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The Electron Energy Loss Rates by Polar Molecules

By
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-Synopsis: Simple useful formulae are derived for rates of electron energy loss through
the rotational and vibrational excitation of polar molecules. Accuracy of the these
formulae is tested by comparing rates from the formulae with results of direct numerical
calculations from the relevant cross sections on some molecules abundant in the cometary
atmospheres. The energy loss rates, as functions of the difference between electron and
gas temperatures, are presented in graphical forms for H:0, OH, CO, CH, NH, NH;,
and also for H2 and O for the gas temperatures: 300K, 500K and 1000K.

1. INTRODUCTION

Accurate cooling rates of the electron gas interacting with atoms and
molecules in gases are required in quantitatively understanding the energetics
of ionized gases in the planetary and space physics and also the relaxation
of the electron temperature in laboratory experiments.

Thermal electrons in a gas lose energy through the interactions with
atoms and molecules and often with charged particles in the gas if the
electron temperature 7. is above the gas temperature T, Very often,
excitations of the molecular rotation and vibration are the most efficient
energy loss mechanisms for the thermal electrons in a gas of low ionization
degree as compared with the other kinds of collisions: momentum transfer,
fine-structure excitation, electronic excitation and ionization.

The fundamental theory of the electron-ion interaction has been discussed
repeatedly in the past and an expression for the rate of the energy transfer
between electrons and ions in ionized gases is known to an accuracy
sufficient for practical applications [1]. However, in the case of the electron
energy loss resulting from the collisions with neutral particles the situation
is not so satisfactory, owing to a variety of relevant interactions (long-range
multipole interactions, polarization force, short range interaction, and ex-
change force) and sometimes to the greateness of the number of energy
levels involved. Only to some individual atoms and molecules, analytical
expressions have been presented to approximately reproduce the numerically
calculated values.

The energy loss rate for the rotational excitation of the diatomic molecule
through a quadrupole interaction was given by Mentzoni and Row [10]
using the Gerjuoy-Stein[3]’s cross section; i.e.,

[257]
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%‘—g—z:—o. 905 % 10-5Q%+ B(To— T,)/ T2, °K-cmd-sec-! (1)
where @ is the quadrupole moment in unit of ea,® (—e is the electron
charge, @,=5.292x10°cm is the Bohr radius), and B is the rotational
constant of the molecule in eV. Since then, this formula has been frequently
used in aeronomical problems. But a care must be taken in the actual
applications of this formula. Sometimes it gives a result considerably deviated
from more accurate values when the electron temperature becomes high.
This is due to the preponderance of the short range forces over the quadru-
pole interaction. Thus we had better, in general, use an “effective” quadru-
pole moment for @ in the expression (1).

When we study the planetary or astrophysical problems, the electron
energy loss rate due to other kinds of interactions with gas molecules is
needed. In the interstellar matter, there are a large number of polar
molecules, which are very efficient to cool electron gas. We try to derive ®
in this paper some useful formulae for the rotational and vibrational energy
loss rates for electrons in polar gases.

2. GENERAL FORMULAE

2.1 Rotational excitation of linear or symmetric-top molecules

The mean cooling rate for thermal electrons (in Maxwellian velocity dis-
tribution) through the rotational excitation and de-excitation of symmetric-top
molecules will be expressed as follows

3/2

X {o(J, K—J +1, K, E)”J,K_U(J+la K—*J, K; Eyngegl (2)

where the meaning of quantities involved is as follow: m,, electron mass; &
Boltzmann canstant; J, total angular momentum of the molecule before
collision; K, projected component of J upon the symmerty axis of the
molecule; o(J, K—J+1, K; E), cross section for the transition (J, K)—(J +1,
K); n;,x population of a state (J,K) normalized such that EnJ,K—l

AE; ;41,5 absolute value of the energy difference between two states
(J,K) and (J+1, K). As the symmetric-top molecule has a dipole moment
parallel to the symmetry axis, no transitions on K is introduced through
the dipole interaction. The lower limit of the integral in (2) is 4E;,x—s+1,%
for the excitation term and zero for the de-excitation term.

The cross sections for the excitation and de-excitation processes are,
respectively, given by Itikawa[7], as follows

(J+1)2—K?2 ln‘ E+ k! |
J+D)@T+1) | E—F

Ji—K2 . | Bk
—9 3
o(J, K—J—1,K)= k T Dz STy M) (3)

o(J, K—J+1,K)= 3k2 T pe

This document is provided by JAXA.




e

The Electron Energy Loss Rates by Polar Molecules 259

where k& is the wave number of electron before collision, D is the dipole
moment of the molecule, £/, £” are the wave numbers after excitation and
de-excitation collisions, respectively. These formulae are based on the Born
approximation. It must be noted that the Born approximation for the
rotational transitions through the dipole interaction has still fair validity
at low electron energy range, since a greater part of contributions to the
cross section comes from distant encounters[15]. This will probably make
the electron energy loss rate based on the Born approximation more reliable
for polar molecules than for non-polar molecules. The construction of the
energy loss rate in an analytical form for the rotational transitions is possible
through the use of the Born cross sections (3) which are of very simple
forms for the general quantum numbers J and K.
Using the well-known expression for the energy level®

F(J, K)=BJ(J+1)+(A—-B)K?, - (4)
the normalized level population is expressed as
ny,x=(2J+1)g(J, K) exp(—F(J, K)/£T,)/N, (5)
where

Nz%(ZJ—l— Dg(J, K)exp(—F(J, K)/T),
A and B are the rotational constants, g(J, K) is the statistical weight other
than (2J+1) of the level (J,K), and T, is the rotational temperature of
the molecules.

The factor ¢(J, K) will be discussed next. The states K20 are doubly
degenerate while the states K=0 are not. In addition, those symmetric-top
molecules where two of their principal moments of inertia are not accidentally
equal, will have a p-fold axis of symmetry in general (p is an integer).
They produce a statistical weight in an involved way, corresponding to
nuclear spin [ and its statistics (Bose-Einstein or Fermi-Dirac). ¢(J, K) is
also related whether K is a multiple of p or not, and to the parity of K.
Besides, the case K=0 often has to be handled separately. In any way,
-the statistical weight is periodically changed, so that the effect of variation
of g(J, K) to the cooling rate will be smoothed out if there are a large
number of rotational states involved. This is the case if T, is not too low.
Under the same circumstance, the special behavior of the K=0 level does
not give any appreciable effect. Therefore, we shall assume that g(J, K)
is independent of J, K on the average in deriving the analytical formula.
In the direct numerical calculations in §3 to test the analytical formula,
these weights are rigorously taken into accout.

The preceding story will be reduced to the case of the diatomic molecules
in a limit A—oco. Then the quantum number K means a projection upon

* The correction due to the centrifugal stretching is exceedingly small at rotational tempe-
rature of our interest.
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the molecular axis of the sum of electronic orbital and spin angular momenta.

In a 'Y state, K is zero and only a single rotational sequence exists, while

for a 21 state (as in OH, CH, etc.) two sequences exist (K=1/2, 3/2).
From (2) and (3), we obtain

Dz = J
_712_%,2——319 GT1 5 2 2 A ks
(J+1)2—K dE e—BE/Te]n (VE +VE—AE;,g-yr1,x)°
[:(J'}‘l) (2J+1) J,[\SAE] Kae]+l K AEJ,I\—'J+1,I\
(J+1)2 —ﬂE/Tc (\/E +«/E+AEJ,I\—*J+1,I\)
(J+1) (ZJ—I—S) JH’KS ak e AE;, k—r+1,x :|

(6)

where 8=1.16049 x10* is a numerical factor for unit conversion, D is in
unit of debye, 4E, A, and B are in eV. Abbreviating 4E; x—s+1,x as 4,

and putting ¢=p/T., the relevant integrals become &
SwdE gl Y E=VE— 4y :e‘f"[gmdx o2 In(vVZF A+ v/ T)
4 4 0
—In 4 °°d —cz |
n SO z e ]
and
Sde e °Eln (VE +A E+d) :Soodx e =2Iln(Vx+4++ ' x)
0 0
~n4| dz e, (7)
0
Integrating by parts
—cx lnA l *° _cx___iaz__
S dz e*In(Vzx+4+V'x )— 2c Soe Vi) (8)
and utilizing the formula
* —mi——— cd/2 9
So e Vm—e Ko(c4/2), (9)
where K, is the modified Bessel function of the second kind, we obtain
. — (J+1)*—K? ( NIsK o —cd__ nJ+1,K> (CA/z)__
[1in O)="—75"\3751¢ 27+3)° Kolcdf2).
(10)
With the use of (5)
_ (J+1P—K? L ank (cf/2) (1 — PN Te~ T/ TeTo) 11
L 1= (J+l)(zj+1)ﬂJ,Ace Ko(cd/2) {1—e by (11)
where 4 is 2B(J+1). Generally, the exponent in the last factor is very small
[
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for the most important J’s which are specified by the rotational temperature.

Thus

(J+1)2—-K?2

L 1= (J+1)(2J+1)

ny, ke 42K (cd/2) AT . — T T,. (12)

Using these expressions, we now have

1 dT. al., 2(Te—=Ty) T) 18 S (J+1)—K? 2
R PR Lo R L VPP Ry o e
X e~ PP K)/ Ta . g=cd2K (¢ A[2), (13)

For 2—0, K, behaves as Ky(z)=—In(2/2)—7+O(z In 2), where 7 is the
Euler’s constant (=0.5772). This relation can be applied here since c4/2
=pBB(J+1)/T. is a small quantity. Thus we have

e~c42Ko(cd/2)= —In(cB(J+1)/2)—7.

For further simplification of culculations, we now define the new quantities
d, €, and £, and regard the discrete variables K and J to be continuous
variables (K—x, J—y).

0=cB/2-e7 (0>0), e=p(A—-B)/T,  §=BB/T, (£>0). (15)
Then eq. (13) becomes

1 dT. 2 (Te=Tg) 1 4 3 ezt )
=9 6D N4BS dygdx[y In(dy)e
—yx?In(0y)e—E=+47], (16)

We interchange the orders of the integrations and integrate first over y.
The result is

1 dT. (T.—T,) 1 :
1a7T. 519 6p2 =10 L ype In(dz)e—E+6=
nodi DT N [2525"””"")6
1 = 1
—(e+§)xr ____ — — AY Y 2\ ,—&z?
tE | aze i@ Sodx(l g0 E(—6a%)e= ], (1T
where
Ei(—z)=_g°° e;' dt. (18)

As always €+£>0. the first and second terms in the square brackets can
be integrated without difficulty, while the last term becomes
1

~ i) dr Bt dm e qag)

Two cases must be distinguished:
i) €>0 (prolate symmetric-top: A>B)

S:odxe—""Ei(—éxz)z— /gh( @+ 1+-§—), (20)
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ii) &<0 (oblate symmetric-top: A<B)
Sood:c e““’E;(—sz):—Jlsill‘lA/!—i’-. (21)
0 le| g
Hence we get for e>0
1 dT. ATe—=Ty 1 “1< 4(e+¢€) )~/~7E—_
=0 D LB [ > {r+m 2 —
T, (/e € £ 1/ T
g e D e )L e
while for <0, the factor Vr/eln(vVe/é+v1+¢€/€) in this formula has to be
replaced by V7 [[e]sin~V [e/E.

The last quantity to be evaluated is N in (5). Following the same pro-
cedures as before, we obtain

§ é (2J+ 1)e—ALBIU+D+HA=BKY T,
Mz—d ! oo L 23
= —(&ptext) — _—
So yygoxe 26N e1€ (23)
When we combine (22) and (23) and return 0, ¢, and £ back to the original
quantities according to (15), we finally obtain the general expression for the
cooling rate due to the rotational transitions in the symmetric-top molecules.
1 dTe> (T.—T,)
— =—0.0275D2B~—-°2——¢
<72 dt rot (symm., top) Tl 5
4A T2 A B J A
— —ytInd—{1—
X{“‘(ﬁBz o as -y gl iat s )
(°K-cm3.sec™!) (24)
where
_[ln(«/(A—B)/B—i— VA/B), A>B .
" sin~'v/(B—A)/B, A<B.
For convenience, the relevant notations are summarized:
B=1.16049 x 104
A, B are the rotational constants in eV
D is the dipole moment in debye
T., T, are the electron and gas temperatures in Kelvin.
This expression reduces to the case of the diatomic polar molecules in the
limit of A—oco. That is, we readily obtain the following result:
1 dT. (T.—T,)
—0.0275D2B~ ==~ ¢/
(72 dt )rot(diatom) 7-'1 5
{m( L )+1n4 (1+7)}. CK-cm?-sec™!) (25)
BB T,
.‘
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Fic. 1. The behavior of the curly brackets in eq.
(24) as a function of B/A for the several
values of the parameter 167.2/BAT,.

The behavior of the curly brackets in (24) is shown as a function of B/A
in Fig. 1 for the fixed parameter, 167.%/(BAT,). From these curves we see
that the factor is slowly varying within a realistic range of these variables.

2.2 Rotational excitation of asymmetric-top molecules

We now briefly discuss a more general case, i.e., an asymmetric-top mole-
cule. We shall confine ourselves to the case where the dipole moment is
directed along one of the principle axes of inertia as in H,O. In the ex-
pression (24) for the symmetric-top molecules, the rotational constant A is
related to the moment of inertia around the axis parallel to the dipole
moment. (At the same time the direction of the dipole moment was always
a two-fold axis of symmetry.)

So it would be not unnatural to think that A and B in the expression
(24) correspond respectively to a rotational constant associated with the
principal axis parallel to the dipole moment (we call it F) and to a certain
kind of average of the remaining two constants (say, G and H) in the
asymmetric-top molecules.

As long as we take only the dipole interaction into account, G and H
should appear symmetrically in the formula to be derived. Since the com-
ponent of rotation around a dipole axis in the asymmetric-top molecule is
not prohibited completely we could expect that a correction is needed to
our quasi-symmetric-top model. But except for the molecules whose three
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rotational constants are extremely different with each other, sample culcu-
lations (§3.1) show that such a correction is rather small for practical
purposes.

We have tried the following typical symmetric operations M, to (24) and
compared the results with numerically calcutated cooling rates for various
sets of F', G and H:

Define M,=(1/2 Elzayr)l/r, for =0, we use My=limM,=(T1 a,)'? ie,

V=1,

v=12

geometric mean. (a,, @; are G and H in our case)

Then symmetric averages M, are monotonously increasing function of r
in the range [—oo, co].

It has been found that the geometric mean vVGH of G and H has best
approximated the numerical result in all cases. (e.g., in H;O, the relative
error is about less than 49;.)

After all we may write the rotational cooling rate for the general polar

molecules approximately as follows Py
14 d:’;e = —0.0275D%vGH(To— T,/ T.\5
n d
AF T2 F vVGH
X{In< BGH 7";) F—vGH 7“"4—(1_ 2(F — «/(;7{"))
X II—F:_’\E/__G_——H—I— 2g}, (°K-cm3-sec“ (26)
where

F—+vGH / F
1“< Vel V?H>’ GHEF

g:[ =
. | VGH—F
sin~1 BV/eiz i GH> F?,

For user’s convenience the quantities involved in this formula are sum-
marized:
F, rotational constant parallel to the dipole moment (eV) L4
G, H, other two constants (eV)
D, dipole moment (debye).

2.3 Vibrational excitations
The Born cross section for the vibrational transition through the dipole
interaction is given by Takayanagi[14], as follows

8r kE+E
3k? k—Fk |
Following almost the same procedures as in the rotational transitions, we
obtain

(v |Div)?In (27)

o(v—v')=

1 dT. 1 &
71- dt :—-319.67,?‘S—W§OAEU_.U+1[(‘U+1ID]‘U)ZnU-vsl
— (| D]v+1)7,41+S2], (°K-cm?-sec™) (28)
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where (v+41|D|v) is the v to v+1 transition dipole matrix element in debye,
n, is the normalized number of molecules in the v-th vibrational level,
>in,=1, and S;, S, are the two integrals over E in (7). If the gas tempe-

v

rature is not too high, molecules are populated mainly among the lower
vibrational levels, so that the energy level is written as E,=w.(v+1/2), v=
0,1, 2 ..., where o. is the fundamental vibrational energy. The level
spacing 4 is constant and is equal to w..

Using the relation Noir[ny,=exp {—PBw./T,}, where . is measured in eV,

1 dT.

— :—319.6ng's%‘—Ko(ﬁa)e/ZT‘,)e—ﬂwe/m

X [1—e=Aedl/Ta=1/Te)] > (v+1|D|v)*n, (°K-cm3-sec™) (29)
v=0

Introducing a variable x=pw./27T., the rate is expressed as

<1 arT.

n dt

) =—4.75x10-5v T, [z e-Ko(z)]
vib
x [l_e_.zx(T,_,/T,—l)] i ('v+ 1 | D|’U)2nu. (oK.cmB.sec—l) (30)
v=0

The above derivation suggests that the relation (30) can be applied also
to the optically allowed electronic transition, provided that the cross section is
mainly determined by the dipole interaction. (Then, w. and 2} (v+1|D]|v)*n,

have to be replaced by the threshold energy and the square of the transition
dipole moment of the process.)

3. Tuae CooLiNG RATE oF THE ELEcTRON Gas
IN THE ENVIRONMENT OF COMETS

We now discuss the electron energy-loss rate for some molecules abundant
in the cometary atmosphere. Water vapor and its dissociation products
play a dominant role, and also carbon compounds may have non negligible
effects.

We calculate in. this section the cooling rates due to H,O, OH, CO, CH,
NH, NH,;, H, and O. The first six molecules have large dipole moments
and their rotational effects and vibrational effects are taken into account.
For H,, rotational transitions by the quadrupole interaction, and for O,
the fine structure transitions are considered. Direct numerical computations,
without using the approximate formulae given in the previous sections, are
carried out for all these molecules. The experimental or theoretical cross
section data other than the Born results are used as far as possible. This
is particularly so for the vibrational processes of some molecules, but as to
the rotation we are compelled to use the Born cross section after all.

After we have performed numerical calculations using the Born cross
section, the results have been in each case checked by the preceding analytical
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The Electron Energy Loss Rates by Polar Molecules 267

formulae, and the accuracy of the analytical expressions (24), (26) and (30)
has been evaluated.

3.1 Rotational transitions
H.0

For the asymmetric molecule it can hardly be hoped that the energy loss
rate will be represented in a closed form, because the energy levels and
the wave functions of the asymmetric rotor are only determined by solving
numerically the eigenvalue problem and there are no such simple expressions
of the energy levels and transition matrix elements as for the symmetric-top
molecule.

The rotational transition cross section of the asymmetric rotor due to
dipole interaction is given in the Born approximation as follows[8]

kR }

o(Jr—J't)y= (2J’+1)D2<J”c’]J7:>2mln Y

Skz 31

where
J J 1
K —KO0
J J 1

0 —m m

<J"C'|J’C>zma:;u;061r'1<»'flu<u(—l)K< >; m=0

= fl:'mu'fl:oo(_’ 1)m+6<

!
)+ar’00arrlzu<J J l )
m O —m

K>m vV 2\K m—K —m
1 (J J! l
R v Aol — m+K+6__—-
+K2>oar’k+m” exo(—1) f\/Z(K —m—K m)
1 (J J’ l )
K m—K —m
m>0, (32)

/
+ DAty komy Qe — 1)K l__(J J l )

-+ E (l—,m K, v’ arhu(—l)m Rav' /
m>K>0 ¥ 2

and the quantities with and without prime respectively correspond to initial

and final ones. Furthermore, the quantities in the above formula have the

following meaning:
J is the total angular momentum; ¢ designates 2J+1 sublevels for a
given J (t=~J,..., J) (quantum number K for an asymmetric mole-
cule is no longer a good quantum number and the degeneracy for
K=x0 is removed; a:x,’s are the coeflicients of expansion of the
asymmetric rotor function in terms of the symmetrized basis function
linearly constructed from the symmetric-top molecule wave functions

14
(Wang’s functions) under the fixed J; (2 —:IK é) is the 35 symbol;

D is the dipole moment of the molecule which is parallel to the
principal axis of the intermediate moment of inertia in H,O (this is
the reason why {:++)11, appears in (31)); &’ is the electron’s final wave
number after transition (J, t—J’, /).
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a:x» and the energy levels are simultaneously determined by solving the
relevant secular equations as eigenvectors and eigenvalues. It is too lengthy
to be shown here in details. (Concrete expression of the matrix to be solved
is seen, e.g., in the reference[8].)

The coefficient {J’z’|Jt)11, and the energy levels E;. have been calculated
up to J=17 and the integration in (2) where ¢ replaces K has been carried
out. At the rotational temperature below about 1000°K under investigation,
the adopted range of J may appear unnecessarily large. However, the
energy spread of sublevels for a given J increases rapidly with J. For
example, the energy level (J=17, t=—17) is lower than that of (J=11,
t=11), so that we need the information of the state (J=17, v= —17) though
(J=17, ©=17) is not required. Thus the eigenvalue problem must be solved
to a considerably high J. A similar situation is also found in other cases
simpler than the water molecule. The accuracy of the rate is often sensitive
to the highest state considered.

The resulting cooling rate is shown in Fig. 2 and tabulated in Table 2.
We can understand that the water vapor is very cempetent to cool the
electron gas if we pay attention to its adundance in comets. We have
noticed in § 2.1 that the cooling rate is proportional to the square of the
dipole moment and also to the rotational constant apart from the slowly
varing logarithmic factor. Thus, strongly polar molecules with small atomic

10*

T TTTTIT

H:O rot.

II[T[

ITIIIIIII

[ |r1l]l

| | !
0 500 1000 1500
Te’—Tg ( K)

FIG. 2. The electron cooling rates for the
rotational and the vibrational ex-
citations of H:O.

This document is provided by JAXA.



The Electron Energy Loss Rates by Polar Molecules 269

TABLE 2 idTg/dt for H.O rotation (°K cm?®sec™!)
n

\T \T | 300 500 700 1000 1500 2000 3000
W0 | 8756 L70(_5) 2.05(_5) 227(_5) 2.36(—5 2.35(-5 2.26(_5
300 — LOL(=5) L49(—5) 1.82(—5) 2.02(—5) 2.07(—5) 2.05(—5)
500 | —  —  6.51(—6) 1.16(—5) 1.52(—5) L67(=5) L.75(—5)
700 — = 6.33(-6) 112(—5) L40(—5) L50(—5)
900 — — — L97(-6) 7.81(—6) 1.06(—5) 1.29(—5)
1100 — — — — 486(—6) 8.09(—6) 1.09(—5)

* 8,.75(—6)=8.75x10-6
masses are always good cooling agents.

NH;

The molecule NH; is not necessarily significant for the electron gas cooling
in the comets. We have calculated the cooling rate for this typical sym-
metric-top molecule so as to test the preceding expression (24) and also to
apply it to the other fields of astorophysics. The statistical factor other than
(2J+1) for NH; is shown in Table 1. When these factors are ignored,
values calculated from (24) coincides with the direct numerical results within
an error of 1%. The agreement is still very good when the statistical factor
is taken into consideration. The maximum error then is below 1.5%; over
the whole temperature range culculated. (see Fig. 3)
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CH and OH

The ground states of these molecules are characterized by *//. Duc to
the spin-orbit interaction in CH, the molecules has a double sequence, where
the lowest level of the sequence I1is, Il3p, ... is lower than that of the
other sequence Il3;, I[lsp,..., while in OH the double sequence is an
inverted one (the lowest of /73, IIsp, ... is lower than that of 1y, I, .. .).
If the spin exchange effect is ignored, the transitions occur only within each
sequence. Then we can utilize (3) as the cross sections for the dipole
transitions, where for the two sequences for CH, for instance, K=3/2 and
1/2.  As is expected from their large dipole moments and small masses, the
rate of cooling by these molecules are very large as shown in Figs. 4 and 5.

NH

The rotational sequence of NH is split into a triplet because of the spin-
spin interaction. But the interaction is very weak in magnitude (see Table
1), so that the splitting is hardly necessary to be taken into account explicitly.
So, we have handled the molecule as if it is in a 13 state in the calculation.
The molecule NH, which is believed to exist in the cometary atmosphere
to a considerable amount, is most efficient to cool an electron gas among
the candidates studied here. The result of calculations for this molecule is
shown in Fig. 3.

CO

The molecule CO appears in the various astrophysical problems. As the
ground state of CO is !5, the treatment is simplest. The result is shown
in Fig. 6. The rotational effect is very weak owing to the smallness of the
dipole moment (0.112 debye) and of the rotational constant (1.92cm™).
This molecule is extraordinary among the molecules of the astrophysical
interest in the sense that the rate of cooling by the rotational transitions
is far less than the one by the vibrational transitions over a wide range of
electron temperature.

H.

Hydrogen is not a polar gas. But because of its importance in astrophysics,
we shall study the electron gas cooling by the rotational excitation of this
molecule. The ground state of H, is a 1%, state just as in the case of CO.
Since the molecule has no dipole moment, the quadrupole interaction must
be invoked. The cooling rate has been calculated using the Born cross
section given by Gerjuoy and Stein[3]. Mentzoni and Row’s expression
which was successful in the cases of N, and O, cannot be applied for the
present purposes because of the larger level spacings in H,. At present there
is no analytical expression useful to this molecule. Some calculations of the
rotational excitation have been done also in this case taking into account
the effects (such as polarization, exchange) other than the point-multipole
interaction. We see in Fig. 7 the result of calculations where Henry and
Lane[47]’s cross sections are used for the transitions J=0 to 2 and J=1 to 3.
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3.2 Vibrational transitions

The vibrational cross section is sometimes very different from the Born
cross section and there are not a few molecules which show resonant
structures. So, we had better adopt an experimental or a refined theoretical
cross sections as far as possible. However, no reliable values are available
in most cases. For radicals, it is more difficult to obtain even a transition
matrix element. Therefore, we have confined ourselves to the cases of H-O,
OH and CO.

H:0

Water has three normal vibration modes: symmetric streching, bending
and asymmetric streching, whose quanta are denoted v, vs, vs, respectively.
Five transitions from the ground state are taken into account: (010), (100)
+(001), (011), (101), (111). They give the greater part of contributions. For
the cross sections of the first two transitions, data are taken from the calcu-
lations by Itikawa[9] and for the remaining processes semi-emprical formula
are used with parameters given by Olivero et al.[12]. The inverse processes,
if necessary, are included by the detailed balance relations. We can see not
a little effect at high electron temperatures (Fig. 2).

OH

The transition dipole moments for hydroxyl are taken from the experimental
values by d’Incan et al.[6], 0.031 and 0.039 debye for 0—1 and 1-—2
transitions respectively. The results are shown in Fig. 5.

Owing to rather small transitlon dipole moments and considerable high
threshold energies (0. 443eV for 0—1 transition) the cooling rate is very small
naturally.

But the relative importance between a rotation and a vibration is strongly
dependent on the individual molecule and we see a good example in next

carbon monoxide as contrasted to OH.

CO
The dipole moment of CO is very small (0.112 debye) and the transition

dipole moment for the vibration stands this value. The heaviness of the
molecule in addition makes the rotational effect to be comparatively small.

To be more important, the CO vibration has huge resonant structures
around 2eV. Experimental data [13] has been used for the transitions from

v=0 to 1, 2, 3 and 4.
We can thus understand the rapid increase of the rate toward the high

electron temperature, in Fig. 6.

3.3 Fine structure level excitations

o

The electronic ground state of atomic oxygen is split into 3 sublevels with
the small energy differences between each other. It is well known that the
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transitions among them cause the electron gas to fair cooling in the upper
atmosphere of the earth. Around the regions far apart from the comet, the
atomic oxygen originated from the photodissociation of H,O, OH and CO
exists to a considerable amount.

The cross sections are taken from the theoretical calculation by Breig and
Lin[2]. The result is shown in Fig. 8.

4. CONCLUSIONS

The atmospheres of comets are full of the polar molecules; evaporated
parent molecules, chemical products and their dissociation products (mostly
hydride radicals).

In these kinds of celecial objects, non-polar molecules, e.g., Nz, O, abundant
in the terrestrial atmosphere, no more play a decisive role on the energetics
of the electron gas.

We have calculated the electron cooling rate for the several polar mole-
cules which are believed to exist in the cometary atmospheres.

The molecules H,O, OH, CH, CO and NH are known to be the most
efficient cooling agents for the electron gas there.

The analytical expressions of the cooling rates for the rotational and the
vibrational processes have been constructed within the frame of the Born
approximation (eqs. (24), (25) and (30)).

Also the extension to the general asymmetric-top molecules has been tried
(eq. (26)). They have been confirmed to be accurate enough for the practical

applications.
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