-change at the interface and its disturbance (p,U..)
characteristic length =+/vx/U.,

pressure and its disturbance (p,U?2) ¢’
gas constant of vapor (c,,)

temperature

boiling temperature of liquid

time (I,/U,,)

main velocity components (U.,)
disturbance velocity components (U.,)
vapor concentration and its disturbance
co-ordinates (,)

Greek symbols

44 v

Br

o>
g,

2, ,
Subscripts

Values in (

wave number «a,=al,, (n=1, 2)

:(— 1)"’1.0[7,,U:,0/Un, ‘Bkn = (’_‘ l)ni(xnU:m/’fn’ ,Be: _iaﬁU;O/e
=F10—(F{0)2/(2F;6

disturbance of the interface position (I,)
diffusion coefficient of vapor (U_l,)
non-dimensional temperature and its disturbance
thermal diffusivity (U,l,)

=p:/ o/ 0u[ 01

heat conductivity (p,c,,U.l,)

kinematic viscosity (U_l,)

density

surface tension (p,U%l,,)

vorticity and its disturbance (U, /l,)

Y]

interface of gas and liquid
gas side

liquid side

infinity

) indicate the reference unit.
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Gas-Liquid Boundary-Layer Flows 23

1. INTRODUCTION

Concerning transpiration cooling, mist cooling, ablation etc., a number of works
have been published because of their great promise for the maintenance of tolerable
surface temperature on high speed aircraft, turbine blades or rocket-motor nozzle.
In these engineering problems of the heat transfer of two-phase flow, transpiration
or mass-transfer cooling, drying process etc. or in geophysical problems of water
evaporation at the surface of ocean or land, the basic and essential features are
simultaneous heat and mass transfer at the interface between gas and liquid flows
where evaporation or condensation takes place. A preliminary and fundamental
approach to such problems is the investigation of the boundary-layer flows under
the condition that the quantities (velocity, temperature etc.) are specified explicitly
at the interface or boundary as in most cases of published works [I~5]. For two-
layers flows of gas and liquid which have an appreciable velocity at the interface to
force the liquid into motion, or a heat flux by conduction through the liquid layer,
however, the boundary conditions at the interface have to be provided implicitly by
the continuity relationships of mass, momentum and energy flows through the surface
between two layers and to be determined as an eigen value problem of the whole
system.

The first part of the present study is concerned with the theoretical investigation
of the flow and thermal fields of laminar boundary-layer flows of gas and liquid having
a phase-changing (evaporating or condensing) interface at their common boundary
and also with the aspect of the heat and mass transfer and the skin friction of the
interface under such a condition. The fields of velocity, temperature and concentra-
tion are interacted each other at the interface so that their solutions should be asked
as ¢igen functions corresponding to the boundary conditions at the interface. A
mathematical system of the problem is presented and solved both numerically and
analytically.

In cases of practical interest in these problems, the hydrodynamic instability of
the system comes to be of important features such as the transition from laminar to
turbulent flow, the wave generation on the surface of a liquid by wind blowing over
it, the detachment and entrainment of liquid parcels from the liquid layer into the
gas stream etc. [6~16]. By Benjamin [7], for flows over a flexible wall, there are
three essentially different types of instabilities possible, denoted by A, B and C,
which can be identified with Tollmien-Schlichting waves (A), free surface waves (B)
and Kelvin-Helmholtz waves (C), respectively, in their forms. Lock [719] also
recognized that for air flows over a water surface two essentially different classes of
waves are possible, ‘air waves’ and ‘water waves’, which correspond to the Tollmien-
Schlichting waves and Benjamin’s class B waves, respectively. The experimental
investigation of a laminar air flow over water by Gupta et al. [/I] shows these
distinct modes of unstable oscillations. The class A waves are observed at low
speeds only slightly modified from that of Tollmien-Schlichting waves over a rigid
wall. At higher speeds, the ‘water waves’ (class B) appear, moving at speeds close
to their free surface propagation speed. At still higher speeds, there is some evidence
of Kelvin-Helmholtz (class C) waves.
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24 S. Kotake

The mechanism by which energy may be transfered from a sheared gas flow to a
wavy liquid surface without phase-change was first theoretically explained by Miles
[73] and Benjamin [6] with a linearized theory. It was solved by the usual asymptotic
methods to the Orr-Sommerfeld equation to estimate the perturbation stresses on
the wavy surface. In cases to allow the wave-train to travel in the direction of flow
on the boundary as the interface of two flows, the wave velocity may equal the fluid
velocity at a certain distance from the boundary, being of an important factor, called
‘critical point’, in the problem of wave generation by flows over a mobile boundary.
Such problems may be treated by considering a simple wave-train of arbitrary wave
length and speed superposed on the base field and then examining whether or not
the features of stresses at the boundary supply energy to the wave—the effect of
sheltering on the leeward slopes of the wave in which the shearing stress has the
maxima in the rear of the wave crest and the normal stress (pressure) has the minima
in the front of the wave crest as if they made the flow separate on the downstream
side. These features of laminar boundary-layer flows of gas and liquid with a phase-
changing interface of small amplitude are examined analytically in an approximate
method assuming linear profiles of the base flow. The aspects of the heat transfer or
the rate of phase change at the wavy interface are also investigated.

An alternative approach to such a problem of infinitesimally disturbed two-phase
system is to solve directly and numerically a complete set of linearized equations in
which full account is taken of the interaction of two flows at the interface. Such
treatments of the problem without phase-changing at the interface were made by
Wouest [22] for velocity profiles roughly approximated actual boundary-layer ones,
by Lock [/9] for exact profiles of infinite air-water laminar boundary-layer flows,
and by Feldman [17] for a horizontal liquid film in contact with a uniform shearing
air stream. In cases that both air and liquid motions are separately unstable,
the stability analyses of this kind are extremely complicated as shown in Lock’s
results. There are also certain mathematical restrictions necessary in order to make
the treatment manageable in the way usual for problems of boundary-layer stability
(e.g. Lin [18]). The numerical solution of the problem with a high speed computer
may be thus expected to throw some light on these complicated stability prob-
lems without serious mathematical restrictions. In the last part of the present study,
the stability of the wavy disturbances of gas-liquid laminar boundary-layer flows with
a phase-changing interface superposed upon the base fields is investigated with a
high speed computer by solving numerically linearized equations of the Orr-Sommer-
feld type and the secular equation corresponding to the boundary condition at the
interface to obtain eigen values of the system.

2. FORMULATION OF THE PROBLEM

We consider two viscous incompressible fluids of gas and liquid in laminar motion,
parallel to the interface at which the state of the fluid is subjected to change in the
phase, that is, evaporation or condensation takes place corresponding to the thermal
condition of the system. Let x denote the coordinate parallel to the interface, y the
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Fic. 2.1. Laminar boundary-layer flows of gas and
liquid having a phase-changing interface.

coordinate perpendicular to it, (u, v) the corresponding velocity components, T
the temperature and w the mass concentration of the vapor contained in the gas
stream (Fig. 2.1).

For two-dimensional laminar flows with constant properties and negligible dissipa-
tion of the kinematic energy, the boundary-layer equations of momentum, energy
and concentration in each region of fluids can be written as follows in vector form,;

o (2 ( ] a) @ ( & & ) @

— L vV — =(v, &, R 2.1

ot T |t lax + oy r v, 5, ¢) 0x? + ay? r @.1)
w w w

where v is the kinematic viscosity, £ the thermal diffusivity and ¢ the diffusion
coefficient of the vapor, being assumed to be constant throughout the layers. The
vorticity w is defined by

” . ' w:ﬂ —_ a_/U.
oy ox
The equation of continuity is

du n ov _

_— 4+ — 2.2
0x oy 2.2)

At large distances from the interface, the velocity, temperature and vapor-concen-
tration are kept constant;
U)y.=u.,=U., (tp)y-_=0
(Tl)y=oo=Tloo (TZ)y=—m=T2m (2‘3)
W)yew=w.=W,,
where the liquid at infinity is assumed to be at rest since only the relative motion

between the two fluids is a matter of consequence. At the interface of gas and liquid
voe layers, the following conditions must hold. Let subscripts 0, 1 and 2 denote, respec-
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tively, the interface, gas (upper fluid) and liquid (lower fluid). The no-slip condi-
tion of the temperature and u-velocity gives

T10:T20 (2-4)1:
Ujg=1Uy. (24)u
The continuity of mass is
{P(v —3)}10:{9(7)"5)}205’71 (2.4),
{oww—5)—p 22} ={p(w—B)}, 2.4),,
ay J

where p is the density, ¢ the elevation of the interface, § the rate of the change of
the elevation with respect to time so that m means the rate of phase-change per
unit area of the interface. When § is a function of x, § should be expressed as

The stresses tangential and normal to the interface must be contineous;

ou év_) — (a_u é‘z) .
P1V1( 3y + ox 10—p2p2 3y + % /o (2-4)3

2
(p—pg5+mv—2pu—az)—> ——:(p—pg6+mv—2pu?—2) +085’ 2.4),
ay /10 ay /2 0x?
where g is the acceleration of gravity and ¢ the surface tension, 1/(3%5/9x?) being
the radius of curvature of the interface. The pressure may be given by the equation
of motion
2 2
au ou au__lgp_er(aquau) (2.5)

Bt B Bk T} B Sl — T 3L 7"
ot + 0x + oy o 0x ox? oy*

The heat flux into the interface through the layers should be exhausted entirely for

the phase-change
Lm:(—z__aT) —(—z_aT) , 2.4),
dy /2 ady /w0

where L is the latent heat of vaporization and 2 the heat conductivity.

The number of the necessary boundary conditions for solving the system of equa-
tions (2.1) and (2.2) with respect to u, T, w, and § in the y-direction is 2Xx (3, +
2,4+1,)4+2,+1,=15. There are above conditions imposed seven at infinity in-
cluding the pressure condition and seven at the interface. If it is assumed that the
pressure is constant throughout the layers, the equation of motion becomes the
second-order differential equation so that the system requires thirteen boundary
conditions, while the imposed conditions are five at infinity and seven at the inter-
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Gas-Liquid Boundary-Layer Flows 27

face. This implies that one condition should be further imposed on the system.
As for the condition, the vapor at the interface may be assumed to have the state
of saturation corresponding to the pressure and temperature at the interface, so that
Clausius-Clapeyron’s relation holds

dp, . L ps
d; R, Tj

This yields the mass fraction, that is, the partial pressure of the vapor at the interface;

Ds L 1 1
B
’ Do R,\T, T,

where R, is the gas constant of the vapor, T, the boiling point at the pressure p,.

We shall express all variables in non-dimensional form, implying that the units
of length and of velocity are to be taken as a certain length I, and velocity U,
characteristic of the problem. Time is made dimensionless on the understanding
that [./U,, is the unit. Stresses have the unit of pUL. The temperature of gas
and liquid are non-dimensionalized by (7', —T,..) as

Tl—-Tloo 0 _— TZ_TZw

01:-‘——-—— g——"»
TZOO_Tloc TIM—TZW

(2.6)

In the non-dimensional form, the governing equations are rewritten in the same
form as equations (2.1) and (2.2), although v, £ and ¢ have the unit of U_l,, that is,

’ Y Y,

—)Dl ——‘)Uz
b7l 72
U.l U..l
2.7
Ky —K, : — K, ¢ —e
Uoolrl Uool7‘2 Uocl‘rl

where non-dimensional parameters v;! and y;' imply the boundary-layer Reynolds
numbers. As for the boundary conditions, the following understanding must be
taken;

m —m P1 ’—>{71=1 02 —9‘02 Rv —>R N
pl an pl pl Cpl
gl gl g
= — 2 - g
I e S TR b 2.9)
L —L ——————-—21 —*21 ——-——-—22 — A,
(T3 —T,.) 0. UL, 0.6 UL, )

where gr! and g;' represent the boundary-layer Froude numbers and ¢~' the
boundary-layer Weber number.

We now consider the fields of velocity, temperature and concentration to be made
up of the steady fields with small disturbances and write
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u—U+4u v—-V4+v

2.9
0—06-+06 w—W+w } 29)

where the lower-case symbols in the right hand side indicate small quantities so that
their squares and products are to be neglected. 1n the steady flows of zero-pressure
gradient, the interface may be taken to be of a plane at the origin of the y-coordinate.
The introduction of equation (2.9) and boundary-layer approximation into the
governing equations and boundary conditions leads to the following system of

equations:
(i) Steady field
Equations:
P Q
(UW+V—— o |=W,x, e) (2.10)
w
oU .
.Q:_:-———-—— 2.11
ay 0x ( )
Boundary conditions:
U,..=1 U,.=0 6,,=0 6,.=0 W. =W, 2.12)
@10 + @zo: 1 : (2. 13)5
) Um:Uzo:UO (2-13)u
(OV)w=(V)=M (2.13),
(PVW'—PE W ) :(pV)ZO (2.13),
dy /u
U
Pl“l( g :szz( ou ) (2.13),
ay /1 dy /20
(P+MV——2pu o ) :(P+MV—2pu i ) 2.13),
oy /u dy /2
LM=11(_3_@.) +zz(@) 2.13),
ay /w y /20
L /1 1
W,=ex { (_—_)} 2.13),
EEARAT, T @13

Since the pressure varies quite gradually with y in the plane boundary-layer so that
the equation in the y-direction should not be taken into account, the boundary condi-

tion of the normal stress continuity is no longer substantial.
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Disturbance field
Equations:

ou ov ou ov
—+ 0 0= +
ox  ady ay 0x

Boundary conditions:

U, =70,,=0 Uy, = Vy,, =0
0,.=0 6,.=0 w,_ =0

010 +3zo:O
Ug=Uy=1,

{o(v— 5)}10 ={o(v— 5)}20 =m

: aw\l _ s
{pW(’U —3)+ pwV—pea—y}m—- {o(v—0)}s

ou _6_2)} :{ (21 ?Ji)}

{py( ay + ox /J 1w v ay * 0x /)2

(p—pg5+Mv+mV— 2pu—a—2) =g 9’
10

oy ox?

+ (p—pg5+M’U +mV — 2‘0’)8_’0)
oy /20

00 a0
n=i(2),+4(2)
i ! oy 1o+ 2 ay /20

Woszelo—Hp(P10_8151)

L (T, —T,. \° W
H=W i (T=p =) H=pr

T,

29

(2.15)

}(2.16)

(2.17),
2.17),
(2.17),

(2.17),

(2.17),

2.17),

2.17),

2.17),
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ooy x Fic. 3.1. Laminar boundary-layer flows of gas
B and liquid having a plane phase-
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3. STEADY LAMINAR BOUNDARY-LAYER FLOWS OF (GAS AND
LiQuip WITH A PHASE-CHANGING INTERFACE

3.1 Flow fields

The forgoing equations and boundary conditions for the undisturbed steady field
(Fig. 3.1) can be transformed to a more tractable form by introducing the stream
function defined by

U=23¢ Ve 9 (3.1)
ay 0x

which satisfies the continuity equation of mass. The assumption of fully developed
flows allows a similarity solution in the form

7712\/0_;}’1 M= \/U—;yz

Yy Yy 3.2)
&= ~/1"1-7CUc-<aF1(7?1) = Q/VzXUoon(vz) .
With these substitution, the governing equations can be reduced to

F”'-{—%F =0 (3.3),

0"+ -2 F&’'=0 (3.3),
2k

w”+ 2 FW’'=0, (3.3),
2¢

where a prime denotes an appropriate derivative with respect to . The boundary
conditions are then rewritten as

=1 20 =0 (3.4),
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The formal solution of equation (3.3), with respect to F” gives

where

7
Tl(aa v) = exp
I
(3.5), leads to

from which we obtain

F{=F{o+FiS'r1(1, 7]1)

1:F10+F;6'7’1(1: )

Gas-Liquid Boundary-Layer Flows

6,..=0 6,.=0
O+ 6y=1
Fio:F;o

F10=AF20 /Izﬁ\/ﬁ

&1 Y,

2L F(1-Wp=W;
2¢

Fo=AFy
LFIO = 21@;0 + lz@go

L/1 1
ool
=P RNT, T,

(—%f”zrldv)dn, rz(b,n);f" exp (

0 7

A
Ar(1, ) +7,(1, — o0)

{o: Tz(l, — o) .
Ay (1, 00)+7,(1, — o)

’"__
Fi=

F;:F40~F£6'72(19 772)’

31

(3.4),
(3.5),
(3.5),

(3.5),

(3.5)y

(3.5)s
(3.5),

(3.5).

(3.6)

%fOF 2d77)d77.

Substituting these solutions into the boundary conditions (3.4),, (3.5), and

0=AF,— Fj- 141, — ),

3.7

From equations (3.3), and (3.3),,, we can write similarly the temperature and con-

centration fields as

W—sz(W,,—Wm){l

@1:@10{1_ /&y 1) }

T:(Vl/’fu o)

@2:@20{1 + Tz(”z/’fz; 772) }

7alve/ k2 — )

_ (v /e, 771)
Tl(”1/5, o)

)

> (3.8)
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Fi1c. 3.2. Profiles of u-velocity, temperature and vapor-concentration.
(a) Effect of liquid temperature (Water-air, (b) Effect of vapor concentration at in-
T1:.=100°C, W_,=0). finity (Water-air, T10=100°C, T
=20°C).

The boundary conditions (3.5),, and (3.5), with equations (3.8) given relationships
between the normal velocity, the temperature and the concentration at the interface ;

25 w.—W, 1

Mp =

2 1—W, 7r.v/e ) (3.9
LFIO - 21910 + 22@20

B Tl(”l/’fu o) Tz(Uz/ﬁm — o) .

The temperature and its gradient at the interface are then written as

0= —LF - 7,(v;/ Ky, — )+ 2,
Tz(Vz/’fza — o) +2
' (Vl/xla OO) ?
"  (3.10)
;0_—__ 1 —LFlo'Tz(”z/’Cz, —00)—*—22.
TL(M/"U o) 2, Tz(Vz//Cz, — o) 14,
71(v1/ K5 0)

From equations (3.9) and (3.10) with (3.5)., the normal velocities —F,, and
—F,(=—A7'F,) at the interface, that is, the rate of phase change of the fluid are
thus obtainable, although equations (3.9) and (3.10) are implicit functions of F,,
and F,. The interative method may readily present their numerical solutions. It
should be noted that the numerical computation with equations (3.7) to (3.10) has
the superiority over the direct calculation of equations (3.3) to (3.5) with respect to
the convergence of iteration for the same accuracy. In some cases, the former
required only one tenth times as many iterations as the latter.

The numerical results obtained in such a way are presented in Figs. 3.2. (a), (b),
which show the effects of the liquid temperature and the vapor concentration at
infinity upon the fields of velocity, temperature and concentration. As the liquid
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concentration at infinity (Water- (Water-air, T1.=100°C).

air, T1.=100°C).

temperature becomes higher so that more violent evaporation takes place at the
interface, the velocity and temperature distributions across the layer come to be of
more diffuse profiles, having an inflection point (U”=0,68"”=0) at the further
distance from the interface. At higher concentrations of vapor at infinity, which
result in more intense condensation at the interface, the velocity profile varies much
more rapidly near the interface. These features are scarcely affected by the kind
of liquid such as water, methanol or benzene.

The normal velocity or the rate of phase-change and the vapor concentration at
the interface are shown in Fig. 3.3, where the positive value of F, means condensa-
tion at the interface and the negative value evaporation. The wu-velocity of the

' A interface is presented in Fig. 3.4. The more intense evaporation tends to make the
liquid into motion the more resitively.

The skin-friction coefficient ¢, and the heat-transfer coefficient ¢, of the gas side
at the interface can be defined as

ou oT
iy 8_ 10 v 4 oy /1w v,
Yoo :F;(,\/_”l_ Ch= Y = O 2 (3.11)
Pl(“lm —Uy.,) A(T,.—T,.) /x

so that Fii and —@), mean the dimensionless coefficients, being 0.332 for the
Blausius profiles. The heat-transfer of the gas side has the meaning that for cases
of intense evaporation at the interface the temperature gradient of the gas side

1o could almost dominate the rate of phase-change because of @5, ~0, that is,

M~— 'z " (3.12)

This document is provided by JAXA.



34 S. Kotake

0.4 0.4 - —
= /—Water |
-~~~ Benzene
A/ Methanol
03 0.3+
2 02 S 02|
(ORI o O.1+
ob— 4 4 11 L1 L I S R TR B SO N B
O 20 40 60 80 100 %35 40 60 80 100
Tew C T2e0 C
Fic. 3.5. Effect of liquid kind on coefficients of skin-friction and heat-transfer ]
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Fic. 3.6. Effect of vapor concentration Fic. 3.7. Effect of latent heat of vaporiza-
on coefficients of skin-friction tion on coefficients of skin-friction

and heat-transfer (Water-air, and heat-transfer (Water-air, 1o
T1.=100°C, T3.=20°C). =100°C, T10=20°C, W.=0, L,

=539 cal/g).

The numerically calculated values of Fj; and @}, are shown in Figs. 3.5 to 3.7,
which illustrate the effects of the liquid temperature and the vapor concentration
at infinity and the latent heat of vaporization, respectively. It is shown that the
coefficients are greatly influenced by the liquid temperature rather by the air tem-
perature. At first sight to equation (3.10) the phase-change (F,,=0) seems to
make the heat-transfer coefficient —&], increase or decrease, corresponding to
evaporation (F,,<0) or condensation (F,,>0), respectively, although the numerical
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results do not necessarily show such a behavior. This means that the phase-change
at the interface has a considerable effect upon the velocity distribution F,, and F,
which are implicitly involved in 7, and 7,.

3.2  Heat-transfer and skin-friction at the interface

To make the role of the phase-change at the interface more perspective, let us
treat the problem analytically in an approximate method. Equations (3.3), ., are
independent each other so that the fields of velocity, temperature and concentration
should not be interacted through these basic equations. Their interactions result
from the boundary conditions at the gas-liquid interface (3.4). The change in the
phase state of the fluid at the interface, controlled by the temperature field, causes
a mass flow normal to the surface to modify the velocity and temperature distribu-
tions across the layers. Such an interaction of the fields through the boundary
conditions at the interface can be represented explicitly in the basic equations with
the use of an intrinsic coordinate of the stream function ¢.

Denote z the intrinsic coodinate with its origin ¢,(x) which is to be determined
later;

Z=¢—d,
and transform the (x, y) cordinates into (x, z) with the relation
9 _pyd izi_(wr%)i, (3.13)
ay 0z ox ox ox / 0z
then, the governing equations can be reduced to
— U U
9 3 i) - 9 jy o2 (3.14)
(ax x o) @ |79 V%) @

of which the second term on the left hand side expresses the nonlinear interaction at
the interface. In the neighbourhood of the interface, we can approximate the stream
function as

¢—¢O=on+%vyoy2,

where ¢, is the value of the stream function at the interface and U,=dU/dy. Then,
the streamwise velocity becomes

U=UtUpy (3.15)
so that
b—do=—L (U= UD).
2U

20

Here, we take the value of ¢, as
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Fo=go— 20 (3.16)
then the velocity can be expressed in the form
U=v2U,z (3.17)

and equations (3.14) are reduced to

U U - U
o | @ _ 3 _ 33 @
(v, Kk, €) - {\/2UWZ P ( O )} ax( ) ) % o2 ( 6 ) (3.18)
w w w

Firstly, let us consider the velocity field. Using the transformation of

g:f’v¢z—zj—wdx
1]

and the Heaviside operator s corresponding to 9/6¢, we can transform equation
(3.18), to |

(VAR - | e T SR

where the Heaviside operated value is denoted by [ ]. By setting
{=v1z,
the above equation can be transformed to a more amenable form

y [U-U,]

o AelU—Ull=—10.], , (3.19)

where

2 9g, AU=U.) _2 3

Ou= w2U,, ox ac v ox

The solution of equation (3.19) is given by
[U—U.1=v T {,,(DIA,Q) +CI+1_,,2)[ 4,0 +C,]}, (3.20)

where I, is the modified Bessel function of the first kind of order n and

4 \/“ 3/2
= — N
3 €

A= — f VT I,2)-10,1d¢

3«/_

2z ¢ — )
Q=7 f VT L2100
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Constants C, and C, are to be determined by the boundary conditions at z=0.
Close to the interface,

[U_ Uoo]c—v(): [\/ZTyoC_ Uoo]c—.o

which gives

(1 (2ve) it emr(3)(3v5) -

where I is the gamma function. The condition [U—U_]—0 as z— oo leads to

() () (G (s

3~/ 3 [Q“]f ‘\/ ¢ {I—I/S(Z) Il/'{(Z)}dC

of which the integral in the right hand side is (2+/ s )~!. The above relation gives

() () waar(2) (3) s gpemer ea

The inversion transform of this equation yields

() Q) v ()

) . . s (3.22)
y T f {f V2U dx"} VU, 0.dx.
3)‘/3 F(l/j) ) J v Yo v yOQ
Using the expression (F, 3) for (U, y), we obtain
74 l U Um 144 . Uoo
Uo:Fo Vo: : 2 ‘"'x“v*Fo yo—\/ F Qu:\/ X 4,
where 4 is defined as

Pl (Fp?

A=F,— 3.23

*2FY (3.23)

which represents the effect of the phase-change and the fluid motion at the inter-
face. Setting these relations into equatlon (3 22) yields

Fl = AF)Y {1 + B} 43, (3.24)

where

B/ a3/ ()2

Solving equation (3.24) for Fy gives
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Fy=c(1+ady,

where

(3.24)y

c=A%=0.342 a=+ A -B/2=0.730. (3.25)

If we adjust the value of ¢ so as to be 0.332 for the case of a flat plate flow (4=0),

values of ¢ and a are then

c=0.332 a=0.723.

(3.25Y

As for the temperature field, the Heaviside operator transformation correspond-

ing to

Ezfzicﬁvadx

0

reduces equation (3.18) to

761 _ o
7101 _szsto1— 10,

where

= 3 @yo aQZO o ( _?__8_
Q=2 U, ox " \ay
Subject to the condition that at y=0

(@)c—ao - @o + ?Jyo

yo

).

(3.26)

{(V2U, L~ Uy}

and that ®—0 as {— o, the solution of equation (3.26) gives the temperature

gradient @, in a similar form as for Fy;

1/3 4
i=a(2F) (-0 + i)+ B(2F)
K Fy K

Substituting equation (3.24)’ into (3.27) leads to

" 6; 3.27
- } (3.27)

44
0

o' =c( ) {(~+Fi e )+ B(c2) 22}t +an)

44

K 0

K

which can be further approximated as

{2 o (2) 145
K K

Thus, we find summarily for the gas side that

F;

v
K

)m)ad}. (3.27)

This document is provided by JAXA.

‘x




Gas-Liquid Boundary-Layer Flows 39

Fli=c(1+ad)? 3
, v 1/3 ) 1/3 , Y 2/3

dme(2) (2 e (1432 ) o)

ICI Kl Kl >(3.28)

v 1/3 ) 173 9 2/3
i) o wofre () s (143(2) )

) € &

where
(F,)?
4, =F,— 22 .
. 0 T (3.29)

As for the liquid side, denoting
U= U—U, ==

and supposing that the liquid has a main velocity U, at infinity, we can follow the
same manipulation leading to equation (3.24) and obtain

Fy = AEYYPLEy+ B ),
Since we have the relation that
Fy,=—F, F,=0 F/=Fy A=0,
the above equation becomes
Fii=c(F)**. (3.30)

SubBstituting this into the boundary condition (3.5) gives

Flo=A""7(1+ad)) = A*3. (3.31)
With this value of F?,, we obtain the velocity gradient of the liquid at the interface

Fu=A""c(14+ad)’=A""c (3.32)

and similarly the temperature gradient of the liquid

Op~c(-22)"6
20~=C 20 (3.33)

K,

The temperatures 6, and 0,, are determined by conditions (3.5), and (3.5),;

@w:l*@zo
:{ _ B L(i)‘”} [L (31_)"3{1 + p;o(_”n_)”’
c L \ g, L\ g K (3.34)
+(1+2(ﬂ_>1/3)adl} ﬁ( vy )’]
£ L \ g,

The normal velocity V, is obtainable from the boundary condition (3.5), with
equation (3.28),,
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_2V10\/,"7_ :szﬁ W.—W, c(ll_>m
Umvl lJl l.'—WO £

1/3 173
el (1) s
& 13
When the phase-change at the interface is not so intense that 4, 1, we can de-

termine 4, by equation (3.29), F,, by (3.35), F}, by (3.31) and W, by (3.5). which
are then

—4/3 2/3 .
4, =F,,— A2 F10:2C( ! ) W.—W, W,=exp {_I_‘.<_1___ 1 )}
C

(3.39

£ 1‘—W0 RU Tb T2ca
(3.36)
and finally predict F}, and O}, from equations (3.38), ., and (3.34);
- W _W A““d 3
Fl— [1 {2 ( 2 ) o Wo }] 3.37
n=cRragse —w,  2c 3.37)
-1/3 1/3 /3
@;oz—c< o ) @0[1+<”_1) A-2/3+<1+2( ! )2 )a
K, Ky Ky
(3.38)

O
€ 1—-W, 2c
where

9 :{_2( v, >—2/3 w.,—W, +J2L< v, )1/3}[i(_u_1_>1/3{1+<_”1__>1/3/l—2/3
i € 1—-W, L\ g, L\ g Ky

2/3 —-2/3 W _W A—4/3 2 ) 1733 -1
o 2)Jalae( ) S N () T
+< + K € 1—-W, 2c + L\ kg,

(3.39)

The analytical results of equation (3.37) and (3.38) with (3.25)’ are shown in
Figs. 3.5 to 3.7 by dotted lines. It is shown that equations (3.37) and (3.38) could
be valid even at larger amount of phase-change at the interface.

Certain aspects of the results shown in Figs. 3.5 to 3.7 are discussed according
to these equations. Equations (3.28), and (3.28), or (3.37) and (3.38) show
clearly the effect of the phase-change upon the coefficients, Fi; and 05, As the
liquid temperature takes higher values to approach T, (the boiling point), |Fy| in-
creases with the decreases of F7, and [®)]. This features are more evident at
smaller values of latent heat of vaporization (Fig. 3.7). For condensation, F,,>0,
the tends of F, and |@)| are the reverse for evaporation. As the value of T, ap-
proaches T,, the values of F}; and |0),] increase. The higher mass-fraction of vapor
at infinity, W., increases F;i(>0) so as to make Fj; increase. Its effect upon |6y
has both positive term which increases with W., and the negative term of &, which
decreases with W.,. Figure 3.6 shows that the former is predominant at the smaller
values of W, while the latter at the larger values of W_. The effect of the free
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stream temperature of gas T, is attributed mainly to the value of 2,, which is ef-
fective upon the value of ©,. In the case of condensation, its effect is thus most
remarkable.

4. STEADY GAS-LiIQUID FLOWS WITH A WAVY
PHASE-CHANGING INTERFACE

4.1 Disturbance flow fields

To investigate the effect of the wavy disturbances upon the velocity and témpera-
ture fields has special interest in that it might be applied to problems of wave gener-
ation by flow over a mobile boundary, for instance wind over water, as well as to
heat-transfer under a wavy phase-changing interface. Such problems may be ap-
proached by considering a simple wave-train superposed on the basic state and then
finding the features of disturbance fields.

Ignoring the possible instability of the flow system and accordingly taking the
disturbance to be stationary relative to the wave on the interface, we can study much
more clearly the interesting effect due to the presence of a wavy phase-changing inter-
face. It is thus convenient to use a reference frame in which the wave upon the
interface is stationary, moving at speed ¢ with the wave, so that the velocity parallel
to the interface is (U—c) which is henceforth denoted as

U*=U-—c. “4.1)
The interface elevation is taken to be
§ =0, 4.2)

corresponding to which the fields of velocity, temperature and concentration are to
be disturbed (Fig. 4.1). The amplitude §, is assumed to be small compared with
the wave length 2z /« so that (ad,)® is to be neglected.

As the characteristic length of the laminar boundary-layer flow, the measure of
its thickness may be conveniently used, that is,

= bz o= vex @.3)

which are assumed to be nearly constant in a reasonable distance so that the main
features of the boundary-layer are largely preserved over several wave lengths, as
assumed commonly in theories of boundary-layer stability. The introduction of
these characteristic lengths allows similarity solutions for the base fields of velocity,
temperature and concentration with a plane phase-changing interface and thus also
for their perturbation fields with a wavy interface of small amplitude. With the use
of these characteristic lengths, the following understanding must be taken with respect
to the disturbance fields;
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]

U, Tiw, Weo ]
b v ( u. v Gas
w: <> \;le P Vs kg, &
&y =¢,ei0x
— Ll 4
\O Interface
Uz, vg Uz, Va2 Liquid
b2 Oe
Dy Var X,
T FiG. 4.1. Disturbance fields of laminar boundary-
2®

layer flows of gas and liquid having a
wavy phase-changinging interface.

—y —

J Ux J Ux

Ky vi Ky Y2 . _& it SN > (4.4

v, U.x & v, \/ U,x = v, J U_x ¢ @.4)
A \/ v X ) A, '\/ V,X 2,

0:€p U U. 0:¢,,U.. U,

where y;! and v;! mean the boundary-layer Reynolds numbers with respect to the
gas and liquid flows, respectively.

Tal'(ing into account the equation of continuity, we put the disturbance velocity
components as

u=if'(y)et=* v=af(y)e**. 4.5)
Equation of motion (2.14) is then reduced to
a(U*F—iU"f)=u(F" —aF)  F=f'—of. (4.6)

Writing the corresponding disturbance temperature and concentration as

0 — iax
g(y)e. @.7)
W= h(y)eza.z
we can rewrite equations (2.14) in the form
a(iU*g+0'f)=r(g” — a?g) (4.8)
a(iU*h+W'f)=e(h"’ — o*h). '

At large distances from the interface, the disturbances must vanish so that the
boundary conditions at infinity are

fiw=Ffie=0 ¢g..=0 h.=0. 4.9)
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Since the boundary conditions at the interface must be satisfied just at the wavy
interface y=45, it would seem that the boundary conditions at the mean position of
the interface y =0 might require a further restriction on the wave amplitude so that,
within the range of the distance normal to the interface less than the amplitude, the
variations of U,® and W are negligibly small. This severe restriction can be
avoided by the linearization of boundary conditions at the interface y=4¢ as pointed
out by Landahl and Benjamin. A quantity @+ ge*** is linearized at y=4§,e'*® in
0, as

Dy + (D3bo + dplet~?,

where the subscript O refers to values at the mean position of the interface, that is,
at y=0. This means that the corresponding disturbance amplitude of the quantity
at the interface g e?** should be expressed as

on:@65+¢o~

In this way, the disturbance boundary conditions at the interface can be written
in (f, g, h) expression as follows:

(fi—iU18)s=(f;—iUs0,), (4.10),,
(914 0181)0+ (92 + 0:6,),=0 (4.10),
10, (f; —iU*8,)y = pyot,(f, — iU*3,), (4.10),
\ a(Wo— D, — iU+ Vi(h + W3)y—e(W +W"5),=0  (4.10),
ow () —iUY 8, + aif o= pwo(fy' — iU 6, + aifa)s (4.10),
ok, + 80, + 2a,(V f, —v,fD}o = —0aid, @.10),
+ 0,{k, + 8,0, + 20,(V of,— vif oo
Lo, (f,—iU*8)y=24,(91+ 01'3,)s + 2:(92+ 636,), (4.10),
(h+W'6)y=H(8,+6'3);— H,(k,—£6), (4.10),

where ( )] and ( ); denote the first derivatives with respect to y, being non-
dimensionalized by I, and [,,, respectively. The wave numbr « and the amplitude
of the wavy interface § have the following relationships,

o, =al,, a,=al,,

0=0ygl €™ = Oyl pe "
that is,
010,10 = 0,05 0, X) =0, X, = (eX. 4.11)

The disturbance pressure p=ke®** is given by equation of motion (2.5) as
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ak=uv{f"" —iU"d—a*(f —iU’d)}

. . . . (4.12)
—iaU*(f —iU'0)— V(' —iU"3) +iaU’f.

As mentioned before, we consider only the disturbances stationary relative to
the waves on the interface so that there exists a reaction of the disturbance flow to
‘maintain the prescribed wavy disturbances. Without the external forces correspond-
ing to such reaction, the wave number « should be determined by an eigen-value
problem of the whole system as in the successive chapter. If we take the normal
stress condition (4.10), as the external necessity of maintaining the disturbance of
wave number «, the disturbance pressure amplitude k is then determined as a
subsequent quantity of the resulted disturbance fields.

We have thus two fourth-order ordinary differential equations for f and two
second-order equations for g and one second-order for A subject to seven boundary
conditions at infinity and seven at the interface. 'The boundary conditions at in-
finity restrict the number of the independent solution of the ordinary differential
equations for f, g and A to be written with constants 4,, 4,, B,, B,, C;, C, and D as

fn:Anfan +anbn
gn:Angan+Bngbn+Cngcn (n::l, 2) ' (413)
h=Ah,+ B,h,+Dh,

where f, and f, are the independent solutions of equation (4.6), 94, 95, b, and A,

the solutions of equation (4.8) corresponding to f, and f,, respectively, and g, and
h, those of equation (4.8) with f=0, all those satisfying the boundary conditions
at infinity. The boundary conditions at the interface can be expressed in the form

A+ b,y B+ a,,A4,+ bn:By+ €y Ci 4 € Co+dD 4 €,6,=0
(n=u,s,c,t, 4, w,e) (4.14)

or in a matrix form

(4]
[ Ay, bul Ay buz 0 0 0 €, ) B1
la, by a, b, 0 0 0 e [l|4,
a, b, a, b 0 O 0 €. B,
a, b, a, by ¢y €z O e; C, =0 (4.14y
ag. by Ay by i 0 g C,
ay, by 00 0 0 d, e, D
‘a,, b, O 0 c. 0 d, e, 5o
L )

where a, b, ¢, d and e are given by equations (4.10) as follows;
A== %) bu= (3o Quz=— (fode  bur=—U12)0
€y—— (U — Usy, /Vz),
. 031=P1V1(fg1+a§fa1)0 bs1:P1V1(f§;,1+0(Hb1)o
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ag = —p,(fia+ifa)e b= —ppfia+ aiferdo
e;= —i(p,Ujg— p,Usoy, [ vy),
aq=pfado ba=pfo)o  Aez= —p:(faddov2/ ¥
bey=— p:(fo2)ovs/ v e.=—i(p,—p)U,,
a4y =(9ar)e bu=(9s)0 @:=(gas bra=(gs2)s
cu=(ge)s C=(9c)s € =075+ 0% /v,
an=0o(fa)e—4/L(951)0  ba=ar(fo)o— 41/ L(g41)s
Ay =—2A[L(902)0  bga=—2:/L(g}2)s
Ca=—A/L{gi)y  Caa=—2/L(g2),
e,= —la,UF — (2,07 +v,/v,- 2,0%) | L,
Ay ={ay(W — Df o1+ Vihoy—ehli}o
by ={a,(W—Dfpy+V hyy—ehy}y
d, =V hy—ehy), ep,={—i;(W—-DU*+ VW —ecW"},
aelz(ha—ngal+Hpkal)0 belz(hb_HLgbl+Hpkbl)0
Ca=—H/(gc)y de=(hy)y e, =—Hyg +W;—H05.
Eliminating C,, C, and D in equations (4.14) gives

A
(aul bul auz buz eu] { ! ]I
| B,
ag, by a, by e | 4. 1—o0 (4.15)
Ilacl b, a, b, e Bz o )
98 b ap by ef 52
0

where
a;i =a,(fa)o+ a;kl*

— 2 ga ’ 7 1 2 g, 2 g, i:
ar* = 1( Lgl— a)+__<_2 _62__1___CL-)
“ L c1 Jor ™ G o H,\L g, L g,/

x {Hpkal + [(1 _ W)alfm—i-ehm( i _ﬁ)]o(Vl _efu )_l}

h,, h, hy /o
b;:al(fbl)0+ b:zkl* b:]kl* E(a:ﬁ*)a—.b
A a
a;;zfz(%gzz—ggz)o b= (a)ass
c2
ef=—iqUfe}*
/ 7
epr =2 (Ingl—6p)+ 2 e Tagy, )
L c1 v, L \g,

1 /2 ¢, A 4 h}
+ (_2 €2 _ 1 cl) {_H (V o d )
Ht L gcz L gcl 0 pgl + l ) hd 0

. W// hl
s |iow — Da, U W'< _ d)]}
[( Ja te w’ h, /1o
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The solution of equations (4.14) and (4.15) gives constants A4,, B,,C, and D cor-
responding to J,. Since equations (4.14) are linear, we can set §,= 1 for simplicity,
thus, values of A4,, B,,C, and D are to be interpreted finally as a multiple of 4,.
Substituting these constants in equations (4.13), we obtain the disturbance fields of
velocitty, emperature and concentration.

4.2 Effect of the wavy interface

To examine quantitatively the effect of the wavy interface, we treat the problem
analytically with an approximation of linear profiles for the mean field. Since the
disturbances f, g and 4 diminish very rapidly with increasing y, the region where
the magnitude of disturbances f, g and k& is significant in comparison with their
values at the interface can be assumed to be largely covered with the linear profile
region of mean fields, U, ® and W, over which we can assume approximately

U=U,+Uy 0=6,+6ty W=W,+Wy. (4.16)

With the linear distribution of mean velocity, equation (4.6) can be reduced to

4
0

F/ 4 % U;(y + M)F:O. 4.17)
iy U

Defining a coordinate z as
Z=Yy+2z, 2,=(U§ —iav) | Ug, (4.18)
we can rewrite the above equation for the upper fluid,
F{ + Bz, F,=0 = —ia,Uy/ vy, “4.17y

of which the solution is a linear combination of functions F®(z) and F®(z);
www=v?ﬂw(§vpﬂ7

where H{} and H{}} are the Hankel functions of order one-third of the first and the
second kind, respectively. Accordingly, equation (4.6)

fi —aif,=F,
subject to the boundary condition f,=f;=0 at y,= o« has the following solution.

lf 2 zlF{’”(.{?) sinh {a,(z,—&)}d&

eawx —_— 21

fi=A,e~"v + B,

ealszmF?)(S)e—ﬂlEdS J

For the lower liquid flow, denoting
2=V 2 Vo=—Y, Zp=—2y ,BzziazU;o/Vz 4.21)

we can take the same manipulation as the above to obtain
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R
[ 2 f FO) sinh {ay(G,— ))de
fz:Aze‘“wz']LBz eV _ % . 4.22)
ea 28y of F(l)(E)e—a"de
220

Equations (4.20) and (4.22) give the values of f, f' and f at the interface as

fno =A nt Bn
nﬂ— _1)nan(A —B ) (nzl, 2) (423)
no— n{An + (1 Tn)Bn}’
where
= 2F®(z,) = 2FM(2,) .
alealzlofmF](.Z)(s)e—ﬂlEds azeazigofmFél)(é)e—agfdé (4.24)
¢ N 210 220
Next, we consider the temperature field. Equation (4.8) with (4.16) becomes
9" +Bzg= %@(,f, (4.25)
where
2.=Y+20 Zo=U§—iar)/U; B.=—iaU/k. (4.26)
Defining functions G and G® as
GHI(z) = ~/ 5}32)( 2 Fzs/a)
we obtain the following solution of equation (4.25) for the upper and lower fluids,
respectively,
t g=CGP+ 2 “eufop [Moprde+ o [Tophde)
K
. ! Z¢10 2512 (4.27)
=3 £2
0:=COP+ = Lofop [“eprasrop [Toprde).
ICz 2:2 2‘1]0
With equations (4.20) and (4.22), equations (4.27) give values of g and g’ at the
interface
- B C.G.n
9n0=A,Gono+BrGpno+ cno } (n=1,2) (4.28)
gno—A G n0+B G n0+C Gcn()
where

Grne=GmnG @) Grne=GnnG (2.n0) (m=a,b)
Gm=-’g— g, [T GPF e Gm=—’g— 220 [T G Fasdt \(4.29)

Zc10 230

, Gep= GP(Za) Glu=G{ (240 Gep=Gs" (Z20) Gop= Gél),(zﬁzo)
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where F,, and F,, are the coefficients of 4, and B, on the right hand side of
equations (4.20) and (4.22), respectively.

Replacing &, 6, by e and W in equation (4.27), we obtain in the same way values
of 2 and A’ at the interface

h0:A1H00+B1Hb0+DHdO
, , , , (4.30)
hozAlHao+Bleo+DH¢o
where
H,=H,H"(z,) H,=H,H"(z,) (m=a,b)
4.31)

Hm:_lg‘__ oy W‘,’f Hﬁl)ledg H(l) \/Z H{}%(%‘/Eza/z)
15

Since we may consider the length |8|'* as a measure of the effective thickness
of the disturbance fields, the assumption that this thickness is small compared with
the thickness of linear profile of the mean fields can therefore be expressed as
[BI7"”ag 1. Thus, we may take |/*z)?|< 1 and approximate z, as

= ;é”) fzﬂ’: e(n,—i3i> e(n, )=exp {—(—Dx}  (4.32)

which means |z,|>1, and G,,, G{™ and G{™’ as

. ’ .
Gan:Gn:_f”___ ! Bl ( )
"T6 V3 K, Oafn 6
2 3 in
G (Zon) = —2e — > B ( , __)
3 >(4.33)
2 33 in
G;‘m)/ Zomo) = — 1‘/7? ( ,__)
( o) \/3 ———-——F<i> erm 6
3
where the following approximate relations are used
F®(2,) =~ F®(0) f FO(&)de — T jl_ R
0
F{P(z,0) = F{"(0) f F{(&)de = — \/ﬂ j% e/

[TtuGras~ [Tapas [TfaGpaes [ Gpas.
210 0 3 4

Equations (4.33) hold for H and H’ by replacing « and &}, by ¢ and W/, respectively.
Substituting the obtained values of f, g and 4 at the interface into the boundary
conditions (4.15) yields
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[ —a @, —a, @, ”‘i(U{a‘“Ugoi) A4,
Yy
/ﬁ\isﬁyi3h£_~1~1mi %
V. O ’
I’ ©2 2 O \ v, 2 2 | 4, / =0
I o LY wi(l'il_q)uﬂ* I B |
t 102* 0 Y Yy 02 ’ 1 |
a +a) & + b B i | L)
‘ (4.39)

where

e
a;k:b;k:e—(z/3)i3l/3 3 _L ‘{3 13 2/31"( )ﬁl/-'i 10
(N) U,

1~W,—3- vsr( ) -y

vV */3)13173 p( \) ( \) 1/3
e 3)/T(L)es

+ ey @ {I+e‘(2"/3”( ﬂ;z)m A }

H, 2,
1
:b = — jp(n/3); 1/3 2/3 @,
X le=/Mi3-13 3 )-8 .
U2O

),
e¥ — _e(x/3)i31/3 \,831 { 10+ e~ (2x/3)i( ﬂ‘z) Vx 2 @;0} _}_i
P(\) v, 4 H,

X{1+ @ /3)(‘32)1/3 22} fa’,(150~1)U +e(x/3n31/3]~r( )/f( )Eﬂ’/"’Wg
el a2y
\\ e .
1851 '21 lu+e(:r/3)131/3[v( )/P( )ﬁ]/s

Equationg (4.34) give the constantg A4, and B, as

A')_.i{+-(U;O~LU')+z o g
B, 2 Y, 7,
i e, "“1”“6’*}
Yo oy 4af a +af
AZ) I _4_, ) v
=if L+ 2 )M«
B, 2 2z,

Where , /0,1 is assumed, Thus, we obtain
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1 . ar 3

ot B (1% Yo )
10 1 1 PR o, . ]
fo=A,+B,=i XL U*

Y,

2 4 \ (4.35)
fa=an(—A,+B) =i Upp— 2 U, ) i 2 =%

Y, (P

w=01(A,+B)) —air, 1—a1{f10 2 <f10+ go )}

/

By eliminating C, with equations (4.14), and (4.14), to obtain C,, g,, and g},
can be written as

A 9a 9e MN_ % 9.[4 9. a Ya
gw:(_L g—,l 'g—z —1> [_ 2 Je { : g,2 ga.l(l_g—,l ——“g ! )(A1+B1)
4 94 Ye 0 A4 e

A 9 ga a1
+ 2 g (1= 2o Lo Ya, B+ e f—Io L fe s o4, 48y}
9a 92 Yoz Ja 9a A 0
7’ -1 4 Y4
g;u:<_22__gf_1 ger __1) [__22_ g {gal<1_g_flh>(Al+Bl) (4.36)
A 94 9o 0 A c2 9o 9ar
’
+ ga2<1 '—g—fz ‘&‘2—‘>(A2 +Bz) + ez} _—Il——{eq +a1(A1 +B1)}]0
9o YGaz 4

where, with equation (4.33), we can use the following approximation

o G)
9ano _ 3173 3 13, ( n

Gano F(l)‘"(’ig)

3

oy
Geno _ __ 313 3 ]’3e<n, _ T )

Gons O
3
13 .
Jano=1 2z 3 In ﬁ:,f/a@;(,e(n, ——1371-)

1(2)
3

The disturbance normal velocity at the interface «,f, is then explicitly expressed

where n=1, 2.

as

flO C(l—*“e (n/3)1.1" 181/3 2 l3 2/3]"( >‘Bl/3 @10 + (27/3)1 al
Ul H,

1 (27/3) /22 ﬁ 2 V3 H.k = W 3 1/3['( )‘B ]/SW,
x{teem 2 (£2) Tk,
* 1\ Ba oot Vie+e=i 05.31/3

This document is provided by JAXA.




o

Gas-Liquid Boundary-Layer Flows 51

4
:iU:,"{al+ie("/3”'3“1/3l’<-2—) gp e G (4.37)
3 L Y, 20
(z/3)i 1/3 21 ’ —(2x/3)% A, Y, }9:2 Y3
+e Foﬁu —06h+e — 20
L 21 Y, ,8:1
+ 1 14 e-@ri A (B2 )" —H, g, + loy(Wo— D UFE + eI B Wy .
H pi po1 V- 1 e®Mi[ g3
¢ 1\ Ba 0t 0P
0.2 —
= —180]
o1 T2e0 C (Vio X107) 2= vi® _ .
- 20(0.123) 100 1,10
B = AN
- F == —150L s =
= B == = - Tl ]
‘2 o x10 2 - BO/ 100
= > 60
3 ~ —120| 20
> 1> B
0.01 %
5 N
= ’/’ -901
= 80(2.450) _——" =
- - i | [ N A RN
0.002 e 1111 ] NS -60 I N I S S
001 01 1 0.01 0.1 1
a, a,
Fi1c. 4.2.1. Disturbance rate of phase-change (Water-air, T.=100°C,
c=0; —, T3.=60°C, Weo=0; ----, v,;71=10, W..=0).
(a) Amplitude (b) Phase angle
2
—180,
WelVio X10%) |
1 0.2(0.0479) - W
— [~ 0.2 Ao
_ - __—150F 0.0 )
é — - < B \_{Benzene
é | ////1 Benzene é B Methanol
3 - (0.715) < ~120L
— ethanol 1% |
01}~ (1.42) et - I
= 0.4(-1.08) =" -30f
i " B 0.4 ]
e 0.0(0.989) B
002 I Ll Tl | R 0 [ IR L1 1310
001 0.1 1 001 0.1 1

a
a, 1

Fi. 4.2.2. Disturbance rate of phasechange (Air, T;.=100°C, c=0,
v1‘1=10; -_— Water, Tzeo:60°C; -=-- sz:40°C, Woo=0).

(a) Amplitude (b) Phase angle

This document is provided by JAXA.



52 S. Kotake

10 90,
-1 [

[~ T2 C(Un)

20(0.323)~
- 60(0.263)
80(0.168)

601 100

]Ul’o/(Ulbé‘z) ,

arg (Uw /(UIO 31))
T 1
/

30 —
\
- T2w=20~80°C
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Fi1c. 4.3. Disturbance velocity gradient at the interface (Water-air, T1.=100°C, ¢=0; ——,
T2=60°C, Weo=0; ----, 171=10, Wo=0; - -~ -, T9=60°C, »,-1=10).

(a) Amplitude i (b) Phase angle

where F0:31/3F<%) / I’(%) The right side of the above equation means the

disturbance heat flux into the interface and the left is the disturbance amount of
phase-change. Both sides phisically consist of three terms, attributed to the dis-
turbed convection field, the disturbed temperature field and the change in the inter-
face temperature, respectively. The disturbance rate of phase-change 9,0/ (V,0,) =
a,(fo—iU§) |V, is graphically shown in Fig. 4.2, where V), is (—u,F;/2) in the
term of the preceding chapter. The order estimation of the terms of equation
(4.37) shows that the most predominant on the left side is the one attributed to the
disturbance convection field and on the right those due to the disturbed temperature
field and due to the disturbed convection field, so that the disturbance normal
velocity or the disturbance rate of phase-change can be approximated as

alfwze‘"”’ifoﬁ:{a%(—@;0)*+iaIU;'< (4.38)
(@) = — Ot e 2= 2 L( Bes )‘”
21 Y, /9,‘1

or with equation (4.26)

7 \1/3
pp=ermt Lo (U Y0 orys, (4.38)
- 1

. 1/3
(6% =—6hu+ e L) L gy,
‘ ' 02K A
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where Ug,/ Ujy=pw,/(pw,) is used. ¥, is thus proportional to the one-third power
of the wave number with the phase lag of 150° relative to the interface, as shown
in the figure.

In Fig. 4.3, the disturbance velocity gradient at the interface #},/(U}6,)=
ifis/ Uj, given by equation (4.35) is shown. With equation (4.38) and the relation
that |z,|, |z,|>1, we obtain the following approximate expression for f,

. o, Ul \V3 ) a U/ 1/3 y
f;6:e<5x/3)zl’lal( 1 10) US(: +e(5x/3)1['l Vi U;O_ 1 U;o

Ul Ul DZ
7 2/3
+ e/ L, (alUlo) (D) (—O,)* (4.39)
4 @Ok o2 Y2 (_U_;‘Ly”
Yy go
where
i)
1/3 2/3
110:“_-——3— PX:: 3 F2: 3

i) 5 G)

3 . 3 3

The right sidz of the above equation comprises two contributions from the dis-
turbance fields of the modified mean field of velocity (the first and second terms)
and of the disturbed velocity field due to the phase-change (the third and fourth

terms). Since the former, especially the second term, is the most predominant as
shown in the figure, fj; or i@t (=ify) is then roughly approximated as

Mo _ pemi_ 37 <l_plp§)%< aluio)‘”
U;051 F<£) szg Yy (4.40)
3

which is proportional to («,/v)"* and 30° in advance of the interface. The left
hand side of the above equation implies the disturbance friction coefficient ¢, de-
fined by equation (3.11).

The disturbance pressure p,,/d,=k,, given by equation (4.12) and shown in
Fig. 4.4, is proportional to (a,/v,)”'* and (a,/v,)** at smaller and larger wave
‘numbers, respectively. In the analytical expression of k& by equation (4.12), the
most predominant is »f’”/, that is

Y7774
a’lkw~U1 10

Since equation (4.20) gives fiy’ approximately as

4 (2)/ 4 2/3 7\ 2/3
O Y (RS L i o (e W e L)
a, / F{ 0 a, F(l> v,
3
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Fic. 4.4. Disturbance pressure at the interface (Water-air, T1.=100°C, ¢=0; ~—,
T30 =60°C, Wow=0; ----, 1,"1=10, Wo=0; - - -, T2.=60°C, v,-1=10).
(a) Amplitude (b) Phase angle

with equation (4.38) and (4.35), k,, is then expressed by

ku=eom Ty fer s Lo opyn(£L) oyt iv,+ i}y (2l )™

—L 0.’1 afl Ul

(4.41)

of which the third and second terms become more effective at smaller and larger
wave numbers, being proportional to a;*? and «3® with the phase advance of 150°,
respectively.

An interesting feature of equations (4.40) and (4.41) is the phase relation be-
tween the stresses and the wave of the interface. The shearing stress (~ uj,) is ap-
proximately 30° in advance of the wave. The phase of the normal stress is about
150° in advance. These phase relations are accordant with the Benjamin’s result
of linear or boundary-layer profiles models [6], which may be interpreted as a kind
of Jeffereys’ ‘sheltering’ effect that the stresses are distributed as if the leeward
slopes of the wavy interface were sheltered and a wake were formed behind each
wave crest. The effect of the phase-change upon the stresses at the interface is
expressed in the terms of (—©7,)* which become relatively predominant at larger
wave numbers or for the case of higher vapor concentrations at infinity (condensa-
tion taking place at the interface), having the phase relation of 120 for uj, and
—90° for k,, in advance, respectively, which act to weaken the ‘sheltering’ effect
in the phase relation. In the evaporation case, the ‘sheltering’ effect may be also
reduced in amplitude by the decrease of U}, and |©Y,|.

The disturbance temperature gradient at the interface 6%,/(0%,0) =94,/ 0%, given by
equation (3.36) is shown in Fig. 4.5, being proportional to a}~*%, were —6;, im-
plies the disturbance heat-transfer coefficient ¢, defined by equation (3.11). The
approximate expression for g, is
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FiG. 4.5. Disturbance temperature gradient at the interface (Water-air, T;.,=100°C,
c=0; —, T30=60°C, Wo=0; ----, 1;"1=10, Ww=0; - --, T2=60°C,
v,;"1=10).

(a) (b)

. . (44
=i T (U (1)
Ky
O {

1/3
1+e(zx/s)i['3(U;0)~2/3<£L)1/3}

L3

X [(fm—iUé‘)(—@i )

_ -1/3 2/3
. F e ®i(f _iU¥) i(lL ad U;o) ( “ ) (4.42)
Iy 2 \v r

+iU§ [(—@fo){l +e(z"/s”l’a(U{o)"m(ﬁ_)l“}

+@§0{1+e(z/3)il’3£<i K )1/3(U;O)_2/S(i>l/3}]]
i R ‘ K

where [',=37"%/ I’<%), which comprises the effects of the disturbed temperature

field due to the disturbed flow (the first, third and fourth terms) and the disturbance
amount of heat for phase-change (the second term). The predominant terms of

them yield
: r (%)” 1
0 —0O)*
67,0, V3 {F(i)}Z —L ( 10)
3
31/3]“(3 13 *
o S fememi A (o )7 (O] (4.42y

Ay \ 0k, — 6y
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+e(2n/3)iU6k<1 _ 6% )} (ﬁxﬂg)m

4
6% Ky

Further, for intense evaporation at the interface which gives smaller values of |67/,
|05 and U,, the above equation can be roughly expressed as

)
Oy ~ o /D 3 A <P1'51 >—1/3<_a‘_U;1>1/3 (4.42)"

61051 F(—1-> A, 02K Ky
3

which shows the proportionality to («,/«,)'* and the phase lag of 90°, although at
further larger and smaller wave numbers terms proportional to «}* and « /3, respec-
tively, in equation (4.36) come to be more influential.
Comparing equation (4.42)” with (4.40) gives 3

0% ‘/ ~ 4 (Pz’cz )1/3< Y )1/3

To A\ piky Ky
of which the order of magnitude is about 0.1. This indicates that the waviness of
the interface causes disturbance to the heat-transfer coefficient by one order of
magnitude less than to the skin-friction. As for the temperature field, the wavy
disturbance at the interface is almost absorbed into the liquid because of its high heat
conductivity and the heat flux required for the disturbance rate of phase-change at

the interface is supplied mostly by heat conduction through the liquid.
The disturbance coefficient of heat-transfer of the liquid side is then given by

i,

4
Ul

Y I(3) 3w
1(“1 w) (—0%,) (4.43)
o
3 L

of which the ratio to gi, is (o,x,/p:x,)"*=0.1~1. On the other hand, the ratio of
1 to fia 1S pw,/ o, =10"2~102,

The disturbance u-velocity and temperature at the interface given by equations
(4.35) and (4.36) are illustrated in Figs. 4.6 and 4.7, respectively. They are
approximated by

g;o ~ e(?n/ﬁ)i

2
iflo= — U;O(l __le_;> | (4.44)

2”2

gm.—:_’ﬁ_( 01K )_1,3 JRIT 4 1 (“lU;O )'1/3(_@;0)*(_@10)
A \ O:k, 35/6p(_1_) —L 3!
3 :
+em @Y — @) + Uak{e(rr/wi(_@;o)_|_e(7x/6)i_ﬁ_( 01k >1/3 ;0}] (4.45)
1\ Oaky
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FiG. 4.6. Disturbance u-velocity at the Fi1G. 4.7. Disturbance temperature at the
interface (Water-air, Tjo= interface (Water-air, T1.=100°C,
100°C, ¢=0; ——, T3.=60°C, c=0; y T3=60°C, Wao=0;
Wzoo:6ooC, Woo:O;"", Ul-l -—-- UI_IIIO, szo; - - Tgoo
=10, Weo=0; ---, Tie= =60°C, v,-1=10).

60°C, v,-1=10).

Corresponding to equation (4.42), the latter may be further rewritten as

-1/
gloze"(z"/”_ll_(—plkl ) l 3(*@;0) (4.45)

A 02K,

which has the phase lag of 120° relative to the interface. To first approximation,
both disturbances are relevant to neither wave number nor Reynolds number.
These equations show that the overall disturbance wu-velocity at the interface i,
which is the sum of ifj0, and Uj@, is nearly equal to zero, that is, the overall u-
velocity at the interface remains undisturbed. Since |g,,[<|O5], the overall dis-
turbance temperature at the interface (6= 9,,0,+ ©%,0,) is then given by §,,=64,.

5. HyYbpRODYNAMIC INSTABILITY OF GAs-LiQuip LAMINAR FLows
WITH A PHASE-CHANGING INTERFACE

5.1 Non-stationary disturbance fields

In the preceding chapter, under phase-changing at the interface, an account was
given of the effect of stationary disturbances upon the features of laminar boundary-
layer flows of gas and liquid. An alternative approach to the instability problem of
the motion with respect to small wavy disturbances may be to examine directly the
solution of the linearized system of the whole field in the usual way for problems
of boundary-layer stability, as used by Wuest [22], Lock [/9], Feldman [/7] and
Miles [20] for the isothermal cases.

The disturbances are considered to be of the form
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¢(y)eia(z—ct)’

where ¢ is the complex wave velocity which may be expressed as
c=c,+ic;,

where ¢, is the wave velocity and c; allows for amplification of disturbances if ¢;>
0, damping of disturbances if ¢; <0, and neutral disturbances if ¢;=0. The cor-
responding disturbance elevation of the interface is taken to be

‘5:5oeia(x—cb). (51)

In the same way as in the preceding chapter, we can write the disturbances of
velocity, temperature and concentration as, respectively,
u:if/(y)eia(x«ct) ,v:af(y)eia(x~ct)’ (5‘2)
0:g(y)eia(z—cz) w:h(y)eia(z—ct), (5.3)

and obtain the following governing equations and boundary equations in the same
form as equation (4.6), (4.8) and (4.10);

(a) Equations:

a{i(U —)F —iU" fy=v(F"" — a?F)
F={"—af,

. . 5.4
o{i(U—c)g + 6/} =x(g” — o), G
a{i(U—ch+ Wfi=e(h'’ —a*h),
(b) Boundary conditions:

floo:-ﬁoo:() f2°°:f;oo‘__0 (5-5)

glm:O 92m:0 hw:07
(fi—iU8)y=(f3—iU35,), (5.6),
(9,+ 6100+ (9, + 0:0,),=0 (5.6),
Pla’l(fl - anx)o = Pzaz(fz - anz)o (5. 6)c

a(Wo— D(f, —iUd)o + Vyo(h + W6)y—e(W' + W5)),=0 (5.6),

(! — U8+ o= pfy —iUY8, + ), (5.6),
otk 20,4 2V i — = — 0.0+ ok + 83+ 20,V ofo— i)y (5.6),
Loy(f, —iU8)y= (g4 + 6//6. )0+ (94 + 643,), (5.6),
(h+W'5))o=H (9, +6:8,)s— H,p(k; — 8,5, | (5.6),

ak=y{f"” —iU""§—a*(f —iU'0)} —iaU(f' —iU'8) — V(' —iU"8) +iaU'f,
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where we used the same reference lengths as equation (4.3) so that all quantities
appeared in above equations should be defined by equations (4.4), and

__& JuX U.
v, YU’ = ple Vi1 X

8=

The gravitational field is assumed to act downwards in the flow configuration.

We have now two fourth-order ordinary differential equations for f, and f,, two
second-order for g, and g,, and one second-order for 4, snbject to seven boundary
conditions at infinity and eight at the interface. The boundary conditions at in-
finity restrict the number of independent solutions of the fourth-order differential
equation to two and of the second-order to one. The general solutions of these
differential equations must be therefore of the form as before

fn:Anfan +Anfbn
gn:Angan+Bngbn+Cngcn (nzl, 2)’ (57)
h=A;h, + B,h, + Dh,

where 4, B, C, and D are arbitrary constants, f, and f, the solutions of equations
(5.4 9a, 95, he and hy, the solutions of equations (5.4), and (5.4), corresponding
to f, and f,, respectively, and g, and A, those of equations (5.4), and (5.4), with
f=0. The boundary conditions at the interface may be then expressed in the form
A+ by By + GrpAy + by By + €0 C + CrpCo+€npCor+dn D+ €,6,=0  (5.8)

(n:uy s, ¢, p,1,q,w, e),

or in a matrix form,

~

Ay by ay, b, 0 0 0 e,)[A4,
a, by a, b, 0 0O O e.| | B,
ay by a, b, 0 0 O el 4,
ap, by a, by 0 00 eyl | By
a, by a, b, ¢, ¢, O e | C =0 (5.8
g, bg ag by ¢ ¢y O el | C,
ay; b,y 0 0 0 O d, e,l| D
& b, 0 0 ¢, 0 d, e, i dy

. where a, b, c,d and e are given by equation (5.6) as follows;

i ={ade b= 1) Aue=—(0)s  bus=—(}),
en=—i(Ujy— Usv, /vy,

ag=pwn(f+aifa)y  ba=pw(f}i+aifs),

as,= — pu(foa+ aifar)y by, == — o, (f2 + 3f52),
e;= —i(p,Uji— p,v, Uy, [ v,),

c1:P1(fa1)0 bc1:.01(fb1)0 aczz_Pz(faz)ovz/Vl
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be,= — p:(fodovz/ v, e.=—i(p,—p,)U,,
apy = p{kar+20,(V i far —vifo)) }o bpy=pdks,+20,(V fp—vifs D))o
App= — Pz{kaz + 2“2(szaz - Vzﬁz)}o bpz = Pz{kbz + 2az(szbz - ”zﬂ;)}o
ep,=0aia,+ (0, — p)8 + o1k ey — psKe,
ko =" —a®f) —{ia(U—)f + VI'}]]a+iU'f
ke=[—i(U" —a*U)y+i{iac{U—)U' —VU"}] ]«
an=(9a)0 bu=090)0 2=(9a)s br=(gv2)0
=0y C=00e) €e.=0+05w /v,
agr=a,(fa)o— 21/ L(921) bg=a(for)o— 2,/ LLg3),
Agy = — 4,/ L(g32)0 bg=—2,/L(9}42),
Cq—= — A4,/ L(9%,), Cqpr= — A,/ L(g2,),
eq= —iayUy—(A,/LOG+ v, [v,- 4,/ LOY),
Ay ={oe(W — Df o, + Vihg—ehy},
by ={as(W — D)fy, + V 1, —ehi}, 7
dyp=V hy—ehy), ep={—la(W—-DU+V W —eW"},
Ao =(ho—H 9o +Hyka)y  boy=(hy—H,g,,+Hyk,),
Co=—HJ(ge)y de=(hy)y e.=—H,g+ (W —H,0),.
In order that the set of equation (5.8) is to have a non-trivial solution for A4, B,

C and D, the following relation, the so-called secular equation of an eighth-order
determinant, must hold

a, by, a, b, 0 0 0 €y
a, by a, b, 0 0 O €
a, by a, b, O 0 0 c
a, by, a, b, 0 0 O e
A= a, b, a, b, c, ¢, O ez: =0 (.9)

dgy by g by €y ¢ O €q
a, b, 0O 0 O 0 d, e,
ay b, 0 0 ¢, O d, e,

of which the solution for eigen values ¢, « and v has to be obtained numerically.
To obtain numerical solution of equations (5.4) in the form of equations (5.7),
we must find their solutions at infinity where f=f =0 and g=h=0. As |y|— oo,
equations (5.4) become
£/ 2 lo I » /1 2
22 {a g —c)}F:O Feyp/ —otf
Y
g"—{a2+ioi(1—c)}g:0 h"—{a2+’i(1—c)}h:0
K &
of which solutions that f=f =0 and g =A=0 at infinity are
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(fo) s =€Xp(F ay) (fo)io= eXp[ + {a2 + iT“(l — c)} my]

@0 =exp| {0 + L 1-0)} "] (5.10)

(ho)...=exp| —{a+ ’%"(1 —a}"y]-

/

Starting with these solutions at infinity, we can solve numerically equation (5.4),, , .
using the Runge-Kutta integration ;

\

P — {20t +iU —c)%}f" + [w il {wrw—o)+ U”}]sz

1} i — )Xy —
g {a+t(U C)x}g 0 5(5.11)

h"—{a2+i(U~c)£}h:0
£
to obtain f,,, fyn, 9., and h,(n=1, 2), respectively, and equations (5.4)

. 2
g"-{a2+i(u_c)£}g=i£..@/f
" " (5.12)
. [0 4 . sz ’
h”~{a2+l(U—c)_}h:t_Wf
[ &
to obtain g,,, 9s., i, and h, corresponding to f, and f,, respectively. It is noted
that the solutions of f, g and 4 obtained in this manner may often grow to very large
magnitude so that the computer is unable to proceed. To avoid such a difficulty,
the solutions at infinity f, .., ¢.. and A, . must start with initial values as small as
possible. The used step size 4y was 0.05. The effect of step size was checked by
recomputing some of results with 0.001. To obtain proper convergence, double
precision arithmetic was used throughout the calculations.

5.2 Stability curves

The eigen values obtained in this manner are shown in Figs. 5.1 to 5.4. The
results indicate that the shape of the neutral stability curves in the wave-number vs.
Reynolds-number plane is similar to the case of the boundary-layer flow on a rigid
wall (Wazzan [21]), although the latter is more stabilized than the former (Fig. 5.1).
In the figure, the result calculated by Lock (U,=100cm/s)[/9] for the case of no
phase-change at the interface is also illustrated in the present dimension of the wave-
number vs. Reynolds-number plane. It shows the similar destabilization of the flow
compared with that in the case of a rigid wall.

The behaviour of the amplification or damping of the disturbances in the neigh-
bourhood of the neutral curve is shown in Fig. 5.2. The curves of constant ¢; are
packed close together in the neighbourhood of the upper branch of the neutral line,
especially at higher liquid temperature.
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Fi16. 5.1. Neutral stability curves of wave- Fic. 5.2. Stability curves (Water-air, T;e
number against Reynolds num- =100°C, T20=80°C, W.=0).
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Fic. 5.3. Effect of phase-change (liquid F16. 5.4. Effect of gravity and surface
temperature) on stability curves tension on stability curves
(Water-air, T,.=100°C, W (Water-air, T1.=100°C, T,
=0). =80°C, W.=0).

The influence of phase-change at the interface is shown in Fig. 5.3. The lower
branch of the neutral stability is slightly affected by the change in the liquid tempera-
ture, though the upper branch is considerably influenced by the phase-change so as
to stabilize the flow at higher Reynolds numbers. It implies that, when intense
evaporation takes place at the interface, there exist disturbances which are once
amplified and then decay rapidly with the increase of the stream velocity. The
phase-change at the interface thus has less influence upon the critical Reynolds-
number at which the first neutral disturbance with a certain wave-number comes to
appear.

Gravity and surface tension have a destabilizing effect as shown in Fig. 5.4, al-
though even at their large values it is hardly distinguishable. Since the effect of
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surface tension is to vanish at smaller wave numbers, it becomes more evident at
larger wave numbers, that is, at the upper branch of the curve. These features are
qualitatively accordant with the Feldman’s result of uniform shearing flows of two
viscous and isothermal fluids.

The aspects discussed above are hardly changed with the physical quantities of
the fluid or the kind of liquid. The combination of air-benzene or air-methylalcohol
slightly stabilizes the flow in comparison with the air-water case.

6. CONCLUSION

Laminar boundary-layer flows of gas and liquid having a phase-changing interface
at their common boundary are studied theoretically to predict their aspect of flow and
thermal fields first in the steady state. Using the results of steady fields and examin-
ing their perturbed fields with small wavy disturbances, we then proceed to investigate
the aspect of the distubance fields and the hydrodynamic instability of the system.

(1) Steady field

The normal velocity or the rate of phase-change at the interface takes an important
role on the velocity and temperature profiles, thus on the coefficients of skin-friction
and heat-transfer. As the liquid temperature becomes higher so that violent evapora-
tion takes place at the interface, these profiles come to be of the more diffuse one,
being evidently S-shaped. The analytical result with an approximation of the

u-velocity of a linear profile shows that the non-dimensional coefficients of skin-
friction and heat-transfer, Fj; and @}, are

[1 +0. 723{1«10— (Z] }]

and

/ Y
[1+( 2 )1/3F10+ 0.723{1+2( Y )2 3}{F10———(F1°)2 }]@m
£y Ky 2Fy

times those for a solid flat-plate, that is, 0.332, respectively, where —F,,, F/, and

0,, are non-dimensional y and x-components of velocity and non-dimensional tem-
perature at the interfacz.

The normal velocity, the u-velocity and the temperature at the interface are
given by

-3 W —W v 1/3
_F :—0.664< 2 ) = 0[1 ( 1 ) F!
10 . 1—w, + . 10

1/3 F/ )z
0.723{1 2( ”*) }{F _ Fy }]
+ + c Y 27

7 \2
F :/1‘2’3[1 0.723{1:1 _ (FY }]
10 + 0 2F;6
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6 :{__ F 4+ Az ( Y, )1/3}[ A ( Y, )]/SF/
0 0.332 ' L \ g L\ g .
1/3 (F',) 2 v, \/3]-1
o) Y ()T
+ + K, 1 2F + L\ &

where W, and W._ are vapor-concentration at the interface and at infinity, re-
spectively.
For cases of weakly phase-changing, these factors of coefficient become

[1+0.723{0.664( 2 )‘2’3 Wo—W, _ 1.51/1-4/3}]3
€ 1—-W,

and

/ -
R A =T
Ky K, £ 1 ___.Wo

- 1.51/1-4/3}]@",

respectively, with the approximation that

—-2/3 Wm _ W0
]‘—WO

~F10:—0.664( 2 )

[

Fjy= A~

-2/3 W __W 2 ) 1/3 2 ) 1/3 R v 1/3y -1
ouz={=2() e () M () 2 () T
. e 1— W, T K» L\ g T K,

In cases of intense evaporation, the liquid tends to stem the air flow and the rate
of phase-change is dominated almost by the thermal field of the gas side.

(ii) Stationary disturbance field

Corresponding to the disturbance elevation of the wavy phase-changing interface
d,e**%, the disturbance u-velocity gradient at the interface, that is, the skin-friction
coeflicient is approximately

Ul — {1.066(1 _ o )(_CYlU;o )I/Se(x/ﬁ)i

2
10 02V Yy

-+ 0_776.(,?1@ (ﬁg;i)m_(:‘_@i(l)*_ e(ﬁx/ﬁ)i}ameiax
L Yy Uy

which is proportional to the 1/3th power of the wave number and the Reynolds
number wth the phase advance of 30° relative to the interface. The pressure acting
on the interface is roughly given by
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2/3
Po= {0.565 FL#(_&> U/ (— @) ¥e= i

Yy

4 7 \2/3
+0.776<U0+_%04>( @ 10) e(ﬁﬂ/ﬁ)i}vl()‘weia.v.

441 Y

The phase relation of the shearing stress (+30°) and the normal stress (+150°)
relative to the interface is accordant with the Benjamin’s result for the case of iso-
thermal flows, showing the ‘sheltering’ effect. The phase-change at the interface of
evaporation acts to weaken this effect both in magnitude and in phase relation,
especially at larger wave numbers.

The disturbance rate of phase-change at the interface is approximately estimated as

7 \1/3
D= 0.728%(_&%) (— @)*5, e (x==5%/0

Ky

which is proportional to (a,/x,)"* with the phase lag of 150°. The temperature
gradient at the interface, that is, the heat transfer coefficient is

6o _ [0,342 _(:%Ij)*_ +0,728(£1_‘i>”3

4
10 - K,

2 £, Y (—=0W* e ‘ A 20/ :
% {;( ! 1) W, (x/z)b_l_U*(l_ 20 )e(-:r/l!)z}]a piaT
A\ ooty — 6 ’ O N

which, for intense evaporation, is proportional to («,/ k,)"/* with the phase lag of 90°.

Because of the high heat conductivity of the liquid, the heat flux required for the
phase-change at the interface is supplied mainly by heat conduction through the
liquid layer, so that the wavy disturbance has less influence on the heat-transfer
than on the skin-friction. The ratio of the former to the latter is about

A,/ 20k, | 1) *=0.1.

The disturbance u-velocity and temperature at the interface are approximately
given by

9
Vi .
um’—‘—'Uio<1— o ; )5106“"'“")
[ 2

-1/3
010:’ 21 (_49_1'{_1> (_@;o)awei(«.v—!-ﬂxr/ﬂ)
02k2

respectively, which imply that the overall disturbance u-velocity and temperature
are roughly

it,,~0, 010~ Ofe""".
(iii) Instability curves
The hydrodynamic instabiity of Tollmien-Schlichting type, the neutral stability

curve in the wave-number vs. the Reynolds number plane is similar to the case of
the boundary-layer flow on a rigid wall, although the former is more destabilized.
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The phase-change at the interface has a considerable effect on the upper branch of
the neutral stability that the flow comes to be again stabilized at higher Reynolds
numbers. The lower branch, thus the critical Reynolds number is not appreciably
affected by the phase-change. Surface tension and gravity have a slightly destabiliz-
ing effect of the flow.
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