Institute of Space and Aeronautical Science, University of Tokyo
Report No. 521, January 1975
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Summary: On the basis of nonlinear theory, the axisymmetric dynamic behavior of visco-
elastic shallow spherical shells is analyzed. Two types of loading condition, that is, step and
graded loadings, are considered and a linear model is used to describe the viscoelastic
g characteristics of materials. The governing equations derived by the authors are solved
& J : » numerically, and the critical load and the effects of viscoelasticity and loading speed on the
': dynamic behavior are discussed. It is pointed out that buckling phenomena must be analyzed
paying attention to the role of time, since dynamic, static and creep bucklings are related
with one another as a function of time. And a clear definition of dynamic buckling is
proposed. The theoretical predictions show a good agreement with experimental results.
From the present results, the quasi-static buckling load is also obtained immediately. The
dynamic behavior of elastic shells obtained by the present procedure coincides excellently
with those reported so far.

1. INTRODUCTION

Light-weight structures, especially thin plate and shell structures, have high
specific load-carrying capabilities. However, they are subject to large deformations
accompanied with unstable phenomena when loads exceed a critical level. That
is, although loads proportional to their own weight are decreased, the reduction of
structural weight, in general, results in decreases in the strength and stiffness of
structures when the forms of the structures and materials used remain the same.
Pertinent evaluation of environmental conditions (loads) and a clear estimation of
the resulting responses of structures and structural components are very important
in determining structural forms and materials and therefore in establishing the
reliability of structures.

Shells are one of the main types of structural members of surface and under-
water structures and vehicles as well as of aircraft, rockets and spacecraft. And
so it is important to investigate the stability characteristics of shell structures under
various environmental conditions. The most important of instability phenomena is
buckling.

Research on problems of buckling has been carried out for a long time, but it is
nevertheless very difficult to obtain definite solutions, especially when the wide
variations in the forms of structures, material properties and environmental condi-
tions have to be taken into consideration.
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The behavior and stability of shell structures subjected to dynamic and impul-
sive loadings are not only very interesting problems in themselves but are also of
practical importance. These problems, however, have not yet been satisfactorily
analyzed as compared with the corresponding static ones.

The behavior of dynamic snap-through of spherical shells has been investigated
by several authors. Humphreys and Bodner (1962), using the Rayleigh-Ritz
method, have studied the axisymmetric behavior of elastic clamped spherical shells
under uniformly distributed impulsive loads; Budiansky and Roth (1962), using the
Galerkin method, have obtained an approximate solution for the similar problem,
and Simitses (1967) has used a modified Ritz-Galerkin procedure and found the
minimum possible critical impulse for snap-through. Archer and Lange (1965)
and Huang (1969) have obtained the exact solution of fundamental equations for
dynamic buckling problem, using a direct numerical method. In the research men-
tioned above, it has been assumed that the deformation is axisymmetric. Liepins
(1969) has obtained a direct numerical solution for the problem of asymmetric
dynamic response and buckling of elastic shallow spherical shells. For the details of
research carried out so far, see Reference [16].

In the present paper, the axisymmetric nonlinear dynamic behavior of viscoelas-
tic thin shallow spherical shells with a clamped edge subjected to uniformly dis-
tributed step and graded loadings is studied, where a linear model is used to
describe the viscoelastic characteristics of materials.

The present research will analyze the effects of viscoelasticity and loading speed
on the dynamic behavior and buckling load, and the relationship between the
applied load and time until large deformation (buckling) occurs. By studying the
variation of buckling load with loading speed, the connection between dynamic
and ‘static bucklings is examined. Relationships among dynamic, static and creep
(static buckling accompanied with creep deformation) bucklings are also inves-
tigated, paying attention to the fact that they are related with one another as a
function of time. At the same time, a clear definition of dynamic buckling is
proposed.

In order to observe the response of viscoelastic spherical shells to dynamic load-
ing and to check the results of the numerical solution, some experiments have been
carried out and a good agreement between the theoretical predictions and experi-
mental results is seen.

The quasi-static buckling load and the behavior of elastic shells are also shown.

The present work forms a link in the chain of the authors’ research which
intends to make the mechanism of snap-through phenomena in shells clear.

NOMENCLATURE

a base radius.

B viscoelastic constant, B=(E/E)c,(E/m)"*/R.
B,6  polar and circumferential angles, respectively.
Bo angle of the semi-apex of the shell.
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E constant which has a dimension of stress.

E, static Young’s modulus, E,=1/[1/E + 1/E.].

E,,E, Young's moduli. (Fig. 2)

e strain component.

s coefficient of viscosity.

f, F nondimensional and dimensional stress functions, respectively.

I thickness of the shell.

H rise of the middle surface at the center.

J, 1 Bessel function of the first kind and the modified Bessel function of the
first kind, respectively.

K change of curvature.

A shell parameter, 2=2[3(1 —v)]*(H /)"~

m mass per unit volume.

M bending moment.

«) § v Poisson’s ratio.

nondimensional pressure load, p=q/q,.

Pe nondimensional dynamic buckling load.

Pso nondimensional static buckling load of elastic shells (Young’s modulus:
E,) and of viscoelastic shells.

Dsi nondimensional static buckling load of elastic shells (Young’s modulus:
E).

q pressure load.

4 classical buckling load, ¢,={2E/[3(1—v)]"*}(I1/R)".

o. transverse shearing force.

R radius of curvature of the shell.

o mean deformation, p= ” WR? sin 3 dﬁd&]/UJzoRz sin 8 cos 8 d/3dt9],
where z,=H(1—¢£%).
o stress component.
ne t, T time and nondimensional time, respectively.
t*, % time and nondimensional time until the load becomes constant, respec-
tively. (Fig. 3)

Ty retardation time, z,=7,/E,.
, W meridional and normal displacements, respectively.
w nondimensional normal displacement.
W, eigenmode of clamped circular plates.
& nondimensional coordinate, £=(R/a)p.

@,¥ operators defined by Egs. (2.2) and (3.16).
D, operator, @, =0E.

Bar over letter refers to the middle surface.
Subscripts r and ¢ indicate the meridional and circumferential directions, respec-

tively.
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2. GOVERNING EQUATIONS

A viscoelastic spherical shell as shown in Fig. 1 is considered, and it is assumed
that the shell is subjected to external dynamic pressure.

In the present analysis, the following assumptions are introduced.
(1) the spherical shell is shallow, that is, the semi-apex angle of the shell is small,
(2) the shell is perfect, that is, any imperfection is not considered,
(3) the environmental conditions, such as thermal conditions, etc., are constant,
(4) the deformation pattern is axisymmetrical,
(5) inertia terms except 0*W /3¢ can be neglected,
(6) the characteristics of viscoelastic materials can be described by a linear
model, and
(7) Poisson’s ratio of materials is independent of time [3], [18].

For a linear viscoelastic model, the constitutive equatoin is given by

Do=V, 2.1

where
N M
D= Z=:0 on{d/N™, 7= Z_O P 0/00™. (2.2)

According to assumption (7), the constitutive equation in the two-dimensional
problem is written as

Vo
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Fic. 1. Partial spherical shell.
(a) Shell geometry.
(b) Stress resultants and moments.
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FIG. 2. Linear viscoelastic models.

B, =W (e, +ve,) [ (1—17),

} (2.3)
G0y, =T (e, +ve,) (1 =17,

where, ¢, and ¢, are meridional and circumferential stress components, respective-
ly, and using the hypothesis of Kirchhoff-Love, strain components can be given as
follows,

&, =&, + 2k,
: } (2.4)

€9 =&, + Zky.

The strain components and change of curvatures of the middle surface for the
case of axisymmetric deformation can be expressed as in Egs. (2.5) and (2.6),
where terms up to the second order of infinitesimal have been taken into con-

sideration.
_ LW (W
" R 98 R 2RP\ 8/’ 2.5
= cotp— W ’
] R 3
. 1 W
Ky=— ]
R* 9B
(2.6)
. 1 ow
Kp=——— cot j.
R* 9B

The equation of equilibrium in the f-direction and the equation of motion in the
z-direction are expressed by Eqs. (2.7) and (2.8), respectively.
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oG
—" 4 (5,—5,) cot =0, 2.7
aﬁ (@ 0y {

h [a Rsin j3 —{-O‘,—QW sin 3 —}—o,,(il + R sin 3)]
a3 a3

’ (2.8)
+ Rz(q~ hm aalf/ )sin 3+ R sin 3 < aaQ’ + Q, cot ﬁ) =0
t‘ h
where 1 is mass per unit volume.
The equation of equilibrium of bending moment is given by
. oM, .
RQ,sin 3—M, cos 3— sin 3+ M, cos 3=0, (2.9)
where
-
oM, :J Dg,zdz= v—/z—g——,——(/c,. +vK,),
12(1—v%)
(2.10)

_ . T
@Mo—f@m,dl =iy e ).

Substituting Eqgs. (2.6), (2.9) and (2.10) into the equation derived from Eq.
(2.8) by operating @, the following equation is obtained, where assumption (1)
has been used.

/zdj[a R3+7,f oW <-a——W~+ Rﬁ)]
o3 a3
Y 4 2
. hé[i ( W +78W 1 aPV_l_i._aW) Q2.11)
12(1 —v*)R? a5 ap’ ,8 0p g 9B

+ Rﬂ@@(q— /’1l7l—a;~?i> =0.
or

Eliminating U from Egs. (2.5), the compatibility equation is derived. Substitut-

ing Egs. (2.3) into the equation obtained from the compatibility equation by
operating ¥, the following equation is obtained.

o5, o0, B oW | 1 (oW
O(1 + )7, —5,) — (p< _ ___)—w[‘ P )]:0.
(L)@ =80) =30 25— R & @ 2R\ 53

(2.12)

Equation (2.7) is reduced to Eq. (2.13) in accordance with assumption (1).

399 Lz _5,=0. 2.13
/ 8,8 0 ( )

Equation (2.13) can be satisfied by introducing stress function, F, defined by the
relations,
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2.14)

Using the stress function and nondimensional quantities defined by

P, =0E, 2A=2[3(1—A]VH[h)'",
c=(E/m)(t/R), &=R/a)f, p=4q/q (2.15)
f=F12(1 —W)a]/(ER?), w=2[3(1—)]"(W/h),

» where E is a constant which has a dimension of stress and
q,={2E/[3(1 )]} (h/R)?,

o ¢ Equations (2.11) and (2.12) are reduced to

- i_a_ _i 2 . 9 ’ oy A — w0 _ 5
w§[5 85<$85 )]w QL 2(f8) + (fw') + 2'(dp —w)E]1 =0, (2.16)

N A TLW)? 4 2Ew =0 2.17
@%85[5 a§<gf>]+w[2(w>+zbw1 , 2.17)

where ()’ and ( - ) indicate the partial differentiation with respect to & and =,
respectively.

Equations (2.16) and (2.17) are the nonlinear governing equations for a vis-
coelastic shallow spherical shell for the case of axisymmetric deformation. They
have been obtained from the conditions of equilibrium of forces; they can also be
derived from a modified Hamilton’s principle [10].

3. RESPONSE OF SPHERICAL SHELLS TO DYNAMIC LOADING
0e
The behavior of viscoelastic shallow spherical shells with a clamped edge sub-
jected to step and graded uniform pressures (Fig. 3) is analyzed.

3.1. Basic Equations and Boundary and Initial Conditions
The basic equations are Eqs. (2.16) and (2.17), and the boundary conditions

corresponding to a clamped edge condition are given by Egs. (3.1) and (3.2).
at £=1, w=w' =0, (3.1)
U=0. (3.2)
Considering Egs. (3.1) and (2.5), =0 (¢=1) instead of Eq. (3.2) is used for

analytical convenience’ sake. Operating ¥ on ¢,=0, the following equation is
obtained.

Dy(f' —v)=0. (3.3)
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p
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a : Step Loading

p

0 T (LY ST, 0t

(b) Graded Loading
Fic. 3. Loading patterns.

Moreover, considering the conditions, i.e., f=f =0 at t=0, Eq. (3.3) is equivalent
to the following equation.

at £=1,
f—uf=0. (3.4)

Then the boundary conditions in the present analysis are given by Eqs. (3.1) and
(3.4).

The deformation pattern, w, and the stress function, f, are an even and an odd
function, respectively, and so they are expanded in terms of the Bessel function®.

w(g, )= ;} (D)W, (&), m=1,2,3, .., (3.5)
f(& ) =A()&+ 2 b, (2)J,(2n.8), m=1,2,3, .., (3.6)

where
W (&) =Loend) _ Jolend) 3.7)

Iﬂ(am) J[)(a'm)

* In the present analysis, the stress function, f, is expanded in terms of the Bessel function as

shown in Eq. (3.6) in order to simplify the calculation. The value of stress function thus

obtained is compared with one obtained by the finite difference method. The comparison is

made also with the result by the Dini expansion, f(§, )=, g.(0)]1(uné), m=1,2,3, .-, where
m

tm’s are roots of xJyo(x)—(1—v)J1(x)=0 (f'—vf=0). The results by three methods differ little
from one another, and it can be concluded that the present approximation is accurate enough.
Full particulars will be reported separately.
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To satisfy the boundary condition Eq. (3.1), the following relationship has to
be held.

[ (x),) J ()
It m + 1 m :O‘ (3.8)
I 0(“ m) J{l (“m)

And, the following equation is derived from Egs. (3.4) and (3.6), where 2,,’s are
roots of J,(x)=0.

1
Au(f)— [

Z bm(f)xm'lo(zm)s m= 19 2a 33 tt. (39)

—y m

Then, Egs. (2.16) and (2.17) are solved approximately by the use of the
Galerkin method under pertinent initial conditions.
Applying the Galerkin method to Eq. (2.16), and using the condition of ortho-

1
normality, that is, f Ew Ww,d&=46,, (1 for m=n, 0 for msrn) in the result, the
0

following equations are given.

24(@0571) + afl(lﬁ'an) = 22{ Z [ 2an Vi—Cn r‘] (d)obm)}

n Y —

| (3.10)
- ; Z [ 1 VkDmn + Eml.:n]@o(bk.am) + 4‘24Nn((pop),
v ‘m v —
where
Vm"_—zmjo(/zm)a Nn:jl Swndsa ]
0
1

Cmn :aiZmJO(Zm)Nn/ (xfn——at), Em kn :Jo Jl(zkf)w;nw;zdg, f(3 1 1)
D"l n= " ((Y,,LCY,L)Z[(N.,,L - Nﬂ) / (“?n, - “:21) - (Nm + Nn) / (CY?,',L + ai)]a (m :/: n))

- (“;lnlvm)z/él'a (m=n). )

Applying the Galerkin method to Eq. (2.17), the following equations are ob-
tained.

D,b,(c) = g (212 S 4y, Com+ 37 3 Esmasat>. (3.12)
¢

2
n mn S

In the present analysis, Eqs. (3.10) and (3.12), derived from Eqgs. (2.16) and
(2.17), instead of Eqgs. (2.3) through (2.10) inclusive, are to be solved, and so
the additional (initial) conditions have to be taken into consideration. For the
present case, the conditions,

2
at 1=0, q—mm%Y ~0, and F=0, (3.13)
aéfi’:o, and F=0, (3.14)
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have to be added for the cases of step and graded loadings, respectively, to the
initial conditions,

at t=0, w=1=0. (3.15%

In the former loading case, it is so difficult to satisfy exactly the additional initial
condition q—/img*W /or*=0 that the condition is satistfied approximately by the use
of the Galerkin procedure.

In carrying out the numerical analysis, the three-element model in Fig. 2(a) is
used to describe the viscoelastic characteristics of the material, then @ and 7" in Egs.
(2.2) are expressed as follows.

1 7, \ 0 . 0
O=___ ( > , U=1 —
E T\E ) T
(3.16)
E, E E_ T E’

Systems which are expressed by a four-element model and so on can be ana-
lyzed in the similar way.

In the following, using the Runge-Kutta-Gill procedure, the behavior of the
system subject to the basic equations (3.10) and (3.12) and the initial conditions
mentioned above are obtained numerically by approximating both w and f with
four or eight terms (the time step: 4r=0.01).

3.2.  Dynamic Behavior of Shells
In obtaining numerical solutions, the following quantities are used, that is,
. E =418 kg/mm?, E,=1640kg/mm* E=418 kg/mm?,
A=5, v=1/3, mg=1.19 gr/cm?®, R=1000 mm,

a=150 mm,

where the value vy =1/3 has been used to compare the results with previous works.

Some of the results of numerical solutions are shown in Figs. 4 and 5.

Figure 4 shows the variation of mean deformation, p, with time, z, with the re-
tardation time, z,, as a parameter, for the case of step loading. It is seen in Fig.
4 that the smaller 7z, becomes, the more quickly the large deformation response ap-
pears and that values of p before buckling increase monotonically with the decrease
in z,. However, the first peak value of p at buckling, p,.., does not change mono-
tonically with z,, that is, in the present numerical example, it has the local minimum
value in the vicinity of z,=7 msec. In another example (p=0.7) shown in Table
1, p..x increases monotonically with the decrease in r,. This phenomena are sub-
jected to effects of both creeping and damping characteristics in the three-element
viscoelastic model.

In Fig. 5, the change of dynamic buckling loads, p., with the loading speed,
dp/dr, is shown. It is seen in Fig. 5 that when (dp/dr)~" is larger than about 10,
that is, ¢* (Fig. 3) is larger than about 2.5 msec in the present numerical example,
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Dynamic Behavior of Viscoelastic Shallow Spherical Shells 11

the phenomena are no longer of dynamic but are nearly equal to that of quasi-
static. The present criterion of buckling is based on whether a shell snaps through
or not, but when the loading speed is slow, p, for some ranges of z, becomes higher
than the static buckling load (E,), py,, (Fig. 5), so a new criterion in such cases has
to be introduced which will be discussed later.

The effect of 7, on p, has the tendency similar to that of (dp/dz)~}, and p. changes
markedly for values of ¢, near zero. However, as far as the dynamic response is
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TaBLE 1. Change of pngex with retardation time, < (dp/dz)-1=1.0, 1=5.0.

P e | s 1 (0= Pmax)
I O | 1767 | 75
0.70 !ﬂ 0007 | L7815

‘ 0.00072 1.781 :___ 7.2
L72 LT 8.3
065 | 0007 | 170 | 82
| 0.00072 ‘ 1759 7.8

concerned, z, does not always have an effect similar to that of (dp/dr)~!, because
in the dynamic response the viscous damping plays an increasingly apparent role, _
that is, the postbuckling damping behavior changes monotonically with (dp/dr)~! ¢
and not with ¢, (Fig. 4).

From Fig. 5, for the cases with values of r, larger than several msec (the value
of 7, of actual hypolymer is of this range), it seems reasonable that the problem
may be dealt with as that of elastic shells whose Young’s modulus is the instan-
taneous modulus, E4, as long as only the dynamic buckling load is concerned.

l,’s (n=1,2,3, -.-) in Fig. 4 are the differences between the value of p(0) and
the every peak value of p(r). The values of decrement ratio (l,,,/l,) are nearly
constant and so the variation of (/;/1,) with r, is plotted in Fig. 6. Figure 6 can be
used to estimate the effect of retardation time on the damping characteristics of the
motion after buckling.

In Figs. 4 and 6, for the case of r,= oo, the response of shells is that of elastic
shells with E;, and the smaller z, becomes (up to about 720usec in the present
numerical example), the larger the effect of damping is, and thereafter the effect
of damping decreases and finally the response of shells results in that of elastic
shells with Young’s modulus E,.

In order to observe the response of viscoelastic spherical shells to dynamic load-
ing and to check the results of the numerical solution, some experiments have been
carried out.

In Fig. 7, an example of the changes of circumferential strains with time is
shown. The strains have been measured by resistant-wire strain gauges adhesive-
bonded on the shell surface at three symmetrical points on a circle. It is seen from
Fig. 7 that the deformation of the shell is axisymmetrical, and it confirms assump-
tion (4) given in Section 2 for shells within the range of geometrical parameter
considered in the present analysis. One of the experimental results is compared
with the theoretical result in Fig. 8. As shown in this figure, a good agreement
between the theoretical and experimental values has been observed up to point A
which corresponds to the first maximum value of p.

From the numerical and experimental results, the following explanations in ad-

S——— ]
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FiG. 6. Change of decrement ratio after dynamic buckling with retardation time;
step loading, p=0.60, 1=5.0.
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T
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Circumferential Strain .

O

. . " H . ! )
. OO 5 10 15 20

Time .t (msec)

Fic. 7. Change of circumferential strains with time; an experimental result,
buckled case, p=0.433, (dp/dc)"1=4, 2=4.75, t;=14.0 sec.

dition to those stated above are given for the problem.

1) critical load:

In the present paper, both step and graded loadings are taken into account, and
the snap-through load has been presumed as the critical load.

In determining the critical load, it is necessary to introduce some considerations
for cases where a) the dynamic buckling load, p.. seems to be higher than the
static buckling load (E,), ps. and b) the effect of damping seems to be small.

In the former case, p, is determined in the way as shown in Fig. 9. That is, the
values of the ordinate corresponding to cusps in Fig. 9 have been considered as
p.. The fact that there exist cusps on curves in Fig. 9 means that there are two
regions where the effect of creep appears predominantly and where it does not,
and it has been confirmed by both numerical estimations and experimental evi-
dences that in the left-hand region of the cusp the dynamic buckling occurs and
in the right-hand region the creep buckling. This is the reason why p, has been
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Time , t (msec)

Fic. 8. Change of circumferential strains with time; p/p.=1.023, 1=4.75,
t,=14.0 sec, E;=400 kg/mm?, E;=1470 kg/mm?.
@: an experimental result, (dp/d7)-'=~4, ®: a numerical result,
(dp/dr)1=4.
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Fi1c. 9. Change of the time, [t(pmax)—t*] Wwith load; 2=5.0, 7,=7 msec.
@: (dp/dr)-'=10, ®: (dp/dr)~*=50.

determined in the way mentioned above. An example of the experimental results
for the case where the buckling accompanied with creep deformation occurs is
shown in Fig. 10.

In the latter case, there are a few regions of load where the shell does not buckle
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Fi1G. 12. Degree of ease in generating large deformation; step loading,
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dynamically in a limited time as shown in Figs. 11, 12 and 22. A similar result
has also been derived by the authors from Huang’s procedure (1969), although
he has not mentioned about it. And, the lowest load of loads which are sufficient
to generate snap-through in the shell is adopted as p,.

It can be seen from both cases that it is important to consider the role of time
in analyzing the problems similar to those treated in the present paper.

The critical loads shown in Fig. 5 are based on this concept, including the con-
siderations mentioned above.

2) motion of viscoelastic shells:

In Figs. 11 and 12, L,’s (r=1,2, ---,5) indicate large deformation regions,
while §,’s small deformation regions. And, Fig. 13 shows the variation of the
response of viscoelastic shells with the loaded step pressure and retardation time.

The motion of viscoelastic shells subjected to step loading in some of the above-
mentioned regions are shown in Figs. 14 to 18 inclusive, where figures in circles
correspond to those in Fig. 13. Figures 14 and 15 show motions of viscoelastic
shell in the same large deformation region, L,. Figures 16 and 17 show motions of
viscoelastic shell in the large deformation regions, L, and Ls, respectively. The
difference in loaded pressures between the cases in Figs. 14 and 15 is nearly equal
to that between the cases in Figs. 16 and 17. Although motions in Figs. 14 and 15
are similar to each other, those in Figs. 16 and 17 are not. From this evidence,

This document is provided by JAXA.



M. Sunakawa and N. Kumai

18

oasul L =%2 ‘OLp'0=d : ®
“vasul £ =%z ‘CQp'0=d:(® ‘098 0zL=%2 ‘Ovp'0=d: @

‘ooswr =32 ‘09p'0=d:®
‘9987 QzL="2 ‘OLY'0=d : (®

*0'S=v ‘Suipeo dajs ‘S[[ays ONSL[0ISIA JO osuodsay g "OIg

2 ‘3wl |eUOISUBWIPUON

02 Gl oL S 0
T i | T i 1 [ | I Am i T T #\@_/ O
e 9 O® - ¢ P |
) /Q
® 5 “ g !
i 1
7 - © © )
8 9 5 N
 © 7 5 cle
W) .
3 ©) ~ m.O
- )
HoL
4571
©) (@) ®
@ . B

d ‘uoljewso}sg uesp

This document is provided by JAXA.



Dynamic Behavior of Viscoelastic Shallow Spherical Shells 19

M ¢ UQIRWIOKR(] [BUOISUBLUIPUON

T NN N0 2y Y w0 ®

- 1 T ] { i 1 ] i ! i

—20
—122
—-124
-126

h)

M ¢ UOI}BWIO0B(] |BUOISUSWIPUON

. =)
[aN] — O ~
| NN oY ™ < T} © N~ @ o © g
T ™5 T T 1 T T T T ] il
— [SY
o
£
T =
(. 8
o
2
o,
2 e
n
e .Eé‘)
o) %::
G 2%
g 2z
- [ 3]
n ;_"_‘
-~ S g8 s
o 88T
o g =
n
— O
N e
Nl\v\_/
s
°c ¢
g -
L <
2w
©
E”
~
<
—
)
Py
i o &3

This document is provided by JAXA.




M. Sunakawa and N. Kumai

09w L =% ‘)rg=y

‘68t"0=4d ‘Suipeo] dais {[joys ONISB[I0ISIA © JO UOHOJA 9] ‘OL]

M UOHBLIOI3Q [BUOISUBLUIPUON

Ol

¢ uoHeW.I0}a( jeUOISUBWIPUON

&)

"09s7 OgL="F2 ‘0 =Y

‘Orb'0=d ‘Suipeo] dais {[[2Ys OIISB[I0ISIA © JO UOLOIN ‘S °OI

M

oL}

This document is provided by JAXA.



21

Dynamic Behavior of Viscoelastic Shallow Spherical Shells

‘0Ly’0=d ‘Surpeo] dajs {[]ays O1ISB[20ISIA B JO UONON ‘8] "OI4

M * UOIJBWIOI(] |BUOISUBWIPUON

Ol

80

08w £ =%2 ‘()rg=y

‘09y"0=4d ‘Burpeo| dajs {[]oys O1JSE[I0SIA € JO UOHOIN /] "OI

M ¢ UOIJRLWIIOSS(] |RUOISUBWIPLON

s L =% ‘grg=y

¢

This document is provided by JAXA.



22 M. Sunakawa and N. Kumai

it can be concluded that the motion of viscoelastic shells in the same region is
substantially the same.

Moreover, it can be seen in Fig. 14(b) that the buckled pattern is almost formed
up by the first mode only.

The every local extremal value of p(z) in Fig. 13 corresponds in general to that
of w(0,7) in Figs. 14 to 18 inclusive, respectively. This fact shows that it is
pertinent to analyze the motion of shells using the relationship o(z) vs. ¢ instead of
w(0, 7) vs. 7.

3) effect of viscoelasticity:

The effect of viscoelasticity on the critical load can be seen in Figs. 4 and 5.
Results shown in Figs. 4 and 5 have the tendency similar to that shown by Huang
and Nachbar (1968) for the case of viscoelastic shallow arches.

The phenomena that modes of higher order are suppressed by the viscoelastic
effect can be easily examined by the comparison of amplitudes.

From the numerical solutions presented, it can be seen that the loading speed
and retardation time have significant effects on the dynamic buckling load over a
limited range of their values.

4) quasi-static buckling load:

It is shown in Figs. 4 and 6 that the maximum damping appears for the case of
7,=720 psec in the present numerical solution. Multiplying p,,=0.500 [at (dp/dz)~!
=200] for the above case by E,/E,, obtained is the quasi-static buckling load p,, =
pso(E,/ E)=0.628, which differs little from the static buckling load, e.g., by only
0.169 from that obtained by Thurston (1961).

4. CONCLUDING REMARKS

In the present paper, the axisymmetric dynamic behavior of viscoelastic shallow
spherical shells with a clamped edge has been analyzed.

The nonlinear governing equations of the problem have been derived first of all,
representing the viscoelastic characteristics of materials by a linear model. Then
the equations have been solved numerically for the cases of step and graded load-
ings.

The relationships between the dynamic loads and the resulting responses have
been obtained for the shell of specified geometrical parameter, and the critical load
and the effects of viscoelasticity and loading speed on the dynamic behavior of
shells have been discussed, paying special attention to the role of time. And a clear
definition of dynamic buckling has been proposed.

Some experimental results have been presented and a good agreement between
the theoretical predictions and experimental results has been shown.

It is natural that the quasi-static buckling load obtained from the present results
has coincided with the corresponding static one.

The present procedure can be applied easily to problems of elastic shells and
some solutions will be shown in the APPENDIX.

The numerical computations were carried out on the HITAC 5020F computer

This document is provided by JAXA.

&)




Dynamic Behavior of Viscoelastic Shallow Spherical Shells 23

of The University of Tokyo, operating double precision.

The present paper is the English version of extracts from References [/7] and
[12].

Department of Structures,

Institute of Space and Aeronautical Science,
The University of Tokyo.

November 20, 1974.
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APPENDIX

Dy~NaMic BEHAVIOR OF ELASTIC SHELLS

The dynamic behavior of an elastic shallow spherical shell obtained by the
present procedure is compared in Fig. 19 with some of previous results, and an
excellent agreement among them is seen except the one by Budiansky and Roth
(1962), which seems to have some error in the numerical calculation.

The results by the present procedure by the four-term and eight-term approxi-
mations and the solution by the finite difference method for the response of an
elastic shell are shown in Fig. 20. From this figure, it can be seen that the four-
term approximation is highly precise. The motion of an elastic shell subjected to
step loading is shown in Figs. 21, where figures in circles correspond to those
in Fig. 20. Comparing motions in Figs. 21 and 17, the effect of damping can be
observed apparently (especially, @ in the former and ® in the latter).

Degree of ease in generating large deformation is shown in Fig. 22. There are
two large deformation regions in this elastic case contrary to Fig. 11, where the
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F1G6. 19. Comparison of p(r) vs. r curves; step loading, p=0.60, 1=5.0, r,—=co.
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effect of damping is very large. Figure 23 shows the behavior of an elastic shell
subjected to step pressures. As stated in 3.2. 2), the motion of viscoelastic shells
is substantially the same only if pressure loads belong to the same deformation
region, otherwise the motion is not always the same even when loads are nearly
equal with one another. It can be seen in Fig. 23 that the remark mentioned above
holds good in the motion of elastic shells.
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