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Summary: Aerodynamic characteristics of a circular cylinder either stationary or rota-
tionally oscillating around its axis in uniform viscous flow are studied by numerical
calculation and by experiment. The method and results of numerical solution of the
Navier-Stokes equations by the finite difference analogue are presented as well as
measurements for the lift and the drag forces acting on the cylinder made by towing test
models in still fluid in a range of Reynolds number, Re=40 to 6100. Good agreement
is obtained between the calculated results and the experimental ones at Reynolds numbers
Re=40 and 80, concerning the steady and unsteady aerodynamic parameters, the
phenomenon of the so-called synchronization and so on. It becomes clear from numeri-
cal calculation that there may be a close relationship between the time-variation of the
flow pattern and that of the lift force on an oscillating cylinder. Also by experiment
the influence of Reynolds number on the aerodynamic parametersand the phenomenon
of synchronization are examined.

1. INTRODUCTION

A considerable amount of discussion is found in the literature, concerning
the wind-induced oscillations of smoke-stacks, cables and other structural
forms and also the aeroelastic oscillations experienced in engineering. In-
formation about the fluctuating forces acting on a cylinder, however, is still
of considerable practical interest in aeroelasticity as well as in the basic
understanding of fluid mechanics.

This paper is concerned with the study of flows around both a stationary
circular cylinder and a circular cylinder subjected to the forced rotational
oscillation around its axis, by the methods of both numerical solution of
the Navier-Stokes equations and experiment.

Many attempts to solve the Navier-Stokes equations have been made and
reported already for steady flow around a circular cylinder by Thom (1933),
Kawaguti (1953), Allen and Southwell (1955), Apelt (1961), Keller and Takami
(1966), Dennis and Chang (1970) and so on, and for unsteady flow around
the circular cylinder which starts impulsively, by Payne (1958), Kawaguti
and Jain (1966), Son and Hanratty (1969), Hamielec and Raal (1969) and so
on. Fromm and Harlow (1963) performed numerical calculation for flow
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around a plate of rectangular cross-section which is placed perpendicular to
flow in a channel of finite width. They were successful in first showing by
numerical calculation that the Karman vortex street is generated behind
that plate. Recently, Thoman and Szewczyk (1969) and Jordan and Fromm
(1972) studied the problem of the Karman vortex street development behind
the stationary circular cylinder.

Based on these studies, we present a method of numerical solution of the
Navier-Stokes equations which is suitable for the cases treated in this paper.
This method is justfied by comparing the results with others for the case
of the stationary circular cylinder. Then a series of calculations are carried
out for a circular cylinder oscillating rotationally around its axis while sub-
jected to uniform viscous flow. The numerical solution of the Navier-Stokes
equations, however, can be executed only for the low range of Reynolds
number and in the present study some calculations are carried out for a
circular cylinder, both stationary and oscillating in the range of the Rey-
nolds number Re=20 to 80.

In addition, some experiments for stationary and oscillating cylinders are
carried out first to confirm the validity of the present method of numerical
calculation and second to study the case of Reynolds number higher than
can be covered by the numerical calculation.

Meanwhile, experimental studies have been made for a circular cylinder
oscillating in a uniform flow. Bishop and Hassan (1964), Jones (1968), Griffin
(1972) and some others measured the lift and drag forces, and the velocity
of a circular cylinder made to oscillate in a direction perpendicular to the
stream. It was found that the so-called synchronization phenomenon of the
system of cylinder and wake occurs when a cylinder oscillates transversally
in uniform flow within a certain limited range of the ratio of the imposed
frequency of a cylinder to the Strouhal frequency of vortex shedding from a
stationary cylinder, and that within this frequency range of synchronization
the measured lift force suffer changes in amplitude and phase as the imposed
frequency is varied, that is, the aerodynamic damping forces becomes naga-
tive and the transversl oscillation of the cylinder may become unstable, in
the lower part of the imposed frequency of the synchronization range. The
mechanism of this phenomenon, however, seems to be obscure as yet. Such
a synchronization phenomenon, meanwhile, be analogized to take place when
a cylinder is forced to oscillate rotationally around its axis.

The first half of the present paper is concerned with the method and
results of numerical calculation and the latter half describes the experiment
and compares its results with the calculated ones about aerodynamic para-

meters of a cylinder which is stationary or oscillating rotationally around
its axis.
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2. NuMEeRIicAL. CALCULATION

2-1. Basic equations and boundary conditions

We consider an unsteady two-dimensional flow of an incompressible viscous
fluid around a circular cylinder which oscillates rotationally with the ratio
of a peripheral velocity to a uniform velocity, Vo(¢) around its axis while
subjected to uniform flow, the velocity of which U is taken to be a unity.

In treating the flow around the circular cylinder, we use the orthogonal
coordinates (£, ») which are expressed as £=logr/a, p=0 in terms of polar
coordinates (r, 6), where a is the radius of the cylinder and taken to be a
unity.

Eliminating the pressure by taking rotation of the Navier-Stokes equations,
we obtain the familiar transport equation for the vorticity.

¢, q¢0C , g,0f _ v (0°C  0°C
8t+ h 0& + hvav“h2<6§2+apz> (1)

where q¢, g, are the & and 7-components of flow velocity, ~A=ef is the scale
factor of this coordinate system, { is the vorticity defined as {=e"¢(0q,/0&
+qy,—0g¢/07), v is kinematic coeflicient of viscosity, and ¢ is time.
Then in the terms of the stream function ¢, g¢ and g, are, respectively,
o o
hge=—- hg,=—=% 2

b4

The vorticity { is given in the terms of the seream function ¢ by

74 0%
—— 4L =—h. 3
== (3)
For the convenience of the numerical treatment, we divide the stream
function ¢ into the following two parts,

=dp+¢ (4)

where ¢, corresponds to the stream function of potential flow around the

circular cylinder, (¢p,=2aUsinkésiny: U is the uniform velocity of free

stream.) and ¢ is the deviation of actual flow from the potential flow ¢,.
Thus the final forms of basic equations are given as follows:

0C |, 1T0(¢p+ )0 0(¢p+)oLT__ v (0% 3% '

ot +h2[ on o o ar;1“h2<552+ap2) (5)
2y 2y .,
a2 Vo h? (6)

Equations (5) and (6) are to be solved for ¢ and ¢ under appropriate initial
and boundary conditions.
The boundary condition to be satisfied on the surface of the circular
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cylinder is that there is no cross flow through the surface and also no slip
flow along it, or

_ o\ _
$o=0, (E)O——Vo (7)
where suffix O denotes the value on the surface of the cylinder and Vj is
the surface velocity given by (V.+4Vsin2rf.t) where V, is the steady
component of the surface velocity, 4V is the amplitude of the oscillatory
velocity while the the uniform velocity is taken to be a unity and f. is the
frequency of oscillation.

To specify the problem completely the other boundary condition should
be imposed upon the flow field infinitely far from the cylinder. This con-
dition is that the velocity of flow asymptotically tends to the uniform
velocity U of the free stream as the distance becomes infinite. Referring
to the detailed examination of this boundary condition in the appendix, we
use the following approximate boundary condition in the present calculation:

Joo=Abe (=0 (8)

where suffix co indicates the value on the outer edge of the computational
domain and A is the value determined by the implicit process in the calcu-
lation.
2-2. Aerodynamic coefficients

Using the stream function ¢ and the vorticity {, the aerodynamic coef-
ficients of the circular cylinder can be given in the following manner, where
we use the radius a of the circular cylinder and the velocity U of the free
stream as units of length and velocity respectively. Further, the Reynolds
number may be defined in the usual way as Re=2aU/v.

Then the coefficient of the pressure of the surface of a circular cylinder

is obtained by

Coln—Colr=01=7.§ (35) dr—25°n. (9)

The coefficient of the local viscous shear stress on the surface becomes

cr<vz>=1—§;<co—zvo>. (10)

The lift and drag forces exerted on a unit spanlength of the cylinder
consist of two components due to pressure and viscous shear stress. The
ones due to the pressure are

1 44
CLP=—ES Cy(n)sinndn ,
4]

27

ch=—%§ Cy(n)cosydn (11)
0
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and the others due to the visccous shear stress are

21

CLS:‘%‘S Ce(n)cosndn,

0

1 2T
C’Ds=——2—g C:(p)sinndny . (12)
0

Then the coefficients of the resultant lift and drag forces are, respectively,

Cr=Crp+Crs,
Cp=Cpp+Cps. (13)

2-3. Numerical procedure

In the numerical calculation, the rapid changes of the stream function
and the vorticity in the flow field near the surface of the cylinder make it
necessary to use a rather small mesh size close to the surface, but in the
field far from the cylinder the use of a rather large mesh size may be ade-
quate. This gradation of mesh size is conveniently achieved by transforming
the physical plane into the (£, 7)-plane as already described. This plane is
then divided into a finite discrete mesh of points (zS, 7S) with a constant
mesh size, S, the is, the circumference of the cylinder is cut into N equal parts,
i.e. S=2r/N. Further, just outsider, where the radial gradient of flow velo-
city seems to be most abrupt, the radial mesh is further divided into two
(S/2), namely, the mesh spacing in the & and 7- directions is denoted by Sk
and S, respectively, and we call, here, the case of S¢=.S5(=2r/N) the standard
mesh and the case of S¢=S5/2 the fine mesh. This fine mesh is certainly
desirable in view of both the accuracy of computation and the economy of
computing time. For convenience all expressions of a finite difference in
the following, however, are obtained in the field divided into the standard
mesh (S, 7S).

A finite difference analogue is used to compute the vorticity {**4(Z, ;) at
each discrete time ¢+44¢ from the known values of the stream function
¢'(, j) and the vorticity {*(z,7) at time z, for all intersections (7, 7) of mesh
lines except the points of the surface, by solving the vorticity equations.
Namely, the term 0{/0¢ in equation (5) is replaced by ({+4(7, 7)) —L'(z, 7))/ 4t
and averages between the values as determines for time z+44¢ and for time
t are used as the values of ¢ and { in the rest of this equation. Thus,
equation (5) is given in the finite difference expression as follows:

CH NG 2 (Lpena, L, )

At Re
(G, 1) TG, D)~ G, =)~ L, 1)

X (GG, )+ g1, H— g aG—1, )= ¢H—1, 7))
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16S52h?

X (G, J+ 1)+ 416, j+ 1) =946, j—1) — ¢, j=1)) - (14)

where @i, )=¢»' G, )+ 9, )
and

(G +1, ) +LG+1, ) =G —1, ) —C(GE—1, 7))

1

7oL, )=

CCG, g+ 1) +C( j— D+ L@+ 1, ) +C(E—1, ) =48, )]

The use of this kind of averaging process in the finite equation (14) should
result in the implicit form.

Next, to solve equation (6) for ¢(z,7) which corresponds to ((7,j), we
employ the successive line over-relaxation method along concentric circular
lines £=constant, sweeping from £=0 (on the surface of a cylinder) to £=
£ (on the outer edge of the computational domain). The finite difference
expression of equation (6) is

G, =K, J) + o[ X, j)—PK(, j)] (15)
where
$K+1*(i’ J)
:i—[éﬂK(iﬁLl, DAPERE—1, J)+ FEH*(@, j4+1) + PEHI*(E, j—1) +S?h(I, 5)].

In equation (15), the superscript K indicates the value Kth iteration, and
@ is a parameter known as an accelaration parameter which enhances con-
vergence of this calculation. It optimum value is found to be 1.4 after
several trials. .

The boundary conditions used in this calculation are as follows, that is,
on the surface of the cylinder (1=1),

31, 9=0, (1, =B =LA+ V5] 16)

and on the concentric circular boundary sufficiently far from the cylinder
(i=M),

M, )=AEs, UM, =0 (17)
where

1 X
m§1(¢(M,])—¢(M“‘1,J))

so, A is determined by the implicit process in the calculation.

A=—

3. ResuLTs oF NuMERICAL CALCULATION

3-1. Case of a stationary circular cylinder
It is desirable to test the accuracy of the present numerical method by
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comparing the numerical results with the experimental ones previously
obtained. In order to accomplish this, some calculations are first made for
a stationary circular cylinder. The inviscid potential flow is used as the

Pp=4
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FI1G. 1. Stream lines (the upper side) and equivorticity lines (the lower
side) of a stationary circular cylinder at Re=40.

F1G. 2. Pressure distribution of the stationary circular
cylinder at Re=40. Numerical solutions: -@-,
present study; @, Apelt (1961); @, Kawaguti (1953).
Experimental measurements: O, Grove et al. (1960);
@, Thom (1933) Re=36. The angle 7 is the
degrees from backward stagnation point.
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FI1G. 3. Drag coefficients of the stationary circular cylinder.
Present numerical solutions: O, N=40 by fine mesh;
@, N =40 by standard mesh; @, N =30 by standard
mesh. Other numerical solutions: (J, Apelt (1961);
@, Kawaguti (1953); ©, Hirota and Miyakoda (1965);
@, Thom (1933). Experimental measurements: W,

Tritton (1959).

initial situation, which corresponds to the case that the cylinder starts im-
pulsively from rest in a still fluid.

Figure 1 shows a typical example of calculated stream line and equivorticity
line configurations around the stationary circular cylinder in uniform viscous
flow at Reynolds number of Re=40. We can observe here that a pair of
standing vortices are formed behind the cylinder, and that their size is in
good agreement with calculated results by Apelt (1961) and others. The
calculated pressure distribution on the surface of the cylinder agrees fairly
well with the experimental results previously obtained, especiallythose of Grove
et al. (1960), as shown in figure 2, where the angle 7 is measured from the
backward stagnation point. In figure 3, the calculated drag force exerted
on the cylinder is plotted as a non-dimensional expression together with some
numerical and experimental results obtained by others in the range of Re=
20 to 120. This figure shows it advisable to divide the flow domain into
the finer net with an increase of Reynolds number. In this figure, also, we
compare our calculated values with those of the others or with our and the
other experimental values, considering the difference of flow patterns that
in numerical calculation there are a pair of standing vortices, while in
experiment the Karman vortex street alternately appears in the wake at
Reynolds number over 40. It is confirmed that the standard mesh with the
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parameter of calculation N=30 seems tobe adequate at Re=20, the fine mesh
with N=30 or 40 at Re=40, and further at Re=80, the fine mesh with
N=40 should be used at least. When the present calculation method is
applied to the case of a rotationally oscillating circular cylinder in the fol-
lowing section, the standard mesh or the fine mesh with N=40 will be
suitable for Re=40, and the fine mesh with N=40 for Re=80, to account
for the economy of compution, although such net work may not be perfect
in the accuracy of the calculation.

3-2. Case of a rotationally oscillating circular cylinder

We carry out a series of the calculation of the flow around a circular
cylinder subjected to the forced oscillation around its axis in a uniform
viscous flow, with the non-dimensional driving frequency defined as St.=
2af./U, f. denoting the driving frequency, and with the ratio of the am-
plitude of peripheral velocity to uniform velocity, 4V. From the results of
calculation, in the range of the amplitude of oscillatory velocity / uniform
velocity ratio, 4V=0.2 to 1.0, the magnitude of fluctuating lift force acting
on the circular cylinder seems to be essentially proportional to 4V, and its
phase does not show a significant change. So, for the sake of convenience,
the calculated results for only the case of 4V=0.2 will be presented in the
following discussion.

Figure 4a shows the stream line configurations around a steadily rotating
cylinder with a constant peripheral velocity V,=0.2 for Reynolds number
Re=40 at the time 52 and 60, which are elapsed after the abrupt start of
steady rotation in a uniform flow and reduced into the dimensionless form
by the ratio of a uniform velocity to a radius of the cylinder. We can
clearly see a Karman vortex street being generated behind the cylinder in
this figure. In general, a Karman vortex street cannot be generated behind
the stationary cylinder at Re=40, as shown by Fromm and Harlow (1963).
In this case, however, the shedding of the vortex street may be prompted
by an unsymmetrical flow field due to the rotation of the cylinder. There-
fore, as in figure 4b, a fluctuation of lift force exerted on the cylinder is
caused by the generation of the Karman vortex street with the Strouhal
frequency Stx=0.11 defined as St,=2af+/U, f& denoting the frequencyof the
Karman vortex street detected by the fluctuation of the lift force. In this
figure, the wave forms of lift force are apparently composed of the mean
value Cp of lift force due to the steady rotation and the component of
fluctuation due to the Karman vortex street; Crp and CLs are the components

- of lift force due to pressure and viscous shear stress, respecively, and Cy is

the resultant lift force.

Figure 5a shows the stream line configurations around a rotationally
oscillating cylinder at the time £=48 and 56, the interval between which is
nearly a half period of the imposed oscillation. The patterns of the vortex
street at both times are almost upside-down in shape, each other so that
the vortex street arrangement is found to change with the driving frequency
St.=0.1. Further, in figure 5b, we can see that the fluctuating lift force
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FiG. 8. Stream lines an lift force of the rotationally oscillating circular cylinder

at Re=80, S¢.=0.15 and 4V=0.2.
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(a) Stream lines
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(b) Lift Force

FIG. 9. Stream lines and lift force of the rotationally oscillating circular
cylinder at Re=380, St.=0.3 and AV=02.
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exerted on the cylinder is fairly large with an amplitude of |CL|=0.55, and
it has a phase lag ¢,=—80° with respect to the motion of the cylinder or
the quasi-steady lift force*.

With a still higher frequency St.=0.2, the vortex street is formed more
distinctly behind the cylinder and the amplitude of the fluctuating lift force
decreases to |Cp|=0.22, accompanied by a large lag ¢.=—125°, as shown
in figure 6.

Next, we examine the cases of the higher Reynolds number, Re=80, as
shown in figures 7, 8 and 9.

Figure 7 shows the flow patterns and the time-variation of the lift forces
for the case of Re=80 and the driving frequency St.=0.02 which is ap-
preciably smaller than the Strouhal frequency Sz of the Karman vortex
street. The stream line configurations at the time 80 and 90 shown in
figure 7a, can be seen almost upside-down in shape, which implies the varia-
tion of the flow pattern with the period about 20 or Sz:=0.1 in the ex-
pression of the Strouhal frequency. This Karman vortex street appearing
behind the oscillating cylinder induces a fluctuation in the lift force, which
is superimposed upon that due to the oscillation of the cylinder, as apparently
shown in figure 7b.

When the driving frequency approaches the Strouhal frequency, ie. St.
=0.15, the flow patterns around a cylinder at the time =36 when the
almost maximum lift force is exerted on the cylinder, and at the time =28,
that is, about a half period of the forced oscillation before, are shown in
figure 8a. The two flow configurations of the vortex street are also reverse
in shape, so that the flow pattern is found to change with the same fre-
quency as the imposed frequency St =0.15. These facts imply that the
system of the cylinder and the wake oscillates at the imposed frequency of
the cylinder. In figure 8b, the lift force is fluctuating with the imposed
frequency St. without the Strouhal frequency, that is the two sets of lift
forces induced by the Karman vortex street and the forced oscillation of the
cylinder become synchronized. This amplitude, however, is not always con-
stant over several periods, so the average of the amplitudes is about |CL|=
0.4 and its phase difference from the oscillation of the cylinder is ¢.=—100°
lagging. Further, figure 9 is the case of the frequency of the cylinder greater
than the Strouhal frequency of the Karman vortex street, i.e. Sz,=0.3. This
figure shows the flow patterns at the time 10.50 and 17.56, the interval be-
tween which is about one period of the cylinder oscillation. By comparison
of the two flow patterns in this figure, it is clear that the flow patterns are
rather almost up-side down in shape at a short distance from the cylinder,
although only the flow pattern near the cylinder is similar in shape each
other. The prominent frequency of the fluctuating velocity in the field far

* When the cylinder oscillates rotationally with very low frequency, the force which is
exerted on it by the Magnus effect may be assumed to be proportional to the oscillatory
velocity with an opposite sign, ie. —Vo. So, we will use the time variation of this
quasi-steady force as the time basis.
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from the cylinder is seen to be Sf;=0.13 in the Strouhal frequency form,
by examining the time variation of the fluctuating velocity in this field.
Consequently, it is concluded that the field fluctuating with the frequency
of the cylinder oscillation is restricted within the close vicinity of the cylinder
and that the Karman vortex street can be observed in the wake far from
the cylinder oscillating with the fast frequency, St.=0.3. However, it is
noteworthy that in the wave forms of the lift force in figure 9b, the com-
ponent of the fluctuation induced by such Karman vortex street in wake
being slightly detected, the lift force consists most of the component due to
the fluctuating field with the imposed frequency St. found only near the
cylinder.

The variations of the amplitude and the phase-lag of the fluctuating lift
force at Re=40 and 80 are summarized against the imposed frequency in
figure 10. In this figure, the double amplitude of the superimposed lift
forces by the Karman vortex street is represented by the arrow, and within
the range of the so-called synchronization phenomenon, it seems reasonable
for the amplitude of the lift force to reach a maximum value while accom-
panied by a large phase lag.

Each of the flow configurations at the time z=48.0 (St.=0.1, Re=40),
t=37.0 (St.=0.2, Re=40) and £=36.0 (St.=0.15, Re=80) as already shown
in figure 5a, 6a, and 8a, respectively, is the pattern when the cylinder is
experiencing almost a downward maximum value of the lift force. All of

0.8
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\ \\\. [ J
0.2 o S~~_  R.=80 !
\ S~ ——n
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—200° R. =80
—200° B | {
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Sie

Fic. 10. The amplitudes and phases of lift force of the rotationally
oscillating circular cylinder. By fine mesh: —[1—, Re=40;
-—Jl--, Re=80. By standard mesh: O, Re=40; @, Re=380.
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FiG. 11. The behaviours of the points Si, Sz, S; and
Sy where the shear stress vanishes for the
rotationally oscillating circular cylinder at
Re=80 and St.=0.15. —-—, the location for
the stationary cylinder.

these figures are similar in shape where a vortex attached on the lower
surface of the oscillating cylinder is growing to the largest size, and the
same is true of the flow around the transversally oscillating cylinder numeri-
cally obtained by Okajima (1974). Therefore, the phase lagging of the
variation of the lift force as summarized in figure 10 is clearly seen to
agree with that of the change of the configuration of the vortex street in
each case. We consider the behaviour of the flow near the surface of the
cylinder, examining the movement of the points where the viscous shear
stress vanishes on the surface, which correspond to the points of the flow
stagnation and separation staying at the fixed points in the steady flow. As
shown in figure 11 (Re=80, St.=0.15), these points S, S, S; and Sy are
seen to move with periodicity, and their frequencies are all the same as the
imposed frequency Sz. At the time £=55.5 or 68.3 in this figure, the dis-
tance between the points S; and S; becomes minimum and that between
S, and Sy is maximum, and in such a state, the cylinder is seen to be ex-
periencing a maximum value of the lift force by reference to the time-
variation of the lift force shown in figure 8b. This implies a close correla-

tions between the movement of these points and the variation of the lift
force.
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4, EXPERIMENTAL APPARATUS

The purpose of the present experiment is to measure the fluctuating lift
and drag forces acting a circular cylinder subjected to the forced rotational
oscillation around its axis with the specified amplitude and frequency. This
is done not only to confirm the validity of the method of numerical calcu-
lation discussed in the previous section, but also to afford some information
on such problem for higher Reynolds number.

So, we constructed an apparatus as shown in figure 12. By towing a test
cylinder in a still liquid, either water or oil, of a tank, the uniformity of
the velocity distribution in the spanwise direction of cylinder is sufficiently
good except at its ends, and a low level of disturbance in flow can be ex-
pected. The test cylinder is made of hollow plastics as light as possible in
weight in order to make measurement accurate.

4-1. Tank and carriage for measurement

As shown in figure 12, water or oil is in takn (1), which is 0.7m wide,
0.4m deep and about 10m long, and a carriage (3) with test cylinder (5)
slides on tracks (2) by towing ropes (4) which are wound on a drum driven
by an electric variable-speed motor. The test cylinder is hung vertically
down from the carriage and is forced to oscillate rotationally around its
axis with arbitrary frequency and amplitude by an oscillator mounted on
the carriage. This oscillator consists of an electric variable-speed motor (6)
which forces the test cylinder to oscillate around its axis through a gear

F1G. 12. Experimental apparatus.
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train (7), a synchro-belt (8), a crank wheel and a scotch yoke mechanism
(9), a driving wheel (10), a driving wire (11), and the test cylinder, in order
of mention,

Many different kinds of experimental condition can be obtained by the
following means. The Reynolds number may be changed by varying the
towing speed between Scm/sec to 50cm/sec or by exchanging water and oil
as fluid substance, the oscillatory amplitude of the test cylinder by the selec-
tion of different crank wheels or driving wheels, and the oscillatory fre-
quency by changing the speed of the oscillator motor. The available
Reynolds numbers are thus about Re=40 to 160 for oil and Re=3000 to
6000 for water.

Since the present experiment is carried out by towing the test cylinder
in still liquid with free surface, it is desirable to reduce the effects of surface
wave and end-clearance as much as possible. For this reason a circular
plastic disc (12) (diameter 500mm) is mounted at the top of the test cylinder
just touching the free surface of the liquid, and all of the measurements are
made on the central part (5b) of the test cylinder, as described in the fol-
lowing section.

4-2. Test cylinder

The circular cylinder (5) is 30mm in diameter and 370mm in span-length,
and divided into three sections (5a, 5b, 5c) in the spanwise direction, only
the central one (5b) of which is used for the measurements so as not to
suffer from the effects of three dimensional flow due to surface wave, end-
clearance, and so on. The central section (5b) is 100mm in span-length,
made hollow to reduce its inertia as far as possible, and suspended from the
upper dummy cylinder (5a) by two parallel leaf springs on which four strain
gauges forming a Wheatstone bridge are mounted so as to be sensitive only
to the component of the external force normal to these springs. The natural
frequency of the central test cylinder suspended by the leaf springs is esti-
mated to be over 20Hz in water. The present experiment is conducted in
a range of imposed frequency of the cylinder of less 2Hz. Thus there shoud
be no difficulty due to the above-mentioned natural frequency. The upper
and the lower sections (5a, 5¢) are 170mm and 100 mm long in span and
fastened to each other by two parallel connecting rods. The gaps between
these three sections are adjusted to be 0.2mm or less; they were also pre-
liminarily checked to have no perceptible influence on the measurements.

The test cylinder is held fast to the supporting arms with two radial and
one thrust bearings, and it is free to rotate around its axis when periodically
forced by the oscillator. The supporting arms of the test cylinder are fixed
to a turn-table on the carriage which makes it possible to measure the external
force in any direction by turning the table and the test cylinder.

5. EXpERIMENTAL RESULTS

In the present experiment, the two component forces the directions of
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which are at right angles to each other are measured in separate runs, and
the lift and drag component forces can be vectorially recomposed from
these two components and reduced into the same non-dimensional forms of
coefficients C; and Cp as used in the numerical calculation.

5-1. Comparison between the experimental results and the calculated results
at Re=40 and 80

For the drag coefficient Cp of the stationary circular cylinder, the com-
parison between the results of the present experiment and calculation were
already presented in figure 3, in which it is clarified that they reasonably
agree to each other and also with the results of the previous work (Relf
and Simmons 1924, Tritton 1959).

Figure 13 shows typical records of the forces, F; and F,, respectively,
acting on a circular cylinder which is oscillating around its axis in uniform
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F1G. 13. Typical records of forces acting on the rotationally
oscillating circular cylinder at Re=80.
(a) St.=0.021 and (b) Sz.=0.152.
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‘ Fic. 14. Calculated and experimental values of lift forces of
the rotationally oscillating circular cylinder at Re=40,
80 and 4V=0.2. Numerical solutions: @, by standard
mesh, @, by fine mesh. Experimental measurements:
—QO—, lift force; I, the fluctuating components due
to the Karman vortex street.

This document is provided by JAXA.




AP

Viscous Flow Around a Rotationally Oscillating Circular Cylinder 333

viscous flow in the case of Re=80. The directions of the forces F; and F%
are set always to be at right angles. Since the amplitude of the angular
displacement of oscillation is relatively small (46=18°) in this case, the varia-
tions of the forces F; and F, are nearly equal in shape but not in value
to those of lift and drag forces, respectively. It is apparent in figure 13a
(St.=0.021) that the fluctuating force induced by Karman vortex street is
superimposed on that due to the oscillation of the cylinder. This phenome-
non corresponds to the calculated results that have been shown in figure
7, provided the driving frequency St. of the cylinder is appreciably different
from the Strouhal frequency St; of the Karman vortex street ((a) St.=0.021).
However, when the driving frequency St. approaches the Strouhal frequency
Str ((b) St.=0.152), so-called synchronization phenomenon occurs, and the
force F; oscillates at the imposed frequency and its amplitude becomes large.
When St is greater than St:, the force gets smaller and irregular.

In figure 14, the amplitude |C.| and phase angle ¢. of fluctuating lift
forces are summarized and compared with the results of numerical calcula-
tion at Re=40 and 80. This figure shows that the experimental results
coincide quite well with the calculated ones, not only in shape but also in
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FIG. 15. The amplitudes and phases of the fluctuating lift forces
of the rotationary oscillating circular cylinder. Case
of low Reynolds numbers in oil: O, Re=40: (J, Re=
80; @, Re=120; @, Re=160 and case of high Reynolds
numbers in water: , Re=3050; &, Re=4560; &,
Re=6100.
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value, although the experimental values of the amplitude and the phase of
lift forces are scattered in the case of Re=40. Also, in the range where
the synchronization phenomenon occurs (St.=0.1 to 0.15), the fluctuating
lift forces take a maximum value of amplitude and their phases lag behind
with an increase in driving frequency.

5-2. Experimental results at higher Reynolds numbers

As the Reynolds number increases up to Re=6100, the fluctuating lift
force does not suffer a great change in both the amplitude and the phase,
but the range of synchronization about the middle of which their magnitude
reach a maximum, accompanied by a large phase lagging, moves slightly to
the region of the higher frequency, as shown in figure 15; in the range of
Reynolds number Re=3050 to 6100, each of amplitude |C.| and the phase
@1 is nearly on one curve between St,=0 and 0.2. Therefore, the fluctuatuat-
ing lift force is found to be weakly dependent on Reynolds number. In the
range of the imposed frequency over 0.2, the record of lift forces exhibits
a beating wave form composed by both the fluctuation of lift forces induced

2.0
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1ol | ~
b \O\O Q\ /. l Cp |
0 ;%f@é%;@%’@ 1 ‘ﬂ;
0 0.1 S/ 0.2 0.3
C

FIG. 16. Mean and fluctuating drag coefficients of the stationary
and the rotationally oscillating circular cylinders.
D, Re=80; @, Re=120; @, Re=160; ¢, Re=3050,
¥, Re=4560; @&, Re=6100, —- , the case of
stationary cylinder.
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by Karman vortex with the Strouhal frequency S¢: and the forces resulting
from the motion of the cylinder with the frequency Sz.. The amplitude of
lift forces become so irregular and scattered that the difference between
minimum and maximum values is shown by the width of vertical line in
figure 15, to indicate the amount of scatter in measured values.

Figure 16 gives the magnitudes of the mean and the fluctuating drag
forces, showing that the mean drag force has a maximum value within the
range of synchronization and the fluctuating one is only about one-tenth as
large as the former.

From the facts described above, it is apparent that the variations of the
amplitude and phase of the lift forces and means drag forces against the
imposed frequency in the synchronization range are found to be similar to
that in the case of the transversal oscillation, which was previously studied

by Bishop and Hassan (1964) and others.

6. ConcLubpING REMARKS

The aerodynamic characteristics of a circular cylinder subjected to a rota-
tionary oscillation around its axis during uniform viscous flow were studied
by both numerical calculation and experiment. Namely, we solved the
Navier-Stokes equations and the continuity equation by finite difference
method, and examined the detailed behaviours of the flow around both the
stationary and rotationally oscillating circular cylinders. In addition, we
carried out a series of experiment by towing the test cylinder submerged
in still oil or water and measured the values of the unsteady lift and drag
forces exerted on the stationary and the oscillating cylinders. There can be
seen a fairly good agreement between the calculated results and the mea-
sured ones for the lift and drag forces acting on the stationary or the
oscillating cylinder at Reynolds numbers Re=40 and 80. According to the
numerical analysis, there may be close relationship between the time-varia-
tion of the flow pattern around the oscillating cylinder and the fluctuation
of the lift force, that is, the phase lagging of the lift force of the cylinder
oscillating with any frequency is clearly seen to agree with that of the time-
variation of the configuration of the vortex street behind the cylinder. The
unsteady lift and drag forces can be measured over the range of Reynolds
numbers, Re=40 to 6100, and the phenomenon of the so-called synchroniza-
tion is found to occur in a certain range of the ratio of the driving frequency
to the Strouhal frequency, even when the circular cylinder undertakes the
rational oscillation. The behaviour of the amplitude and phase of the lift
force and mean drag force against the frequency in the synchronization
range is similar to that in the case of the transversal oscillation of the
circular cylinder.
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APPENDIX: BounNpDary ConNDITIONS FOR THE FIELD INFINITELY
FAR FROM THE CYLINDER

To solve a problem in an infinite field, it should be necessary to impose
some of the boundary conditions on a field infinitely far from the cylinder.
In a practical application of the computational problem including the infinite
domain, however, the boundary conditions should be imposed on a far but
finite boundary. The validity of the boundary conditions imposed on the
far but finite boundary instead of the infinite one, as they relate to the
boundary conditions used in this paper, will be examined here.

The deviation of stream function ¢« and the vorticity {w» in the far field,
which are separated into two parts respectively, the steady ones, Goos, Coos
and the unsteady ones, ¢, o, will be investigated by the use of the
linearized Oseen’s equations which are presumably accurate in the field far
from the cylinder. In the case of steady flow around the cylinder, Prof.
Imai (1951) obtained asymptotic formulae of the steady parts o and Cws, as
follows:

- GL* éu*( 0) _
cos— T * oo T T —_— A—
¢ o logr 5 erfa =) 10| <m (A-1)
foem —CD7RE @

s AV T 7w

where C:* and Cp* are the steady components of lift and drag coeflicients
of the cylinder, a=+v/'(Re-r«/2)sin(6/2) and erfazv%g e *dx. Next, we
0
examine the asymptotic behaviours of the unsteady components ¢, and Lo
by extending Imai’s method and it may be easily shown that {w, is estimated
to be the order of e~"- for large distance 7. under the influence of the
oscillatory frequency and Reynolds number, and therefore that some terms
of ¢, which correspond to {w. are also the order of e~"~. While the
term of (e representing unsteady circulation around the cylinder should
be omitted because of the single valuedness of pressure in flow field. How-
ever, in the actual computation, the value of distance 7. should be large
but finite, so the values ¢, and {w. on the outer edge of the computa-
tional domain are given in asymptotic form as follows:

foou=Abe,  Loow=0 (A-2)

where
N
A:~—l—2 (gﬁ(M,j)—(ﬁ(M-l,j)) at i=M (on the outer edge).
SN,
so, A is determined by the implicit process at eachtime step ofcalculation.
Now, we examine the magnitude of 7. which should be sufficiently large

for the present calculation. We compare the calculated results of the drag
coefficients, varying the distance 7., mesh point density and the value of
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FIG. A-1. The comparison of the calculated results of
the lift and drag forces for r.=111 and
r-=>535, at Re=40, St.=0.2, 4V=0.2 and
Cp*=0 in the equation (A-1).

Cp* in equation (A-1), for the case of the stationary circular cylinder (Re=
40). By the use of the standard mesh point density,_we obtain _CD:I.86,
1.80 and 1.56 as the steady drag coefficient value Cp, taking Cp*=0 in
equation (A-1) and 7=23, N=30 (the mesh spacing is S=21/N); =535,
N=30; r=111, N=40, respectively, and obtain Cp=1.72, taking Cp*=1.8,
reo=23, N=230.

By the use of the fine mesh point density, Cp=1.49 is obtained under
the condititions of Cp*=0, 7=111, N=40. There seem to be some dis-
crepancies among their values. However these discrepancies are such that
it may be practically valid to take Cp*=0 in equation (A-1), if 7« is taken
to be sufficiently large, e.g. 7>>100 and also the field near the cylinder is
divided into mesh point as fine as possible.

When the circular cylinder is oscillating around its axis, a comparison is
made between the calculated results of lift and drag forces for 7-=111 and
535 as shown in figure A-1, by substituting Cp*=0 in equation (A-1).

In this case we can hardly find a discrepancy between these results.
Therefore, afther the preliminary examination, we take 7o larger than 100
and Cp*=0 in equation (A-1) for the great part of our calculation.

Department of Jet Propulsion

Institute of Space and Aeronautical Science
University of Tokyo

July 30, 1975.
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