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On ‘Master’ Boltzmann Equation
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Shunichi TSUGE and Kenshi SAGARA*

Summary: It is shown that Boltzmann’s equation written in terms of microscopic density
(viz., unaveraged Boltzmann function) has wider range of validity as well as finer resolva-
bility for fluctuations than the conventional Boltzmann equation governing Boltzmann’s
function. In fact the new Boltzmann equation for ideal gases has implication as micro-
scopically exact continuity equation like Klimontovich’s equation for plasmas, and can be
derived without invoking any statistical concepts, e.g., distribution functions, or molecular
chaos. The Boltzmann equation in older formalism is obtained by averaging this equation
only under a restricted condition of the molecular chaos. The new Boltzmann equation is
seen to contain informations comparable with Liouville’s equation, and serves as a master
kinetic equation. A new hierarchy system is formulated in a certain parallelism to the
BBGKY hierarchy. They are shown to yield an identical one-particle equation. Difference,
however, between the two hierarchy systems makes first appearance in the two-particle
equation. The difference is two-fold. First, the present formalism includes thermal fluctua-
tions which are missing in the BBGKY formalism. Second, the former allows to formulate
multi-time correlations as well, whereas the latter is restricted to simultaneous correlation.
These two features are favorably utilized in deriving Landau-Lifshitz fluctuation law in a
most straightforward manner. Also equations describing nonequilibrium interaction be-
tween thermal and fluid-dynamical fluctuations are derived.

I. INTRODUCTION

A. BBGKY and Klimontovich Formalisms

It is widely known that one of the most systematic methods in describing statistical
behavior of gases in non-equilibrium state is provided by so-called BBGKY hierarchy
method [1]. This mehod has its basis on Liouville’s equation, which determines
evolution of Liouville’s density function, a complete specification of the state of a
N-particle Hamiltonian system of a gas in terms of 6N variables of /'-space.

Another density function which can be compared with the Liouville density func-
tion in the level of description has been proposed by Klimontovich in connection
with plasma kinetic theory [2]. The function which is called microscopic density
has explicit expression of the form

fz, )= % lz—z0 )], (1)
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236 S. Tsugé and K. Sagara

where z=(x, v) denotes a phase-space point, z(¢) gives locus of s-th particle in the
phase space, 4§ is Dirac’s delta function, and the summation is over all particles N
under consideration. The microscopic density has a favorable feature in comparison
with the Liouville density function: The microscopic density is defined in the (six-
dimensional) phase space, in contrast to 6N-space of the Liouville density, and has
a definite physical meaning such that the following expression

1
Adxdv

I fdxdo
dx4v

gives the ‘exact’ number density at an instant ¢ in the phase space z. This is an
immediate consequence of the fact that each integrated delta-function (1) is unity/
zero depending on whether the pertaining particle is located inside/outside the
volume dxAdvp, respectively.

Governing equation of the microscopic density f has also been derived by
Klimontovich [2]; this is simply a microscopic equation of continuity in the phase
space

_—— =0,

ot ox m Jv

where F is the force exerted on a particle at (x, v) of the phase-space and m is the
mass of the particle. We note here that no statistical processing has been involved
in deriving Eq. (2): This is an exact kinematical relation to be held at any instant,
expressing no generation nor disappearance of particles in the phase space.

B. Objective and Justification

Since the microscopic density f contains physical information equivalent to the
Liouville density function, and Eq. (2) to the Liouville equation, respectively, it
should be possible to construct a hierarchy formalism on the basis of Eq. (2) and f
in a certain parallelism to the BBGKY formalism. Objective of the present paper
is to carry out this procedure for classical ideal gases with binary molecular en-
counters, in a form which allows direct comparison with the BBGKY counterpart.

Efforts along this line, however, would not be very worthwhile if it simply re-
sulted in verifying correctness of the BBGKY formalism from the different side of
approach. Regarding this point we can show that the formalism proposed here
unveils further details the BBGKY formalism cannot cover, reflecting a fact that the
present method has finer resolvability for fluctuations than the BBGKY formalism.
The subtle point out of which this difference emerges lies in a simple mathematical
identity ;

33 olz— 290 3} 8li—2(D]= 3} olz— 2O (DalE —20(0)]

§+8 . ( 3 )
+0(z—2) 2; dlz—z9(@)].
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‘Master’ Boltzmann Equation 237

Let an average, defined properly, be taken over the identity, then along with defi-
nition (1) the following equation results;

1@1@) =fulz, D+ d(z—Df(2), (4)
with f and f;; defined by
=], (5)
~
fu(z, D= olz—z9 @016l -z (D] (6)
S#£S
If the average is identified with what is employed in the BBGKY formalism, viz.,
with multiplying by the Liouville density function fy(z®, ---,z""’) and performing
integration with respect to variables zV, - - ., z™, the lefthand side of (6) gives the

two-particle distribution function defined there, and in the same way, the function
f of (5) coincides with the one-particle distribution, viz., the Boltzmann function.
As is easily seen (for example, see (26) of Sec. III) the second term on the right-
hand side of (4) represents a term yielding the thermal agitation. Then expression
(4) shows a clearcut difference in resolvability that the fluctuation correlation in the
present formalism (the lefthand side of (4)) includes the thermal agitation which has
been missing in the BBGKY formalism. This fact implies that, in the new form-
alism, heuristic reinterpretations of the existing kinetic theory, such as invoking
Boltzmann-Langevin equation [3] to retrieve thermal agitation are no longer neces-
sary and are replaced with a direct manipulation. (See Sec. II1.)

C. A Key Version

In dealing with plasma, viz, phenomena associated with Coulomb interaction
(soft collision) the Klimontovich equation (2) is successfully utilized as the master
kinetic equation out of which the equation for each level of hierarchy is derived in
a tractable form. This equation, however, is not convenient in dealing with an
ideal gas in which molecular encounter obeys a hard collision. In fact, the force
F exerted on the molecule would be of the form of a delta-like function having
small width of collision time #*, and our interest lies in the limiting case of vanish-
ing r*. Therefore our task is to reformulate the microscopic continuity equation in
a form free from the delta-function like force without deteriorating the level of de-
scription, viz., without recourse to any statistical concepts.

D. Brief Account of Approach

Derivation of the master kinetic equation along the line meeting the above re-
quirement is attempted in Sec. II. It turns out that the prospective master equation
has the form of the Boltzmann equation. It cannot be overemphasized that this
Boltzmann equation differs from the conventional Boltzmann equation in that it
governs the microscopic densityf (not the Boltzmann function f) and that it involves
no statistical processing, such as molecular chaos. The conventional Boltzmann
equation is obtained as its moment equation of the lowest order by averaging the

This document is provided by JAXA.



238 S. Tsugé and K. Sagara

P-—)———7

?
3
&

. I~—<——ﬁ
(a)

B

Fic. 1. Schematic representation of six-dimensional (x,v) space and of
molecular encounters for a hard (a) and a soft (b) collisions

equation and by postulating (binary) molecular chaos. In Sec. III, equations of the
higher stages of hierarchy are derived and are compared with their BBGKY coun-
terparts. They are shown to be identical in the homogeneous part of equations but
differ in that the present hierarchy equations comprise inhomogeneous terms which
attribute to the presence of thermal agitations. In order to check if the thermo-
dynamic fluctuation is included correctly in the present formalism an attempt is
made to derive Landau-Lifshitz’s formula for spontaneous stress and heat flow
(Sec. IV). In Sec. V moment equations describing evolution, in the physical space,
of turbulent fluctuation in the course of nonequilibrium interaction with the thermal
agitation are derived.

II. ‘MASTER’ BOLTZMANN EQUATION

A. Limiting Form of the Klimontovich Continuity Equation

A guideline in reformulating the Klimontovich continuity equation to apply to a
gas with hard molecules is the following: As we have seen previously the vanish-
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‘Master’ Boltzmann Equation 239

ing collision time (#*=0) characterizing the hard collision, on one hand, makes it
difficult to employ Eq. (2). On the other hand, however, it enables to single out
effects due to collision as instantaneous, far-reaching effects in the velocity space,
thereby to formulate molecular interaction in an integral form instead of a diver-
gence form: Fig. 1 illustrates loci of particles in a binary encounter for hard (a)
and soft (b) collisions, respectively. A salient feature of the collision of type (a) is
that a particle (say P) which lies on a three-dimensional hyperplane (x=const., v;
arbitrary) at time ¢ can reach a marked volume 4z located at (x, v) instantly upon
collision provided that velocity &’ of the collision partner P satisfies the conditions,

v+v=v+v,
0/2+v/2:z’>2+,02’ (7)

where v’ is the velocity of the particle P before collision and where the velocity v
of the particle P after collision has been prescribed. Then, change in the number
of particles in the volume 4z during time interval 4¢, viz.,

I fdz-a, (8)
ot Ja
depends on two fluxes, viz, convective flux Q across surfaces x=const. and x4 4x
=const. and collisional flux P reaching instantly from any part of the hyperplane in
a manner analogous to radiative flux in the physical space.

Peculiarity of the present problem, viz., the vanishing collision time, lies in the
fact that convective flux is allowed only across the surfaces x=const, x+ 4x=const,
of the six dimensional volume 4z whereas the ‘radiative’ flux is permeable only
across the surfaces p=const, v+ Jv=const.; the two fluxes are apparently dis-
cernible because they are perpendicular to each other. No such distinction is pos-
sible in the case of a soft collision, e.g., Coulomb interaction (Fig. 1b). The first
contribution amounts to

— 0 | vfdzas, (9)

ax 4z

and the second one is expressed by a difference of integrals spanning over the whole
hyperplane, counting number of particles shot into and out of the marked volume;

[ ferterazay | f@f@dzz. (10)

In the above expression £’ and {2, respectively, are integral regions of the collision
partners (z/,Z’) and (z,Z) which are located between the hyperplanes x=const.,
and x4 Ax=const. and subject to additional conditions (7) and the condition that
the collision partners are to collide within time interval 4¢. In expression (10), we
transform variables as

dz'dz’ =dx’dx’dv’ dv’
=dx,dr'dvdp, (11)
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which is easily confirmed in view of the relations

ax’, &) d(xg, r)=1,
@', v) o, v)=1,

where xg(=23(x'+ 1)) and #(=x'—3%") denote vectors specifying center of gravity
and the relative location of two particles, respectively. In the similar way we have

dzdZ=dxydrdvdyp,

where the quantities x, and r are defined similarly with respect to the unprimed col-
lision partners (z,2). For sufficiently small 4¢, we can put x;=x,=x. Integral
region of r* which forms a subspace of £’ constitutes a cylindrical shell with height
|’ —v’| 4t and with radius b (the impact parameter), standing on a target particle
z’ at the center;

dr'=2z |0/ —v’| Atbdb=dr,
where invariance of the magnitude of relative velocities
V=|v—v|=|v—v, (12)

an immediate consequence of Eqs. (7), has been utilized. Then the integral (10)
is rewritten in the form

At f dxd f FEHH@) —F@)1()1dKdb, (13)

with
dK=2zVbdb.

It should be stressed here that integral expression (10) counts exact number of
pertient collisions; in other words, no statistical processing, viz., no concept of
expectation values, nor hypothesis of the molecular chaos, is involved there. In
fact, the above manipulation is based only on two factors; the exact number
density f and deterministic Newton mechanics.

Equation of continuity, which expresses no generation nor disappearance of
particles in the phase space, requires that the total change in the number of molec-
ules in the volume 4z during time interval 4¢ attributes entirely to the two origins;
gain/loss due to convection (9) and collision (13). We have, then,

0 9 s oni N ds .
aTJ Jde=—— J vdeLZ dzj[f(z (@) —{(Df()1dKdp. (14)

Thus we have obtained an ideal gas version of the plasma kinetic equation (2). If,
in the above equation, we introduce a formal procedure of dividing Eq. (14) by 4z
and taking a limit of 4z—0, then we have
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e 3 \: TR NE A
Bf= (a—t +o- 5;)f—uzuz)[f(z)f(z)] ~0, (15)
with
JEIDg( )] zj (92, #) —g(z, H))dKdb. (16)

This is simply Boltzmann’s equation, written in terms of the microscopic density in
place of the Boltzmann function.

In what follows this equation will play the role of a master equation from which
a series of hierarchy equations is generated, just in a similar manner that the BBGKY
hierarchy is derived from the Liouville equation. For this reason Eq. (15) is
referred to as the Master Boltzmann equation (MBE) in the following.

The above formulation is exact only for gases with elastic spherical molecules.
Classification into two orthogonal fluxes, the one written in a divergence form and
the other in an integral form of (15), is obscured if the above reasoning is to be
extended to include power force law

|Fl~r=s

of the molecular interaction. In fact, then, both loci P and Q of Fig. 1a have
finite curvatures in entering the volume 4z and are not perpendicular to each other.
If, however, we can choose the size 4x; of the volume such that it is larger than the
radius of curvature in almost all collisions, but is smaller than a characteristic
length of long-range effects, the above method is seen still valid. Thus the in-
corporation of the softer collision into the framework of the present formalism is
made possible at the risk of deteriorating temporal resolution of the MBE: It is
not capable of resolving events with time constant smaller than r*=r*/(RT)Y,
where r* denotes the characteristic radius of curvature of a particle upon collision.
This does not affect, however, on resolution capability of the present formalism of
the thermal agitation.

The extended validity of the MBE for softer molecular encounter is only con-
ditional : Limitation arises from the fact that the collision integral does not con-
verge [4] for

s<3. 17)

This implies that, under this condition, we cannot find the proper volume size 4x;
meeting the requirement stated above, thereby making the two fluxes discriminate.
Thus the condition s<3 provides a criterion as to which of the master kinetic equa-
tion (2) or (15) is to be employed in the problem.

B. Two Methods of Solving MBE

Because of “rugged” or discrete structure of the function f, mathematical tools in
solving MBE (15) are limited to either of the following schemes: The one is a
direct method in which distribution of the particles is simulated by Monte Carlo
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method, and evolution at subsequent time is determined according to Eq. (15) for a
given initial condition specified properly. A most successful application of this
method is seen in the study of rarefied gasdynamics. For example, in the shock
structure problem the direct Monte Carlo method yields solution which agrees with
experiments better than those by analytical methods. This is because well-designed
Monte Carlo method utilizes no averaging procedure, nor concept of distribution
function [5], thereby simulates direct solution of the MBE (15), whereas the
analytical methods [6, 7] solve the conventional Boltzmann equation (Eq. (21)
below) where non-equilibrium correction (¢-term) is lacking.

The second method of solving MBE is to replace the function f with a continuous
function by means of a certain smoothing procedure, e.g., averaging. Standard
analytical methods are made available only via this procedure, and the following
part of the paper is devoted to the analytical approach by means of average taken
at various statistical levels of description.

C. One-particle Equation. Comparison with Traditional Boltzmann Equation

In order to compare Eq. (15) with the Boltzmann equation in older formalism,
we take average of Eq. (15), and utilize expression (4) and (5), then we have

9 P o ,
(‘a? + v-—a;)f(z)—l(zlz)[fn(z, 2)1. (18)

In deriving the equation use is made of the fact that the term §(z—Z2)f, representing
thermodynamic fluctuation, and supposed to appear in the collision integral is seen
to have no contribution: Actually we have, for an arbitrary moment function

B(v),
f BT (¢ DI3(z— Hfldw
=5(x—3) j () — B(0)16[v— B1f(v)dKdpdi=0,

because the factor (8’ — 8)é(v—0) vanishes in view of the relationship [4]

vV=v+tala-V),
v—ala-V),

} (19)

i}’

where a is a constant vector defined by the first of Egs. (19) and ¥V has been defind
by (12). Then we readily see that Eq. (18) is identical with the one-particle eqa-
tion in the BBGKY formalism [7], [4], [8], [9] provided that the average taken in
(18) to have f and f;; is the same as described in Sec. IB.

Description in terms of the smoothed distribution functions, viz., of the Boltzmann
function f, the two-point function fy, etc., is unavoidably connected with a difficulty
of indeterminacy [10]: Eq. (18) for the one-particle equation is linked with effects
due to two-particle interaction, also the same is true for two-particle equation
where three-particle interaction intervenes (See Table 1, below). To solve the
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equation the chain should be terminated at a certain stage by introducing a closure
condition. Quality of the theory depends on two factors, viz., the quality of
the closure condition adopted and the stage in the hierarchy at which the trun-
cation is effected. A most primitive form of the closure condition was proposed
by Boltzmann in 1872, and has been known as the hypothesis of (binary)
molecular chaos;

fu(z, 2) = f(2)f(2)=0. (20)

With this closure condition, Eq. (18) is written as

9 VI )
(5 + v~-5;)1‘—J(z|z)[f(z)f(z)], @

which is nothing but the Boltzmann equation in its conventional form. It would be
self-explanatory, from the above procedure leading to Eq. (21), that the equation
is valid only under far more restrictive conditions than Eq. (15).

D. Breakdown of the Molecular Chaos

Binary molecular chaos hypothesis (20) has reigned the kinetic theory over a
century, and has served as a key hypothesis on which the classical Boltzmann
equation (21) rests. In ref. [9], however, region of validity of the molecular chaos
has been examined critically, leading to the following findings: Let us define by

¢z, D =fulz, 2) — (1 =N"DH(Df(2), (22) [11]

a measure for deviation from the molecular chaos. It is shown that leading terms
of ¢ decays according to a diffusion equation for a gas in equilibrium. In none-
equilibrium (shear flow) situation, the function ¢ is shown to die off eventually so
far as the basic flow is stable with respect to criterion by hydrodynamical stability
theory. For these cases, therefore, there will be not much danger of putting ¢=0
from the beginning. However, if the basic flow is predicted to be unstable accord-
ing to the stability criterion, ¢ is shown to grow drastically. Thus we see that the
molecular chaos is misleading in unstable flow situations. Crucial point is that the
deviation from the molecular chaos now at issue is not the one aroused by the dense-
gas effect which is of O(n~!) (n; the mean number density), or by a spontaneous
correlation which survives only for a few collisions, but is a result of macroscopic
correlation of O(1), which persists over a hydrodynamic length, viz., over thousands
mean free paths. The direct connection of nonvanishing ¢ with the unstable flow
circumstances has made the macroscopic (turbulent) correlation incorporated into
the framework of the kinetic theory. On the other hand, it has turned out that the
traditional Boltzmann equation (21) is invalidated for these cases and is to be re-
placed with the one-particle equation (18). Closure at one-particle stage turns out
incorrect and under these circumstances we should address to the multi-particle
equations.
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III. A NEw HIERARCHY SYSTEM

A. Two-point Two-time Correlation

The Liouville equation, viz., the master equation of BBGKY formalism, describes
evolution of the Liouville density function f, in the space of (z,, - - -, Zy, ) after the
standard way of description of multiparticle Hamiltonian mechanics. In statistical
mechanics it is often more convenient to discuss correlation in a multi-particle,
multi-time space, viz., in the space of [{(a,), - - -, {(ay)], where {(a) denotes a seven-
dimensional space [z(a), #(a)]. Formalism along this line is made possible by
adopting MBE in the following manner: Let us denote by 7(a) microscopic density
in { (a)-space and define the Boltzmann operator B(a) by

2 0 0 a A
— . — ) 23
B(a)f(a)_[ 4@ +v(a) %@ ]f(a) J@|a)[f(@)f (@] (23)
Let us form
Af(b)B(@)f(a)=0, (24)

where
Af(b) =f(b) —f(b)

is instantaneous fluctuation in the number density in {(b) space, viz., at a phase
space point z(b) and at time #(b). Then, after taking average, we have an equation
of the form

0 P -
|+ @2 [ @i —f@so

=14 a)lf(@f(@f () —(@f @f(D)].

(25)

In view of definition (1) for the microscopic density the quantity f(a)f(b) is decom-
posed as

f(@f(b)=fula; b)+g(a; b), (26)

where f;; and g are two-point, two-time distribution function and self-correlation
function defined, respectively, by

fula; bY= 3. dlz(a) —z¢*(t(a))]olz(b) — 2=V (¢(b))], (27)

SaF 8y

and

9@a; b)= i dlz(a) —z9(¢(a))]o[z(b) — 2 (¢(b))]. (28)

Note that two arguments separated by semi-colon (;) mean two points with corre-
lation taken at different times. The physical meaning of f,(a; b) would be straight-
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foward; it denotes two-point probability density of different particles at different
times. On the other hand, the self-correlation g(a; b) expresses the probability
density of finding the same particle at the point z=z(a) and at the time #=1#(a) as
was located initially, viz., at t=#(b) at the point z=2z(b). As is easily confirmed
the functions f,,(a; b) and g(a; b) reduce, in the limit #(a)—#(b), respectively, to

fulas b)=fu(a, b), (29)
g(a; b)=4¢[z(a) —z(b)If(a), (30)

where f(a, b) is the two-point, one-time distribution function defined by (6).
Extending expression (3) to triple product and taking average, we are led to the
following expression for a three-point two-time distribution function as

F(@Ff(@F(b) =fula, d; b)+dlz(a) —2(@)]fula; b)+ gula, d; b) } 31)
+ guld, a; b)+édlz(a) —z(d)]g(a; b),
with
t(a)=1(d),

where the following functions have been newly introduced :

fula,d; b)= Y, dlz(a) —z¢*(1(a)1olz(d) — 24P ((a))]
SaFSEF#Sb+Sa (32)

X 0[z(b) —z“»(¢(b))],

gula,d; b)= 3 dlz(a) —z°2((a))]
SaFSb (33)
X 6[z(a) —z» (t(a))]6[z(b) — 257 (¢(b))].

We note here that the function g¢,; has mixed character of ordinary correlation
(between different particles) and of self-correlation, the latter being characterized by
two arguments separated by semi-colon. Therefore, g;; concerns with two particles
although it is specified by three arguments. Similarly to what has led to (30),
definition (33) reduces, for t(a)—1(b), to

gula, d; b)—alz(d) —z(b)fula, a). (34)

As will turn out later, decomposition formulae (26) and (31) separate out the
thermodynamic part designated by ¢’s from the total fluctuation. The rest parts,
viz., hydrodynamic fluctuation correlations are given in terms of multi-point cor-
relations ;

dula; b)=fu(a; b)—(1—N-"Hf(a)f(b), (35)

dula; b )=fula; b; 0)—(1—=N"H(1—-2N"Hf(@)f(b)f(c)
— (1 —=2N"Yf(@ (b ; ) —(1—2N"Yf(b)gulc; a)  (36)
— (1 —=2N"Hf(c)¢ula; b).
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These relations are so designed that integrating condition (36) with respect to z(c)
yields condition (35). This requirement is necessary in order for error caused by
truncation (e.g., ¢;;=0) employed at a certain stage not to affect on exactness of
the equations prior to that stage [/2]. The factors 1—N~!, 1—2N~"! etc. are in-
serted for the following conditions

j dmi(as b3 Odz(c)=0,
(37)

[ gutas Braziv) =0,

to be fulfied. (Note that f;; and f obey the conditions, respectively, J fula; b)dz(b)

=(N—Df(a), I f(a)dz(a)=N.) Condition (35) reduces, at t(a) =1t(b), to (22) as it

should.
In order to close the system at two-particle level let us introduce an assumption
of “ternary” molecular chaos,

¢mia; b; 0)=0, (38)

which makes it possible to express the three particle distribution function via effects
due to binary correlation. (See Eq. (36).) Then Eq. (25), when conditions (26)
and (35) on its lefthand side, also those (31), (36), (38) on its righthand side, are
utilized, yields the following equation;

a a M . — A
[ ot(a) t U(“)'m][sb(a, b)+g(a; b)l=J(d|a)

X [f(@¢(d; b)+{(@¢(a; b)+9gnla, d; b) +gn(d, a; D)]+OWNY.  (39)

Terms of O(N-!) are unimportant in what follows; only the limiting case N— oo
with N/V (V; total volume under consideration) retained finite need be considered.

B. Self-correlation in Equilibrium Gases

For a gas in equilibrium leading terms of the hydrodynamic correlation obey a
diffusion equation, so are shown to die off eventually [9]. Therefore, we may put
from the beginning,

¢=0 40)
in Eq. (39). This condition, then, allows us to put
gula, d; b)=f(a)g(a; b), 41

which follows directly from initial condition (34) g, should obey, along with (30)
and the general rule that two particles in an equilibrium gas are uncorrelated if they
are so initially. Thus Eq. (39) is written for an equilibrium gas, in the form
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[0/07 +v(a)-3/ox(a)lg(a; b)

(42)
=J(a|a)f(a)g(@; b)+f(@g(a; b)],

where 7 is defined by
r=ta)—tb), (43)

which we shall assume as positive in what follows. Eq. (42) is in agreement with
the one derived on different bases by Fox and Uhlenbeck [/3], Hinton [/4],
Chappell [15]. It, however, differs from the one due to Montgomery [/6] in that
the integrand function of the collision integral is symmetrical with respect to a and
d. This symmetry is a consequence of the ternary molecular chaos (38) we have
employed, which requires implicitly that the particle should experience many col-
lisions in the course of random flight from z(b) to z(a), viz., during elapse of time .
If, instead, we seek self-correlation of a particle for a very short time during which
few collisions are effected, we may put, in the collision term of (25),

f(@F(@7F(b) ~F@Ff(b)f(d).

In fact, for such smalil r correlation between a and b of an identical particle will not
be so destroyed as to be comparable with that with a foreign particle 4. With this
decomposition rule (together with (26)) a self-correlation equation [/6] of the form
(42), with the first term on the righthand side lacking, follows. Thus we see that
Eq. (42) and that derived in ref. [16] are to be responsible for large and for small z’s,
respectively.

C. Two-Point Simultaneous Correlation

Now we turn to constructing an equation which is symmetric with respect to the
two space-time points {(a) and {(b). The symmetry with respect to z(a) and z(b)
in the distribution function is favorable in comparing the present theory with the
BBGKY theory, in which such symmetry is warranted a priori. Such an equation
can be obtained simply by adding to Eq. (39) a transposed equation in which the
role of the variables z(a) and z(b) are interchanged. If, in the equation, time
variables are transformed to

1=3%[t(a) + t(b)],}
c=1t(a)—1(b),

we have the following equation

0 0 0 . .
[ﬁ Ful@) - Es o) 5}@] [¢(a; b)+ga; b)]
=7 [d|allf(@)p(d; b)+ gula, d; b)] (44)
+ 7 [b|b1f(b)¢(a; b) + gulas; b, b)],
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with the operator 7 defined by
I léd|alh(a, d; b)=J(d|a)lh(a, d; b)+h(d, a; b)]. (45)

Special interest lies in the case of simultaneous correlation, z=0. Then the equa-
tion in which g and g, have been eliminated by means of (30) and (34) reads

0 0 0
9 ) 4 9 b
[ ot v() ox(a) o(b) ox(b) ]Sb(a’ )

— 7 [clallf(@)¢(c, b)]—T [c|bl[f(B)Y(c, a)]
=7 [c|al{olz(a) — z2(b)]fn(a, )} + 7 [c| bl{dlz(a) — 2(b)]fu(b, ©)}
—dlz(a) —z(B))I (c|@)[fula, )].

D. Comparison with BBGKY Hierarchy

In Eq. (46) terms on the lefthand side are connected with macroscale correlation,
whereas those on the righthand side (inhomogeneous terms) have a common factor
of a delta function, so are seen to represent effects due to thermodynamic fluctuations
which have been missing in the BBGKY formalism. If terms on the righthand side
are put zero, Eq. (46) is in exact agreement with the two-point BBGKY equation
[81, [9] (with the ternary molecular chaos).

(46)

TABLE 1. Comparison of the present hierarchy equations with the BBGKY
conterparts.
BBGKY hierarchy Present hierarchy
one-particle | Lfy=0% Yy
equation N Bf=0*
N-1
two-particle L fy=0%* 5 T
cquation J 4f(@)B}(b) + 4f(6)Bf(a)=0 ***
N-2
three-particle -\ Lfy= °
4 J 3. 4f(a)4f(b)Bf(c)=0
equation W—’N_3 (a,b,c; cycl. permut.)
master Lifx=0 Bf=0 +
equation (Liouville) (Master Boltzmann)
*: Bq. (18), **: Eq. 47) ***: Eq. 48), t: Eq. (15)

Comparison of the BBGKY with the present hierarchy system is summarized in

Table 1:

identical if the bar average is meant by

The one-particle equations in both formalisms have turned out to be

5= afydzo- - - dz
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as has been identified in Sec. I, where f, is a certain function symmetrical with
respect to its N arguments [z®, - . -, 2], but not necessarily obeying the Liouville
equation. The two-particle equation in the BBGKY formalism with no closure
condition is written in the form,

_[a 0 0
214, ¢ml_[ 2 to@- o) ax(b)]sb(a, b)
— T [c|allf(a)g(c, b)1—T [c|bllf(b)d(c, a)l (47)

—{f[cl al+ 7 [c| b]}[ﬁbm(a, b, 0)]=0.
The corresponding equation in the present formalism reads

LIy, ol =T [c|al{olz(a) — z(b)]fu(a, ©)}
+ 7 [c|bl{olz(a) — z(b)1fu(b, c)} (48)
—élz(a) —z(b)) (c|a)f(a, ©).

If ‘ternary’ molecular chaos (¢;;;=0) is imposed on the equation, it reduces to Eq.
(46) as it should.

Constructing three- and more-particle equations in the form which allows direct
comparison each other is rather straightforward: As to the three-particle case, the
prospective equation in the present formalsim is given by

> df(@4f(b)Bf(c)=0, (48)’

a,b.c:
cyelic permut.

where the summation i1s over cyclic permutations of the three space-time points
(a, b, ¢), and where the operator B has been defined by (23). As in the two-particle
case this equation contains more information than the corresponding BBGKY

equation
[ [Las=o.

—
N-3

where L is the Liouville operator, in the sense that Eq. (48) gives three-time cor-
relation in general, and that it includes thermal agitations as forcing terms. It should
be noted at this point that range of applicability of the two hierarchy systems are
not identical: As was discussed in Sec. IIA the present formalism applies only to
hard molecules, whereas the BBGKY formalism has no such limitation in principle.
The same procedure of generating a hierarchy system on the basis of Klimontovich
equation (2), viz.,

Kf(a) - 0’

Af(a)KF(b) + 4f(b)Kf(a) =0,
> Af(a)4f(b)Kf(a@)=0,

a,b,c;
cyclic permut.
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supplements to cover whole range of intermolecular force law, and to form a com-
plete set.

IV. DERIVATION OF LANDAU-LIFSHITZ FORMURAE

A. Moment Expansion of Function g

We present here an illustration that the present formalism gives correct account
for phenomena ascribed to thermal agitation of the gas. We will show, under
equilibrium condition (¢;=0, V'=0), that Eq. (42) for self-correlation g yields a
system of moment equations out of which the well-known Landau-Lifshitz fluctua-
tion formulae for spontaneous stress and heat flow are derived [/7]. For this pur-
pose we expand the function g in a double series of Hermite’s polynomials as

9(a; By =w@aob) 37 - LI m o) () (b) 49)
> CJ+K]! K' ifeee Imees 5

where ¢ is the isothermal speed of sound (=+/RT), # is the three-dimensional
Hermite polynomial [4], and o is a function defined by

_ 1 __v(a)
A= Greyn P [ | GO

Note that the Hermite polynomials have the property of ortho-normality with the
weight function w, so that the expansion coefficients Q are given as

B, (x(@) —x(b), 7) =f T KD (@), (b)g(a, b)dv(a)dv(b). (51)

Each Q of (51) is shown to be of O(n), which is seen from its initial condition

[g(a; b)]..o=0lz(a) —z(b)]f(a). (52)

When this initial value of g is substituted in Eq. (51) we have the general expression
for initial values of the expansion coefficients Q’s:

B, e (x(@) — x(b), ) =nc”* Kj[x(a) —x(B)16,x 25 0ubjm- -+  (53)

where the summation is over N! permutations in the subscripts of Kronecker’s
deltas. Especially we have

[Q©2],.oy=ndlx(a) —x(b)],

54
[n2Q0P], o= n='c300x(a) — x(B)], } >4

which give thermodynamic parts of the density and the velocity correlation of fluc-
tuation, respectively. Furthermore, if we take, in Eq. (51), the moment function

(m/3yc' o ®(a) + 3][#*(b) + 3] (55)

in place of c/*X# ' (a)#®(b), we have the pressure fluctuation formula

This document is provided by JAXA.



‘Master’ Boltzmann Equation 251

Ap(@Ap(b) = (m /349 1O, + [0}

(56)
=p’n~'(5/3)dlx(a) —x(b)].

It is easily examined that fluctuation formulae (54) and (56) are in agreement with
those found in text books of physics. In a similar fashion we can calculate the
fluctuation of viscous stress and heat flow: These two quantities are defined, in the
language of the kinetic theory, by

qﬁv,?mzf (M) [A# B (@) — §0,; (@I [A 2(b) — §61m# P 1gdv(@)du(b),
ai = [ (¢ ) # @A P ) gdv(@dub),

where #® and 27 ® are Hermite polynomials contracted with respect to two indices
appearing in their subscripts.
In view of (51), these relations read, respectively,

4= Q50 — 300,080 —401n QY + 451,01, Q ]

2

m (33)
il -
4

(3,3)
q;1" =

Their initial values are obtained from (53) as

2
(465 nleco—2 0@ — NN u s+ 5100m —$0100) ©7
(0% ].0=13 p* RTé[x(a)—x(b)]o;;. (58)
n

B. Moment Equations

Substituting (49) into Eq. (42), multiplying the equation by moment function
7). (@A) (b), and performing integrals with respect to v(a) and v(b), then
we have a series of moment equations for Maxwellian molecules in a manner similar
to thirteen-moment method [4];

0/99)QY =(3/00)Q (> =(3/90)Q ™ =0, (59)
(0/02)q 5, + 6nBg?, =0, (60)
(0/07)q®® +4nBq» =0, 61)

where B is a constant related to the viscosity and the thermal conductivity coeffi-
cients as follows;

pt=mRT/6B,

} (62)
2=5mR°T/8B.

Solving Egs. (60) and (61), eliminating B by the use of (62), and employing the
initial conditions (57) and (58), respectively, we are led to the following formulae,
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qi“} ».=hn"'p’ exp (—z‘p/;z)(?[x(a) _x(b)](ailajm +0im0j1 _%Bijalm)9 (63)

g2 =n"'p’c,T exp (—zpc, | Dolx(a) — x(b)1d;,, (64)

where ¢, =3R is the specific heat under constant pressure of a monatomic gas. If,
in Egs. (63) and (64), the factor e~?*(a’»1) is replaced by (2/a)é(z), we have
familiar forms for the Landau-Lifshitz formulae as it was derived first on purely
macroscopic considerations [/8]. Thus, use of the kinetic theory, coupled with the
thirteen-moment method, has enabled us to show exponential decay of temporal cor-
relation in agreement with general rule of the relaxation phenomena.

V. NONEQUILIBRIUM INTERACTION BETWEEN THERMAL AND
MACROSCALE FLUCTUATIONS

Derivation of the Landau-Lifshitz formulae, as shown above on the basis of the
present formalism, has assured accuracy of our basic equation (15), therefore, the
general kinetic fluctuation equation (46) in elucidating phenomena associated with
thermodynamic fluctuations. We will discuss in what follows how the thermal
agitation interacts with other fluctuations in nonequilibrium situations (¢+0). In
order to see how thermodynamic fluctuations interact with the macroscopic ones in
the physical space, we multiply moment function «(a)8(b) on Eq. (46) and carry
out integration with respect to v(a) and v(b), then we have the following expression
for moment equations :

Qaﬁg[) ) (. D8
(G )aﬁc(a>ek(a)¢+ k(b) aeb)pe,®)—(a 28 1 p D% )
— (@)@ k( % 8= )b k(b) ) Yar — CLQIBH@GE, BYDLads
— (LBlaf (D)Y@, BYYDsya=01x(a) — x(D)]S, 65)
with

= i {{—la@p@]+ [a(a) + a(@][f(@)] +[8(@) + BD1[(a) }frla, A)D)L.  (66)

where the following abbreviations are employed :
(ZDe= f Zdv(a),

LZWa= j ZdK(a, d)dv(@)dv(d),

[a(@)]=a(a) + (@) —ala) —a(d), - (67)
27 _ oZ ou,(a)Z ou,(b)Z
9t ot ox,.(a) 0x,(b)

0
a—ﬁ ox, J

K

b
D
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and
Er=c"' (Vg —Uy). (68)
In the above formulae, u; denotes the hydrodynamic velocity.
We expand the function ¢ as

#(a, b) = a(@)a(b) RiZin- s (0 ®. (b),  (69)

7, B=0,0 c/*EJI K!
where  is given by (50) in which v, /c is replaced by &, of (68). Expansion co-
efficients R represent correlation functions in the physical space, and their evolution
equations are obtained by Eq. (65) in which the moment functions («, §) are chosen
as combination of the following set of polynomials;

m, mcHP, mcH® and mcHP

where m is the mass of a particle, and s is the third-order Hermite polynomial
with two indices contracted. This exhausts whole set necessary in the thirteen-
moment level of description.

Let us consider the simplest case of incompressible flows, then expansion (69)
starts with (J, K)=(1, 1), and the moment functions up to J#{» suffice to close the
equations. In this case moment of the lowest order is («, 8) = (m, ms#), and the
associated moment equation gives

OR{P Jox,(b) =0, (70)

where no contribution from the thermal agitation is observed. For moment func-
tions of higher order, however, effects due to the thermal motion make their ap-
pearance, and the two-point Navier-Stokes equation corresponding to the choice of
moment («, f) =(m#"(a), ms# V(b)) reads

ou,(b) 1,1)

OR%Y | GR®Y
R&D 4 97t L
ox,(b) "

DR, oul@) p
ox;(a) ox,(b)

an 4
Dt ox,(a) ot

(71)
—u[7(a) + P(D)IREY = -LPi_5(x(a) — x(b)],

VI

where p;; is the stress deviator tensor and v is the kinematic viscosity. On the
right-hand side terms including R{;" are neglected because it is smaller by O(n~")
than those standing on the left-hand side. It is seen in Eq. (71) that the inhomo-
geneous term on the right-hand side is aroused by shearing motion of a gas. This
term vanishes for a gas in equilibrium as it should.

In ordinary fluid mechanics the thermal agitation is not the controlling mechanism
of triggering turbulence; it is too small (O(n™")~10-%) to affect on macroscopic
phenomena under normal conditions. Turbulence initiation is affected more by
free-stream turbulence of the windtunnel or noise which enter in the formalism as
initial value of R{;"” and not as inhomogeneous terms. The thermal agitation con-
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tributes to generating macroscopic correlations only under hypothetical conditions
of perfectly quiescent windtunnel.
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