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Summary: Data of impact points obtained from rocket vehicles launched at KSC (the
Kagoshima Space Center, University of Tokyo) are statistically analyzed on the basis of
the normal bivariate distribution method. Results obtained by the binormal method are
compared with those obtained by the empirical method. Circular distribution method is
shown to be valid if the level of significance is appropriately chosen. Some computations
related to the determination of impact zones are carried out.

1. INTRODUCTION

On the firing of rockets, it is required to determine launch angles or impact
zones based on the information of the probability of falling on an area of aim,
or, conversely the chances of falling outside a specified area due to several un-
defined factors. Those factors, which cause rockets to fall in different area from
the aimed one, are vehicle misalignments, error of estimation on time variation
of wind components and so on.

From this viewpoint, it is very important to extract certain statistical informa-
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tion from available data and also to estimate statistical parameters of the data
distribution.

For the statistical treatment of impact point data, the coordinate system O-xy
shown in Fig. 1 is used. Then the distribution of impact points may be adequately
described by the general bivariate distribution. Continued efforts on the part of
many individuals and organizations have resulted in the successful applications of
the binormal elliptical distribution to wind distributions [/—-3]. The following
discussion pertains to those methods and their application to impact point dis-
tributions of rockets launched at KSC.

2. COMPUTATION PROCEDURES

2.1 General Two-Dimensional Vector Statistics

A homogeneous two-dimensional vector distribution is said to be normal in
the general bivariate sense if the probability density function f(x,y) has the
following form:

fx, y)zm exp (—<) (1)
where
oLl )

In equations (1) and (2), x and y are orthogonal components of statistical vector,
y and g, are the respective means of the components, ¢, and g, are the standard
deviations of the respective components and p is the correlation coefficient between
the components.

In the case where population parameters are not known and also sample size is
large enough, u, and g, are reasonably replaced by their respective estimates X and
y from total collective where the bar indicates an averaging process.

Also, the variances ¢% and ¢} are replaced by their respective estimates s% and
s3, and for the correlation coefficient p, its estimate r is used.

In the case where the component variances, ¢ and ¢}, are equal and the correla-
tion p is zero, the distribution is circular and distribution circles may be drawn,
centered on the point, (g, #,). Where correlation is present and the component
variances, ¢ and ¢}, are unequal, the distributions are referred to as the elliptical
distributions and ‘distribution ellipses’ with the oriented major and minor axes can
be found in the (x,y) plane. These ellipses are ones defined as loci of constant
distribution density [f(x, y) =constant] in the (x, y) plane and represent boundaries
within which specified percentage of the collective is to be found.

In the case of elliptical distribution it is always possible to transform the com-
ponents x and y to new orthogonal components £ and » in which component correla-
tion r,, is reduced to zero.
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! For this, it is only necessary to make the rotation transformation of the compo-
j nents & and . The necessary angle of rotation, ¢, is given by
_ 20020,
tan 2¢p==""—20 (3)
0z —0y
‘ and the component ¢ and 5 are related to x and y as
g E=xcos ¢+ysin ¢ (4)
p=—xsin ¢+y cos ¢
) -y
Fi1c. 2. Generalized elliptical bivariate distribution
Therefore, in the new coordinate system O—&y (Fig. 2) the probability density
function (&, 7) is represented by A
1 1 —&\? —7\2
&)= exp [ - {(E=5) + (=) ] (5)
2no.0, 2 g g,
Since equation (1) and (5) are equal over the same region of integration,
following relationships can be obtained:
> * ofo'u:axo'y‘/l_ﬂaz (6)
gitai=di+d (7)
The probability that x and y (or £ and ») will be found in a region S is given by
1 2
P&, p)=P(x,y)= exp ( — - )dédy (8)
2ro.0, JJs 2
where
£32 n)2
= + = (9)
2.2 Confidence Ellipses
Since the right hand side of equation (9) is interpreted as the sum of squares of
& R
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two standardized normal biases, 4* obeys y’-distribution with a degree of freedom
2. Then, if the ellipse expressed by equation (9) with 2*=y*(2; P) is drawn, the
probability with which a point (x,y), or, (§,7) falls in the ellipse becomes 100
(1-P)%.

In the case of our interest, however, population parameters are not given. In
this situation these parameters must be replaced with the sampling statistics X%, y, s,
sy, 7 or £,7,s,,s,, and Hotelling’s 7* must be used instead of y>-distribution.
Hotelling’s 77 is expressed by the following equation :

_2(N—

T 21)F(2,N~2; @) (10)

where F denotes F-distribution described below and N is the sample size.
Probability density function of F-distribution with degrees of freedom ¢,, ¢, is

given by
()= _—‘1—-(ﬂ>¢llzx¢1/2‘1(1 . ﬁx>—<¢l+¢z>/z an
B2, &) \¥ .
272
where B(p, q) is a beta function defined as follows :
B(p, @)= (1~ (12)

The value of F-distribution, F(¢,, ¢,; P), is defined by the following formula;
F($1,42; P) '
1—P= f(x)dx (13)

0

Equation (13) expresses the relation that the probability of stochastic variable
obeying F-distribution to exceed the value of F(¢,, ¢,; P) is P.

In the case of Hotelling’s T?, following expression is obtained by equations (10)—
(13), since one of the degrees of freedom, ¢,, is equal to 2:

Tzzi;éz———illF(l $,—2; P)=(g,— 1)(P~ =2 _1) (14)

Thus Hotelling’s T2 acquires following simplified representation:
T*=N—1)(P¥¥N-2__1) (15)

As for the sampling data, following expressions can be obtained:

(x—Xx)* _ 2y (x—x)(y—) + (y—z)_’)z =(1—P)(N—1D(P-¥¥-2_1) (16)

s 528y sy

or

(E_f)z +(7]__277)2 —(N—1)(P-2®¥-_1) aa7n
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If the ellipse expressed by the equations (16) or (17) is drawn, this ellipse shows
the confidence ellipse in which the 100 (1—P) % data exist among the total col-
lective. Semimajor and semiminor axes, a and b are given as follows:

“2*/275} (18)
b=+ 2,T*

where

R ERCET A CE AR

) 19)
A= —2—[51 + 57— Vst + 53)F—4(s%sy— 53]
The slope of major axis is given by
2
tan ¢ = A5y (20)
Szy

2.3 Test of Noncorrelation

To measure the degree of circularity of the population distribution, test of non-
correlation (p=0) must be applied to the value r obtained from the sampled data.

It is the prevailing fact that the following statistic #, obeys t-distribution with
the degree of freedom N—2 if the correlation coefficient of the population is equal
to zero (p=0):

. _r/N=2 @1

Vi

where N is the sample size.
And hence if we set p=0 as the null hypothesis (H,) and « as the level of
significance, the problem of test of noncorrelation can be described as follows:

H,: p=0 R:t,>t(N—2; ) (22)

Thus to test H,: p=0, ¢, must be calculated by equation (21) and, if t,>t(N—2; «),
H, may be rejected with the level of significance « and correlation is regarded to
exist between two components.

2.4 Problem from the Viewpoint of Range Safety

From the standpoint of range safety, the problem of our particular interest
may be an estimation of the percentage of occurrence that the dispersion vector
of the impact point of a rocket is equal to or less than a stated value. This
problem is illustrated in Fig. 3. Here the shaded circle encompasses the desired
percentage that dispersion vectors are equal to or less than a specified value.
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Fic. 3. Illustration from the standpoint of

range 'safety; problem

3. RESuULTS AND DISCUSSION

3.1 Data Source, Scatter Diagrdm and Estimates of Parameters

Application of the foregoing vector statistics is now shown by use of data
obtained from Table 1. Table 1 is a reproduction from impact point data of

TaBLE 1. Data source
Predicted Sample
Range Types of rockets range size N
A Small Short S'lngle stage (S-, PT—, MT-, IT-types) 0~300 55
rockets First stage of multistage (K-, L-types) km
Large Second or upper stages 300~
B .rockets Long of K-, L-types 3000 km 33
0’\/
1 T f d
C Tota otal of A and B 3000 km 88
~Range—
* ~300km 1N
° 300~ 2,000km 0.4
02t .
Ba1e * 3
- 2 .¥ 2 .
02 3 gd, o 02 0,4
* R z
. g f-ﬁ 3
° ;; 2l °
. —023 °
—0.4L

F1G6. 4. Scatter diagram of impact point distributions
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rockets launched at KSC since 1967 till 1974. Plotted in Fig. 4 is the impact
point distribution of these rockets as nondimensionalized by their respective pre-
dicted ranges. From this figure, roughly speaking, elliptical binormal distribution
may be assumed to be adequately fitted to the impact point distribution. Table
2 provides a listing of some computed estimates of statistical parameters.

TABLE 2. Some estimates of statistical parameters

Range X y Sz Sy Sy r ¢
A Short —0.009289|—0.002653] 0.09875 | 0.12978 | 0.001988 | 0.1551 | —14.64°
B Long 0.005369| 0.005413| 0.08701 | 0.12057 | 0.002841 | 0.2709 | —19.60°
Total —0.003898[—0.000314| 0.09435 | 0.12582 | 0.002300 | 0.1938 | —16.79°

3.2 Confidence Ellipse and Test of Noncorrelation

Table 3 shows semimajor and semiminor axes of confidence ellipse according
to the various percentage levels. These are illustrated in Fig. 5. Shown in
Fig. 6 are these homothetic ellipses together with the impact point data.

TABLE 3. Semiaxes of confidence ellipses

Confidence probability

25% 75% 90% 959, 97.5% | 99% 99.5%
Small a | 0.1012| 0.2390 | 0.2916 | 0.3350 | 0.3744 | 0.4220 | 0.4588

A
rockets b | 0.0738| 0.1743 | 0.2126 | 0.2443 | 0.2731| 0.3078 | 0.3324
Large a | 0.0966 | 0.2157 | 0.2824 | 0.3259 | 0.3656 | 0.4150 | 0.4503

B
rockets b | 0.0627 | 0.1401 | 0.1834 | 0.2117 | 0.2375 ] 0.2695 | 0.2925
a | 0.0982| 0.2170 | 0.2812 | 0.3220 | 0.3588 | 0.4033 | 0.4343

C Total

b | 0.0487 | 0.1529 | 0.1982 | 0.2270 | 0.2529 | 0.2842 | 0.3061

0.6
A (Large Rockets)
0.5
@ |, TTTT— B (Small Rockets)
a 0.4-\\ —-—— C(Total)
g
n
w 0.3
_,: a (Semi-major Axis)
® 0.2 ==
@ ~
8 =
0.1 b (Semi-minor Axis)
0 | ! I .
100 90 80 70 60 50

Confidence Probability (%)

Fi16. 5. Length of semiaxes of confidence ellipses
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F1G. 7. Test of noncorrelation
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The result of test of noncorrelation is illustrated in Fig. 7 for several signifi-
cance levels. In this figure, n,, ng, n, denote respective sample sizes of A, B, C
cases (cf. Table 1).

Thus for the distribution of impact points of rockets launched at KSC, the
assumption of circularity is shown to be valid if the level of significance is care-
fully chosen.

3.3 Computation Related to the Width of Impact Zone

The problem illustrated in Fig. 3 is now treated. The answer sought is the
percentage of occurrence that a dispersion vector does not exceed a stated value.
To solve this problem equation (8) must be integrated over the circle with a
specified radius, centered at the origin. The integration may be accomplished
efficiently by use of a polar coordinate system (See reference [3]).

Results are given in Fig. 8, in which results obtained by circular distribution
method and the empirical cumulative frequency method are also shown (descrip-
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tion of circular distribution method is also shown in reference [3]). Probability
levels for various radii determined by three methods are in fair agreement for
both small and large rockets. Thus the assumption of circularity is again shown
to be fairly valid as to the impact point distribution at KSC.

From the standpoint of range safety, Fig. 8 can be utilized to determine the
radii of impact zones. In the case where the percentage of hitting the impact
zone is assumed to be p; nondimensionalized radius of the zone r; can be obtained
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from the figure. If the predicted impact range is denoted by R,, the radius of
impact zone R; can be determined as follows:

Ri = riRo (23)

4. CONCLUSION

Statistical analysis was applied to data of impact points of rockets launched
at KSC. Elliptical bivariate distribution method was shown to be valid for the
impact point distribution at KSC. Circular distribution was also shown to be
valid. Some computations indispensable for determining the width of impact
zone were accomplished and useful results were obtained.
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The problem of separating the contribution of vehicle misalignment to impact
point dispersion from the contribution of wind was not treated here but is being
persued by the authors and will be reported on later.
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