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An Envelope of a Correlation Function and its Application
to a Delay Time Measurement

By

Nobuharu AOSHIMA

Summary: A new method of correlation measurement using FFT algorism is proposed.
An envelope of a correlation function (or an inverse Fourier transform of a transfer func-
! tion) is shown to be calculated easily by this method. Correlation envelopes are useful in
o measuring wave propagation, especially in dispersive wave cases. Experiments of sound
propagation and flexural wave propagation are described.

1. INTRODUCTION

From an input and an output signal of a linear system, we can compute a trans-
fer function G(w). G(w) is a complex-valued function of @ and if the system
consists of pure delay, it is equal to e~ and represents circle in the complex
(Gaussian) plane. Its real and imaginary part are both sinusoidal and its angle
decreases linearly with w. From the derivative d{ / G(w)}/dw, we can obtain the
delay time z. If there are more than two delays, it is not simple as above. G(w)
describes complex locus in the Gaussian plane and the angle does not change with
constant angular velocity. To separate many delays, it is necessary to expand
G(w) in a form 3 ; ke %, Correlation methods are useful to obtain the para-
meters k; and z; in this expression, and it is the object of this paper to show that
o) if we handle things in frequency domain and go back to r-domain, useful tech-
niques can be applied and the correlation measurements become more useful.

2. THEORY

A linear system as Fig. 1 is considered. X(w) and Y(w) are the Fourier trans-
form of x(t) and y(t) respectively. If external noise does not enter, G(w) is ob-
tained as G(w)=Y(0w)/X(w)=X*(w) -Y(w)/X*(w)-X(w), where * means complex
conjugate. If noise comes as Fig. 1(b), then G'(w)=Y(w)/X(v)=G(w)+ N(w)/
X(w). External noise n(t) is assumed to be zero mean random signal and indepen-
dent with x(t). Then G(w) is obtained by taking average of G’(w). This is the
same thing as to compute G(w) from the cross-spectrum E[X*.Y] and the power
spectrum E[X*.X], assuming the averaging and the dividing can be interchanged.
E[ 1 means to take an ensemble average.

[195]
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Fi1G. 1. A linear system considered.

Now, from the transfer function G(w) thus obtained, an inpulse response g(t) is
computed as an inverse Fourier transform of G(w). If the input signal is a white
noise, g(t) is equal to the cross-correlation of the input and the output signal. On
the other hand, the inverse Fourier transform of the cross-spectrum E[X*-Y] is the
cross-correlation function of the actual input and output signal. By using G(w) in-
stead of E[X*.Y], the effect of the input spectral form is eliminated.

Further, if G,(w) defined as follows is used,

G(w) 0SS,

1
0 o<w, 0,<o (1)

GA((D)Z{
its inverse Fourier transform g,(z) is equal to the cross-correlation when an idea
band limited noise in v, <w=<w, is used.

In practice of correlation measurements, oscillating correlation curves are fre-
quently obtained, and it is important to note that the delay time which corresponds
to the wave propagation is the maximum of the correlation envelope, not the
maximum of the correlation curve itself [/]. Hilbert transform of the correlation
function is necessary to compute correlation envelope rigorously [2],[ 3]. Hilbert
transform is defined as

$) = lj ) gx (2)

—o0 X — y

The integral is the Cauchy principal value and its computation is not easy. But if
we use next relation,

J“i’m _d‘,(r)e—imdf_jw dr A_J‘ g"(g) dée to = jlcnga(g);i\wfdg

j“’ 9A&)ie~ dE=iG () (@>0)
=40 (w=0)r=L,(w) (3)
—f gADiede= —iGw)  (@<0)

the Hilbert transform of g,(z) is obtained as the inverse Fourier transform of L ,(w).
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Fi6. 2. A block diagram of the signal processing. F.T. means the Fourier
transform and L.F.T. means the inverse Fourier transform.

L (w) is obtained by just changing the real and the imaginary part of G,(w) and the
sign. Then the envelope of g,(r) is obtained as e(z)={gj(z) + §3(x)}/*. By this
method, an envelope of any wave form can be obtained from its Fourier transform.
Now it is shown that by the processing of Fig. 2, the envelope of the correlation
of virtual ideal noise can be computed.

Fast Fourier Transform (FFT) by digital computer would be necessary for this
processing. It is useful to note next properties. One thing is that though the re-
sults do not depend on the spectral form of the input signal, G(w) cannot be com-
puted in the range where the power spectrum of the input signal does not exist.

Another thing is that G,(w) can be shifted on the w-axis without any change of
the correlation envelope e(r). To show this, a correlation function ¢(z) and its
Fourier transform @(w) are considered. Writing the Hilbert transform of ¢(z) as
é(r), next relation is derived.

¢(r)+iq§(r)=lf D(w)e'de (4)
T J-w

Now shifted power spectrum @ (w) (as shown in Fig. 3) is considered. Writing its
inverse Fourier transform as ¢,(z), next relations can be proved.

P(w)

: . - Fic. 3. Shift of a spectrum along the w-axis. @(w) is
\O\ shifted to @yw).
D, (w)
s 1 ) . -
¢s(r)+z¢s(r)=;ﬁ D(w)et dw=e~*{¢(z) + if(r)} (5)
|$s(2) + i (2) | =|p(z) + id(7) | (6)

This means the envelope of ¢,(z) is equal to the envelope of ¢(z). These propeties
can be used in computer programming.
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3. EXPERIMENTS

(1) Sound Propagation in an Anechoic Room

Two microphones and a reflecting board are placed in an anechoic room as Fig.
4. Sound of clapping hands near the microphone 1 is used as a test signal. Signals
from microphone 1 and 2 are supplied to 2 channel A-D converter and stored in core
memory of a mini-computer. Then Fourier transform is made by FFT algorism
and G’(w) is calculated and stored. This process is repeated 25 times and the
averaged value G(w) is obtained. The power spectra E[X*-X], E[Y*-Y] and the
cross-spectrum E[X*.Y] are also calculated. In Fig. 5, E[X*-X], E[Y*.-Y] and
|G(w)| are illustrated. The real and the imaginary parts of the cross-spectrum
E[X*.Y] are shown in Fig. 6, whose inverse Fourier transform is shown in Fig.
7(a). The upper curve is shown in full range and the lower is the magnified curve
in r-axis.

Fig. 7(a) is the same as might be obtained by ordinary correlation of x(t) and
y(t), and from this figure, the delay times corresponding to the direct and the re-
flected sound can be determined. But in this figure, second correlation peak is not
easy to determine, for the positive and the negative peak height are nearly equal.
Fig. 7(b) is the envelope of (a), from which the correlation peaks can be deter-
mined easily.

In Fig. 8, the real and the imaginary part of G(w) are shown and its inverse
Fourier transform is shown in Fig. 9(a) and (b), the “correlation” curve and its en-
velope respectively. Comparing Fig. 7 and 9, the correlation peaks become slightly
sharper by using G(w) instead of E[X*-Y], but the improvement is not much. The

delay times obtained are good agreement with the calculated values from geometri-
cal configulation. :

M2

NS

200 Re“gdi“g FiG. 4. The experimental setup of the microphone M1 and M2 and

3 b . .

< ot the reflecting board. Sound of clapping hands near MI is

M1 used as a test signal. The output signal of M1 and M2
S serve as x(f) and y(?).
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_,/m_/v/\/\//\ o E[Y*-Y] Fic. 5. The power spectra of clapping

sounds E[X*-X], E{Y*.Y] and the
f magnitude of the transfer function
0

A |G(w)] measured by FFT. The
[G(w)] sampling period of the A-D con-
A A verter is 0.2 ms.
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F1G. 6. The real and the imaginary part Fi1G. 7. (a) The inverse Fourier transform
of the cross-spectrum E[X*.Y]. of the cross-spctrum. The lower

figure is the magnified curve of one
tenth of the most left part of the
upper figure. The full scale of the
upper figure is 205 ms, while that
of the lower is 20.5 ms.

(b) The envelope of (a).

(2) Flexural Wave Propagation in a Steel Strip
A 5m long steel strip whose cross section is 0.75 < 38.2™™ is suspended by cot-
ton string horizontaly. Light weight (about 1 g) accelerometers are attached at 2 m
and 3 m from the end and used to measure flexural wave propagation along the
strip. A small metal bar (about the size of pencil) is used to strike the strip at the
end to excite flexural wave. In this example, both signals from accelerometers are
the mixture of direct and reflected waves, because free ends reflect flexural wave
completely and an attenuation along the strip is small. So it is not suitable to
regard one signal as an input and the other as an output of a system. In this situa-
tion, E[X*-Y] should be analysed instead of G(w). This is made by omitting the
dividing procedure by E[X*-X] in the process of Fig. 2.
The power spectra E[X*-X] and E[Y*-Y] are shown in Fig. 10. There are
much power components above 2 kHz, but they are found little to contribute cor-
@ relation peaks, so low pass filtered signals are used to analyse. Curves in Fig. 10

£ g
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F1G. 8. The real and the imaginary part of FiG. 9. (a) The inverse Fourier transform
the transfer function G(w). of the transfer function. The scales
. are the same as Fig. 7.

(b) The envelope of (a).

are oscillating very much compared with sound signals in example (1), which is
caused probably by the presence of reflected waves (time delayed signals).

The envelope of the inverse Fourier transform of E[X*-Y] is shown in Fig. 11
in full range and magnified form. It is impossible to find correlation peak from
this figure, which is not surprising considering dispersive nature of the flexural
wave. So it is essential to use small part of E[X*.Y]. The inverse Fourier trans-
form of E,[X*.Y] (this is the analogy of G,(w)) is shown in Fig. 12(a) and its
envelope in (b). Frequency range used is from 1750 to 2000 Hz. Two correlation
peaks are observed near r=o0 and two near r=max. This is caused by the FFT
algorism as explained below.

In the computation of FFT, input signals are regarded as periodic signals with
the period T=N-4t, where 4t is the sampling period and N is the sampling num-
ber. By this periodic nature, correlations obtained by FFT are the mixture of ¢(z)
and ¢(T-r). But in most cases, the correlation becomes zero as [r| becomes large,
so in 0<r<t,, where 7, is much smaller than 7, obtained correlation is almost
equal to the true correlation and in T—7,<t=T, @pp(T—1)=¢rpue(—17). If
perfect separation is desired, last half of the input signals should be made constant-
ly zero [4].
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FiG. 10. The power spectra of the flexural Fic. 11. The envelope of the inverse Fou-
vibration of the steel strip excited rier transform of E[X*.Y] of the
R by tapping. flexural wave propagation. The

full scale of the upper curve is
205 ms and that of the lower is
41 ms.
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J\J\N\ M Fic. 12. (a) The inverse Fourier transform of
/\J\_/Aww/\\,\/m E X*.Y] which 1is identical with

205ms E[X*.Y] in 1750-2000 Hz while in other
frequency range constantly zero. The
right side peaks of the upper figure are

'\/\ due to the cyclic nature of FFT and
W“"'\/’\r\m correspond to the peaks at = <O0.

41ms (b) The envelope of (a).
(b)

Now four peaks of Fig. 12 can be explained as follows. The first one is caused
by the wave going right direction passing first p.u. 1 and then p.u. 2 as shown in
Fig. 13. The second peak is caused by the wave passing p.u. 1 and go to the right
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end and reflected back to p.u. 2 with path length of 5m. The peak near the right
end (z=T) is caused by the wave going left direction. The second peak from the
right is caused by the wave going left direction, passing p.u. 2 first, then reflected
at the left end and go to p.u. 1 again.

E,[X*-Y] used to compute Fig. 12 is band limited to 1750-2000 Hz. E,[X*-Y]
is then shifted to 0-250 Hz and inverse Fourier transformed. The results are shown
in Fig. 14. The correlation curve Fig. 14(a) changes but its envelope (b) is the
same as the envelope of the unshifted correlation Fig. 12(b). This means we can
shift E,[X*. Y] arbitrary on the w-axis without any change of the correlation envel-
ope, as proved in article 2.

In Fig. 15, correlation envelopes of 8 frequency bands are illustrated. The
frequency dependence of the flexural wave velocity is clearly observed.

excite <«
@

steel strip

Fi1c. 13. The flexural wave propagation along a steel
2m 1m 2m strip.
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w Fi1G. 14. The inverse Fourier transform of the
) AN AL AW shifted E4[X*.Y] and its envelope. The
205ms power spectrum of E [X*.Y] is shifted
on the w-axis from 1750-2000 Hz to 0-
250 Hz.

(a) differs much from Fig. 12(a) but its

\/\ «_‘\/ envelope
N1 e

A1ms (b) is the same as Fig. 12(b).
(b)
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4. CONCLUSION

An envelope of an arbitrary' wave form is shown to be calculated easily by
using Fourier transform. This is applied to derive an envelope of a correlation
function from a cross-spectrum. And it is discussed that instead of a cross-
spectrum, a transfer function can be used advantageously.

The whole signal processing procedure is shown in Fig. 2. Advantages of this
method are:

(1) In a measurement of wave propagation, it is common to get oscillating
correlation curve. The delay time corresponding to the wave propagation should
be obtained from the peak of the correlation envelope, not from the correlation
itself. By this new method the correlation envelope is obtained directly.

(2) The influence of the spectral shape of the input signal is eliminated by
the use of transfer function. This makes it possible to use sound of clapping hands
or striking by hammer as a test signal.

(3) The frequency band to be analysed is easily selected, for it is only a
change of computer program. This is especially advantageous to measure dis-
persive wave as a function of frequency.

The experiments show that this method is useful in measuring noise and vibra-
tion propagation.
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Fi. 15. The envelopes of the inverse Fourier transform of E,[X*.Y] varying frequency

range with 250 Hz step from 0 to 2000 Hz.
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