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Summary: To furnish some fundamental information about viscous effects of flow on
the aerodynamic characteristic of an elliptic cylinder, we numerically solve the Navier-
Stokes equations for flow around both stationary and transversally oscillating elliptic
cylinders at Reynolds numbers of R.=40 and 80, and also measure aerodynamic forces
and pressure acting on an elliptic cylinder in the range of Reynolds numbers R.=40
to 20000. There is consequently seen a good agreement between the calculated results
and the experimental ones for steady and unsteady aerodynamic parameters at Reynolds
numbers R.=40 and 80. On the basis of the numerical results we examine the time-
variation of flow pattern around an elliptic cylinder, e.g. locations of stagnation points,
and the experimental ones we discuss the effects of angle of attack, Reynolds number
and oscillatory frequency on aerodynamic parameters.

INTRODUCTION

Some studies analyzing the viscous unsteady flow around the cylinder
have been made by solving the basic equations of motion which include
the viscous term. Moore (1955) performed a calculation for the unsteady
boundary layer around an elliptic cylinder set at the stall angle of attack
in an oscillatory air-flow in order to get its aerodynamic lift force curve.
Wang (1966) analyzed the flow around an elliptic cylinder which starts
impulsively at a certain angle of attack in a viscous fluid. He showed that
the inception of stall strongly depends on the thickness ratio and the angle
of attack of the cylinder but depends weakly on Reynolds number. The
viscous effect on an oscillating flat plate in viscous uniform flow for which
Reynolds number is very large, has also been studied by Chu (1962), and
Shen and Crimi (1965) by the use of Oseen’s approximation, but their results
on the viscous correction do not agree with each other. Recently, Lugt
and Haussling (1972) obtained numerical solutions for laminar incompressible
fluid flow past a stationary elliptic cylinder with various angles of attack
and studied the flow characteristics of vortex shedding.

The purpose of the present paper is to furnish some fundamental infor-
mation on the viscous effect during unsteady flow phenomena. This is
accomplished by studying the behavior of viscous flow around an oscillating
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340 Atsushi Okajima, Hiroyuki Takata and Tsuyoshi Asanuma

elliptic cylinder, first by means of a numerical solution of the Navier-Stokes
equations. The application of the numerical calculation, however, is limited
to rather low Reynolds number. Furthermore, there seems to be no infor-
mation about how the results of numerical analysis for low Reynolds number
can be extended to the case of higher Reynolds number. So, some experi-
ments have been carried out to study the viscous flow around an oscillating
elliptic cylinder, not only to confirm the validity of the present method of
numerical calculation but also to provide information over a wide range of
Reynolds number.

The latter half of this paper gives the experimental results for the fluctu-
ating nomal force, moment and pressure acting on an ellipting cylinder
which is subjected to a forced transversal oscillation with specified amplitude
and frequency in the range of Reynolds number R,=40 to 20000.

2. NuMERICAL CALCULATION

2-1. Basic equations and boundary conditions

We consider an elliptic cylinder oscillating transversally in uniform viscous
flow. The method of numerical solution used here is essentially that for a
circular cylinder as reported in an earlier paper, Okajima, Takata and
Asanuma (1975), so that we will briefly describe here only its essential
features.

The equations of motion are developed in the system of elliptic coordinates
(&, 1), for one of the &-ordinate, & forms the surface of the elliptic cylinder.
The following relations exist between the (& 7)-coordinate system and the
Cartesian coordinate system (x, y):

x=cosh Ecos 7, y=sinh £sinp (1)

where the forcal distance of this coordinates is taken to be a unity, so the
chord length ¢ of the elliptic cylinder is 2cosh &.

When the elliptic cylinder moves with a velocity A,(f) transversally, or
in the y-direction of Cartesian coordinates (x, ¥), we adopt the moving
coordinate system fixed to the oscillating cylinder and then we express the
Navier-Stokes equations and the continuity equation in this moving coordinate
system (£, 1) as follows:
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o(hqe)  0(hq,)
e T op O

(3)

and

oL, g £+@6_C_L(_6‘EC_+ 6°C )

ot h 06 h op hz\oge ' op (4)

where g¢ and ¢, are the velocity components of the &- and 7-directions
respectively, p is pressure, o is fluid density, v is kinematic coefficient of
viscosity, ¢ is time, A& is defined as A=+ cosh?(—cos?), the vorticity { as
(0(hqy)[06—0(hqe)/0n)/h? and the oscillatory velocity A,(¢) is given as
2mf0 sin 2xft, f denoting the imposed frequency and 0 the amplitude of the
oscillatory displacement.

Introducing the stream function ¢ defined by

hqe=0¢[0n,  hq,=—0¢/0¢,
we may rewrite equation (4) as follows:

_qc_+_1_<a¢ o o¢ 6C>:L(_5‘£+ 52C> (5)

ot  hz\op 06 OF op /) hz\ogz = op?

with the continuity equation (3) automatically being satisfied.
For the sake of convenience, the stream function will be expressed by,

b=+
Gp= Uef"sinh(é—éfo)(sin(?y—a) +—Zlgi cos 7+sin 2nft> (6)

where a is the angle of attack of the elliptic cylinder and U is the velocity
of the free stream, which is taken to be a unity, here. ¢, represents the
stream function of potential flow around the elliptic cylinder and ¢ is the
deviation of actual flow from the former ¢,.

The vorticity { is given by

2 _op _ ,, 7

a52+6772— h?C. (7)
Equations (5) and (7) are the basic equations to be solved under the
boundary conditions mentioned below. The boundary conditions to be
satisfied on the surface (§=§&;) of an elliptic cylinder are that there be no
cross flow through its surface and no slip flow along it, that is,

ome (1)

where suffix 0 denotes the value on the surface, £=¢,.

As proposed by Okajima, Takata and Asanuma (1975) for the circular
cylinder, we will impose the following condition upon a boundary £=&
sufficiently far from the cylinder instead of the infinite boundary:

Jo=Alfo—&),  Lo=0, (9)

=0, (8)

0
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342 Atsushi Okajima, Hiroyuki Takata and Tsuyoshi Asanuma

where suffix co denotes the value on the boundary outer edge, £é=£, and
A is the value determined by the implicit process at each time step in the
numerical calculation.
2-2. Aerodynamic coefficients

Various aerodynamic coefficients can be obtained by the following method.
We take the chord-length ¢ of the cylinder and the velocity U of the free
streem as units of length and volocity respectively, and reduce the aero-
dynamic parameters into non-dimensional forms. Reynolds number may be
defined as Re=Uc/v and reduced frequency as k=2rfc/U.

From equation (2) the coeflicient of pressure on the surface (E=¢&p) based
on that at the trailing edge (£=&, 7=0) may be obtained by

4 cosh &,

Co(n)—CH(0)= Re

SZ (2‘90‘1’7“ (‘i“)kz'ta“h §o-sinp-cos 2nft.  (10)

The coefficient of viscous shear stress on the surface is given by

dcoshé;
Cl) =251 (2. 00y) _Acohin, (1)

The forces normal and tangential to the major axis and the moment about
the midchord point of the cylinder consist of two components, namely, those
due to pressure

1 2T
CNPZ—“ES Cy(n) sin ndn,
0
2T
CTP:—”t_a'%S Cp(n)cos ndn, (12)
9 o
1 27
=—" —\ C in 2ndn,
Cumrp SCoshZEOSo »(7)sin 2ndy
and those due to viscous shear stress ¥
Crrs =205 (" C.(y)cos yar,
0
].. 2T
Crs= ——Z—S C.(n)sin ndn, (13)
0
t h 2K
Crs= ——l‘zﬁ—g Ce(n).

Then coefficients of normal and tangential forces and moment are, re-
spectively,

Cny=Cnp+Cys,
Cr=Crp+Crs, (14)
CMZCMP-FCMS.
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Further, only fluctuating components of the above aerodynamic parameters,
which will be designated by the wave mark (~), are divided by the ratio
(0/c), to account for the amplitude of the oscillatory displacement of the
cylinder.

2-3. Numerical procedure

In the numerical calculation the flow field is divided into a number of
finite discrete meshes. The rapid changes of the stream function and the
vorticity of flow near the cylinder in the vicinity of the leading and trailing
edges, require small mesh size, while in the field far from the cylinder rather
large mesh size may be used. This gradation of mesh size is conveniently
achieved by transforming the physical plane into the elliptic coordinates
(¢, 7), which are divided into a finite discrete mesh of points (S, ;S) with
a constant mesh size S. In addition, the mesh is reduced further close to
the cylinder by dividing the radial mesh by two (S/2). This method has
already been found to be desirable for accuracy and economy of computation
as indicated by Okajima, Takata and Asanuma (1975). However, all ex-
pressions of a finite difference in the following are obtained in the field
(S, 7S) divided with a constant mesh size S, for convenience.

For a finite difference analogue to compute the vorticity {**4:(7, j) at each
discrete time (¢4 4¢) from the known values of the stream function ¢*(z, j)
and the vorticity {*(7, j) at time #, we use implicit process because of its
computational stability. Replacing the vorticity equation (5) by difference
expression gives:

LM =) = 2 (L gy, oL, )

Vara Re
+ 16;‘2}22 C+4@, j+1)+0E, j+1) =040 j—1) =L, j—1)
X PG+, J+PE+1, =G —1, H—¢E—1, )
B 16§zhz Cr@E+1, H+LE+1, H—C -1, H—T6E—1, )
X (PP, jH+ 1)+, G — g, j—1)— 4G, 1) (15)
where ¢z, /)=, j)+P, 7),
reCi, j)= Sihz @G, j+L)+LGE J~D+LE+1, H+L6E—1, )—40G ),

and 1<<j<<N, 1<<i=<<M.

Next, equation (7) for ¢(i, ) which corresponds to (i, j) as indicated
above, may be solved by the successive line over-relaxation method which
is employed along the lines £=constant, sweeping from £=§&; (on the surface
of the cylinder) to £=&w. (on the outer edge of the computational domain).

The finite difference approximation of equation (7) is,

GEH(G, )=9K(, j)+a(@XT*G, )—9%E, 1), (16)

This document is provided by JAXA.



344 Atsushi Okajima, Hiroyuki Takata and Tsuyoshi Asanuma

where
PG, )= GG, DI, )+ RN, 1)

FPRRG, j—1)+ S, 7L, 7)),

and the superscript K indicates the value of the Kth iteration. The optimum
accelaration parameter @ is 1.4, which is found after several trials. The
boundary conditions for ¢ and { are as follows: on the surface of the cylinder

(i=1),

#, =0, )=—20CNI D), a7

and on the boundary sufficiently far from the cylinder (=M),

~

¢(M, )=Ale—5), UM, ;)=0, (18)

where

N
A=~ BG4, )= FM-1, )

and this value may be determined by the implicit method. The procedure
for solving these equations (15) and (16) under the boundary conditions
given by equations (17) and (18) is the same as that for a circular cylinder
treaded in Okajima, Takata and Asanuma (1975). Therefore, the detailed
procedure used for the numerical calculations will be omitted here. In the
case of an elliptic cylinder, we use a standard mesh with the parameter of
computation N=30 or a mesh spacing S=7/15, for Re=40, and a fine mesh
with a half-spacing S¢=S/2 in the &-direction only and N=30 for Re=80,
with reference to the preliminary examination of the network in the case
of a circular cylinder.

3. ResuLts oF NuMERICAL CALCULATION

3-1. Case of a stationary elliptic cylinder

Fig. 1 shows the representative configurations of flow pattern and equi-
vorticity lines around stationary elliptic cylinders with thickness ratios of
20% and 50% at angles of attack of a=0° and 15° and Reynolds number
Re=80, for the almost steady state. To obtain these flow patterns, the
calculations are carried on to the time when the aerodynamic parameters
scarcely change with time, taking inviscid potential flow as the initial con-
dition. At angle of attack of a=0° the separation of the boundary layer
can not be observed on the surface of the elliptic cylinder with the 20%
thickness ratio. On the elliptic cylinder with the 50% thickness ratio, how-
ever, the boundary layers separate from the surface and a pair of standing
vortices appear just as for the case of a stationary circular cylinder. In the
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Viscous Flow Around a Transversally Oscillating Elliptic Cylinder 345

case of the elliptic cylinder with the thickness ratio, the separation of the
boundary layer is not observed even at ®=15°, and it should be noted that
in spite of the rounded trailing edge of the elliptic cylinder and such small
Reynolds number as 40 or 80, the point of downstream stagnation essentially
remains at the trailing edge just as the Kutta condition is satisfied on an
aerofoil with a sharp trailing edge, as shown in Fig. 1(a). On the other
hand, in the case of the 509 elliptic cylinder at a=15° the boundary
layers separate on both the upper and the lower surfaces and the Karman
vortex street is shed alternately behind the stationary cylinder as shown in
Fig. 1(b). This figure shows the flow pattern at the time z=22.75, that is,
the time elapsed after the abrupt start of the cylinder and reduced in the
non-dimensional form by the uniform velocity/the focal distance of the
elliptic cylinder. The unsymmetry of flow around the elliptic cylinder with
the angle of attack seems to cause the Karman vortex street to appear in
wake. The Strouhal number Stx(=fkc/U) related to the chord-length ¢ is
detected to be about 0.17 from the fluctuation of the lift force induced
by the Karman vortex street, where fx is the frequency.

a=15° a=15°(t=2275)

(a) (b)
F1G. 1. Stream lines and equi-vorticity lines of the stationary elliptic cylinder

with the thickness ratios of 209 and 50%.

(a) Re=80, a=0° (the upper side: stream lines and the lower side:
equivorticity lines) and a=15° (stream lines), and the thickness
ratio of 20%.

(b) Re=80, a=0° (the upper side: stream lines and the lower side:
equivorticity lines) and a=15° (stream lines), and the thickness

ratio of 50%.
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Normal and tangential forces
and moment of the stationary
elliptic cylinder with the thick-
ness ratio of 20% at Re=40 and
80.
The components due to pressure:
--l--, Re=40; -@-, Re=80. The
components due to viscous shear
stress: --[4--, Re=40; -@-, Re=
80. The resultant: --[]--, Re=
40; -O-, Re=80. The distance
0 l L ' z, denotes the chordwise posi-
tion of the aerodynamic center:
(b) Tangential force --[¢}--, Re=40; -(®-, Re=80.

The steady aerodycamic forces Cw, Cr, respectively, normal and tangential
to the major axis of the cylinder and the moment Cj about the midchord
are plotted against the angle of attack a in Fig. 2. With an increase in
the angle of attack «, the normal force Cy and the moment C, become
large monotonically, and about 90% of these forces consists of the compo-
nent due to pressure, even at such low Reynolds number as 40 or 80. The
tangential forces Cr, however, contains about 80%; component due to viscous
shear stress. The values of Cy, Cr, and Cy for Re=80 are smaller than
those for Re=40. This tendency is similar to the result obtained in the
analysis by Miyagi (1964) using Oseen’s approximation. The chordwise
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(c)Moment and aerodynamic center

F1G. 2-2. Normal and tangential forces and moment of
the stationary elliptic cylinder with the thick-
ness ratio of 20% at Re=40 and 80.
The components due to pressure: --flil--, Re=40;
-@-, Re=80. The components due to viscous
shear stress: --[§--, Re=40; -@-, Re=80. The
resultant: --[J--, Re=40; -O-, Re=80. The
distance z. denotes the chordwise position of
the aerodynamic center: --[¢]-, Re=40; -®-,
Re=80.

position of the aerodynamic center is near the quater-chord point and moves
forward with an increase of Reynolds number as in Fig. 2 (c).

3-2. Case of a transversally oscillating elliptic cylinder

(a) Case of elliptic cylinder with thickness ratio of 20%;

We consider the elliptic cylinder oscillating transversally in uniform viscous
flow. Fig. 3 illustrates the calculated results of the oscillating elliptic
cylinder under the condition of Reynolds number Re=40, reduced frequency
k=1.0, amplitude of displacement chord-length ratio, d/c=4% and angle of
attack a=0°. We take viscous flow around the stationary cylinder as the
initial condition for this calculation. This corresponds to the cylinder begin-
ning to oscillate in uniform viscous flow. The periodic oscillation of the
cylinder is seen not to greatly change the flow around it, so that the flow
pattern around the oscillating cylinder is shown only at the time 22.4 in
Fig. 3(a), and the point of downstream stagnation remains almost in the
vicinity of the trailing edge. As shown in Fig. 3(b) and 3(c), the fluctu-
ating normal force and moment about the midchord point vary with time
in a sinusoidal wave form with some phase difference ¢y=30° and ¢pr=—1°,
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(c)Fluctuating moment
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(d) Tangential force

FIG. 3. Stream lines, normal force, moment and tangential force
of the transversally oscillating elliptic cylinder with
the thickness ratio of 20% at Re=40, a=0°, £=1.0
and 8/c=4%.

4
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Viscous Flow Around a Transversally Oscillating Elliptic Cylinder 349

respectively from the assumed quasi-steady forces*. However, the tangential
force Cr, 80% of which consists of the component due to viscous shear
stress, remains at a constant value as in Fig. 3 (d) without being affected
by the oscillation of the cylinder at all, so only this parameter need not be
divided by the oscillatory amplitude d/c. For the case of Re=80, £=0.6
and a high angle of attack of a=15° Fig. 4 shows that the fluctuating
normal force acting on the cylinder is sinusoidal with a fairly constant
amplitude |Cn|=1.8 and has some phase lead difference ¢ny=23° relative
to the motion of the cylinder. In this case we can also see a small attached
eddy on the upper surface of the cylinder, repeatedly growing (at the time
t=16.0 in Fig. 4 (a)) and disappearing.

03— T

-07—_

(a) Stream lines (t=16.0)

0.025 7’\(%‘ :
20 /
Ay 0 ; t ' ;

-0.025

08 ‘ CN T 2
___\EN:O-725 V_\ Jdo
OTF L S — T T T &
Cn \\\\ /,/” \‘CNP T~———_ -2
o6l e
-1-4
< >
O1r Cns
0 ! i 1 B
1 5 10 ¢ 15 20 25

(b)Normal force

FIG. 4. Stream lines and normal force of the transversally
oscillating elliptic cylinder with the thickness ratio
of 20% at Re=80, a=15°, k=0.6 and d/c=4%.

—~— denotes the value for the stationary cylinder.
Only the fluctuating components of normal force Cw
are divided by the oscillatory amplitude d/c.

* When the cylinder oscillates wAitiﬁgy low frequency, the force exerted on it may be
proportional to the oscillatory velocity with the opposite sign, i.e. —Ay(z). So, we will
use the variation of this quasi-steady force as the time basis.
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(a) Fluctuating normal force
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(b)) Fluctuating moment

FIG. 5. The amplitudes and phases of fluctuating normal
force and moment acting on the transversally
oscillating elliptic cylinder with the thickness
ratio of 209, at Re=40 and 80 and 0/c =4%.
Re=40: -O-, a=0% Q, a=5% O, a=20°".
Re=80: --@-, a=0"; @, a=5" @, a=15".
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Fig. 5 summarizes the calculated results of the fluctuating normal force
and moment acting on the 209 elliptic cylinder against the reduced frequency
k. It can be seen that with an increase in the reduced frequency the
fluctuating normal force grows in amplitude and advances in phase, while
an increase in the angle of attack does not have any great influence except
on the phase lead. This figure also shows that an increase of Reynolds
number from 40 to 80, makes the amplitude of the fluctuating normal force
smaller. The reduction in the fluctuating normal force seems to be suggested
by the steady normal force characteristics shown in Fig. 2.

Fig. 6 shows the locations of the up- and down-stream points, S;, S:
by the small triangles, where the viscous shear stress vanishes, that is, on
the numerical calculation the stream function of the nearest lattice point
from the cylinder surface is estimated to equal to zero by interpolation, for
the 20% elliptic cylinder with the various angles of attack. In this figure,
the vicinities of the leading and trailing edges are magnified so as to be
shown in detail. The locations of these points may not be strictly accurate
but are not different within the computational errors. It is seen on the
stationary cylinder that the boundary layer does not separate and that an
increase in the angle of attack causes the point of upstream stagnation to
move farther away on the lower surface from the leading edge, and on the
lower surface from the leading edge, and on the other hand, the point of
downstream stagnation to remain in the narrow region around the trailing
edge, in spite of the rounded trailing edge of the elliptic cylinder and such
small Reynolds number as 40 or 80.

When this cylinder is transversally oscillating, these points move periodi-
cally about each location corresponding to that of the stationary cylinder,
with the amplitude as shown by the arrows in Fig. 6. The amplitude of
the downstream point is quite smaller than that of the upstream point.

150°
Re=80
—e—
PEESNENSSeO e Oy
100°H /G/o Re=40 Se
Qbs 0
50°-
o° & | — | Q 11s,
O 02 04 O-Gko's 10 12 14
-50°

FiG. 7. The phase of the movement of the up- and downstream
points, Si1, S, respectively, where the viscous shear
stress vanishes on the transversally oscillating elliptic
cylinder with the thickness ratio of 209 at Re=40
and 80. Re=40: -O-, a=0° [, a=20°. Re=80: -@-,
a=0% @, a=15"
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The upstream point S; moves almost in phase with the oscillatory velocity
of the cylinder, ie. ¢s5~0° while the downstream point S; does likewise
but with some phase difference relative to the oscillatory velocity, which is
shown to be ¢s5,=110°~130° (£>0.5) in Fig. 7. This may be explained by
analyzing the calculated results. This analysis indicates that when the elliptic
cylinder starts abruptly in still liquid at a certain angle of attack, the point
of upstream point S; moves rapidly to its steady location, but that of the
downstream S, which is first located on the upper surface, moves rather
slowly to the region around the trailing edge. Therefore, on the oscillating
cylinder, the upstream point S, may move almost in phase with the oscil-
latory velocity of the cylinder, while that of the downstream .S, will follow
but with some time delay.
(b) Case of elliptic cylinder with thickness ratio 50%

Next, Fig. 8 is a typical example of the flow around an elliptic cylinder
oscillating with a large thickness ratio of 50%. This figure shows the flow

A
05
%’—\\ 0.3\
- » -0002 k
R —
By
1=1555
(a)Stream lines
005} A
Ay Of : 0 15
—005
0.75F
0.50F
Cn
0.25¢+
OO

(b)Normal force

FIG. 8. Stream lines and normal force of the transversally oscillating
elliptic cylinder with the thickness ratio of 50% at Re=80,
a=15°, £=1.0 and 6/c=10%. The interval between the time
t=15.55 and ¢=23.35 is 0.61 times the period of the cylinder

oscillation.
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configurations at the time #=15.55 and #=23. 35 when the almost maximum
normal force is exerted down- and upward, respectively, on the cylinder
which is subjected to the oscillation with the frequency £=1. 0, the amplitude
of displacement / the chord-length ratio, 6/c=10% and the angle of attack
a=15°. In the flow patterns at these two times between which the interval
is about a half period of the cylinder oscillation, the wakes behind the
cylinder are observed to be arranged in the reverse shape, each other. It
implies that the wake pattern is changing with the imposed frequency k=
1.0. Therefore the normal force (and moment) of the cylinder also varies
periodically with that frequency, as shown in Fig. 8 (b).

The fluctuating normal forces exerted on the 509 elliptic cylinder are
summarized in Fig. 9, against the reduced frequency %k at Re=80. The
amplitude of the total normal force |Cxn] and the component part due to
the pressure |Cnp| become large as the reduced frequency % increases. The
phase differences @n, ¢np, dns of Cn, Cnp, Cns are gradually leading with
an increase in the reduced frequency. The value of the phase difference
$np=92° at k=1.4 means that the cylinder would be set in the aerody-
namically unstable situation without the viscous component Cys, which
seems to be provoked by the so-called vortex excitation. The cylinder,
however, is actually stable by the viscous effect.

For the elliptic cylinder with the 509, thickness ratio on which the
boundary layer separates, the behaviour of the points S;, S, S; and Sy

ICnl

100°} .

Pu
50°+

Oo

FiG. 9. The amplitudes and phases of the fluctuating
normal force acting on the transversally oscil-
lating elliptic cylinder with the thickness ratio
of 509 at Re=80 and d§/c=10%.
a=0° -O-, Cn; --@--, Cne; —-@-- Cns.
a=15% ], Cn; B Crr; 4, Cns.
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Fi1G. 10. The behaviours of the points where the viscous
shear stress vanishes on the transversally oscillating
elliptic cylinder with the thickness ratio of 509
at Re=80, a=15° k=1.0 and d/c=10%.
denotes the amplitude of the fluctuation due
to the Karman vortex street.

where the viscous shear stress vanishes, is shown in Fig. 10. As the Karman
vortex street appears in the wake of the stationary elliptic cylinder as already
shown in Fig. 1 (b). the width of the movement of these points due to this
vortex street is shown by the shaded areas in Fig. 10, where 7 is the value
defined by equation (1) in the elliptic coordinates.

When this cylinder is oscillating under the reduced frequeny 2=1.0 and
the amplitude of displacement 6/c=10%, these points Si, S, S; and Si
move along the surface about the shaded areas shown for the stationary
case, by 1.5%, 5.5%, 7.4% and 2% of the chord-length in amplitude,
respectively. The movement of these points is much more pronounced than
either that due to the Karman vortex street or that for the case of the 2092,
oscillating elliptic cylinder.

4. EXPERIMENTAL APPARATUS

A series of experiments are carried out to measure aerodynamic forces
and pressures exerted on an oscillating elliptic cylinder operating over a
relatively wide range of Reynolds number. In these experiments, we use
the same experimental apparatus used for a circular cylinder as described
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in detail in a previous paper, Okajima, Takata and Asanuma (1975). This
apparatus satisfactorily fulfills the requirements of two-dimensional flow,
low level of disturbance, accuracy of measurement and other criteria, as it
adopts the system towing the test cylinder in a still liquid, either water
or oil,

4-1. Tank and measuring carriage

As shown in Fig. 11, the experimental apparatus includes a tank @, a
measuring carriage 3 and other such items as were used in the case of
the circular cylinder. The tank is 0. 7m wide, 0. 4m deep and about 10m
long and is filled with water or oil. The measuring carriage slides on tracks
@ and is towed by ropes @ which are wound on a drum driven by a
variable-speed electric motor. The test cylinder (® is suspended vertically
downward from this carriage and is forced to oscillate transversally in the
direction normal to the chord-line of the cylinder with arbitrary frequency
and amplitude by an oscillator which consists of a small variable-speed
electric motor (), a gear train (@), a synchoro-belt 8, and a crank wheel
and scotch yoke mechanism ().

Several different experimental conditions can be obtained as follows:
Reynolds number may be changed by varying the towing speed or using
different fluids such as water or oil, the oscillatory amplitude of test cylinder
may be changed by using a different crank wheel and its oscillatory frequency
may be done by varying the speed of the oscillator motor. The available
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Fic. 11. Experimental apparatus.
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Reynolds numbers are thus about Re=40 to 200 for oil and Re=1500 to
20000 for water.

The free surface effects are eliminated by mounting a circular plastic dics
@ (500mm diameter) at the top of the test cylinder which just contacts
the free surface of liquid, and all of the measurements are made on the
central part of the test cylinder, as described in the following section.

4-2. Test cylinder

Rather than constructing one very complex test elliptic cylinder for making
all test measurement, we prepared three different cylinders in order to
measure normal force, moment and pressure independently. All of these
test cylinders are 50mm in chord-length and 370mm in span-length, with
a thickness ratio of 20%. The two for measuring normal force and moment
consist of three sections in the spanwise direction, only the central section
of which is used for measurements so as to eliminate the effect of the three-
dimensionality of flow due to surface wave, end-clearance and so on as
much as possible. It is 100 mm in span-length, made of plastic and hollowed
out to reduce its inertia and is suspended from the upper dummy section
of the test cylinder through two parallel leaf springs on which four strain
gauges are mounted to form Wheatstone bridge. These leaf springs are
flexible in only one direction and respond either to a force perpendicular
to the chord of the elliptic cylinder or to a moment about the midchord
point. The natural frequency of the central test section suspended by leaf
springs is estimated to be over 30Hz in water. The present experiment is
conducted in a range of driving frequency of the cylinder of less than 2Hz.
Thus there should be no difficulty due to the above-mentioned natural
frequency. The upper and the lower sections of the cylinder are 170mm
and 100mm long in span and fastened to each other by two parallel con-
necting rods. The gaps between these three sections are adjusted to be
0.2mm or leéss; they were also preliminarilly checked to have no perceptible
influence on the measurements.

The test cylinder for the measurement of pressure have seven taps along
the chord on one side of the surface. Pipes 3mm in diameter are placed
inside the cylinder filled with water or oil and go from the pressure taps
to a pressure transducer through a changeover cock. The pressure of the
of the individual taps can be measured in separate runs, with satisfactory
accuracy and response by means of the transducer which is sufficiently
sensitive to respond to a change in pressure of 1/10mm water.

5. ResuLTs oF EXPERIMENT

Results of the experiment obtained with the model of the same geometry
and under the same condition as the case of the numerical calculation are
compared with the calculated results at low Reynolds numbers. Further,
experimental results are presented to provide more information over the
range of Reynolds number up to 20000.
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5-1. Comparison between the experimental results and the calculated results
Fig. 12 shows the experimental results of the static pressure distribution
C, along the chord z/c for example, in the case of the stationary elliptic
cylinder with the angle of attack «=0° and 15° at Reynolds number Re=
80, compared with the results by the numerical calculation. In this figure,
the pressure C, is set on the basis of that of trailing edge and the lowest
value of the pressure is detected to be near the middle point of the chord
for a=0° and in the vicinity of the leading edge on the upper surface for
a=15°. It is remarkable that this figure indicates a good agreement between
the experimental and the calculated results on both the upper and the lower
surfaces of the cylinder. Fig. 13 summarizes both the experimental and
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FIG. 12. Pressure distributions on the surface of the stationary elliptic cylinder
with the thickness ratio of 209 at Re=80, a=0° and 15°
~-@-, Numerical solutions; (O, Experimental measurements.
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FIG. 13. Normal and tangential forces of the stationary elliptic cylinder with
the thickness ratio of 209 at Re=80.
Numerical solutions: --[J--, Cn, Cr; --ll--» Cnp, Crp; --[d- Cns, Crs.
Experimental measurements: -O-, Cn, Cr; -@-, Cnp, Crr.
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(b)Fluctuating moment , Re=40

FIG. 14-1. Experimental and calculated results of the
fluctuating normal force and moment of
the transversally oscillating elliptic cylinder
with the thickness ratio of 202 at Re=40.
Experimental measurements: -O-, a=0° D,

a=5% -Q-, a=15 -O-, a=20°.

Numerical solutions: --[]--, a=0% --[s]--, «
=0° by fine mesh; [, a=5% 1, a=15% N,
a=20°
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F1G. 14-2. Experimental and calculated results of the

fluctuating normal force and moment of
the transversally oscillating elliptic cylinder
with the thickness ratio of 20%; at Re=80;
symbols as Fig. 14-1.
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the calculated values of the normal and the tangential forces Cw, Cr against
the angle of attack a at Re=80. The experimental values of component
due to pressure are obtained by the numerical integration of the measured
pressure distributions as in Fig. 12. It is clearly recognized that the calculated
results shown by the broken lines agree well with the experimental ones
shown by the solid lines.

Figs. 14 (a) to 14(d) give a comparison between the experimental and
the calculated results for the amplitudes and phases of the fluctuating normal
force Cy and the fluctuating moment C acting on the oscillating cylinder
for the cace of Re=40 and 80, a=0° to 20°. In these figures, the~amplitud~es
and phases of the experimental and the calculated values of Cy and Cu
are found to be in good agreement. However, there is some discrepancy
in the amplitude |Cn| at Re=40 and £=1.4. This may be due to rather
poor accuracy in the calculation for the case of very fast oscillation. Never-
theless, as a whole, the over-all agreement between the experimental and
the calculated results for the oscillating cylinder is remarkably good.

5-2. Experimental results for higher Reynolds numbers
(a) Stationary normal forces

Fig. 15 gives the characteristic curves of the normal force Cy measured
in water and oil for high Reynolds numbers, Re=5000 to 20000 and low
Reynolds numbers, Re=40 to 200, respectively. In this figure we can see
the so-called stall characteristic at high Reynolds numbers, as indicated by

-Q025

FIG. 15. Normal forces of the stationary elliptic cylinder
with the thickness ratio of 20%.
©®, Re=40; O, Re=80; (P, Re=200; (¥, Re=5000;
/Q/, Re =10000; /@/, Re=20000.
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an abrupt decrease of Cx as the angle of attack a is increased. At the
leading edge of the cylinder, laminar separation of flow can be observed
to occur by means of the visualization technique. At low Reynolds numbers,
however, there is little or no sign of stall characteristic, that is, the para-
meter Cy increases monotonically with an increase in the angle of attack,
and the lower Reynolds number is, the larger the parameter Cy is.
(b) Fluctuating normal forces

In the range of Reynolds number Re=40 to 15000 and reduced frequency
k=0.1 to 1.4, the experimental results of the fluctuating normal force for
angles of attack of a=0° and 15° are presented in Figs. 16 (a) and 16 (b)
respectively. In the region of the non-stalled state, e.g. =0°, the fluctuating
normal forces Cy are essentially independent of Reynolds number and lie
almost on a single curve. Their magnitudes are always smaller than the
values of the potential flutter theory which are shown by a broken line.
This decrease in the non-stalled state below that predicted by theory can be
attributed to the effect of fluid viscosity, which makes the slopes of the static
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FIG. 16. Fluctuating normal forces of the transversally oscillating elliptic
cylinder with the thicknessratio of 20% at a=0° and 15°.
@®. Re=40; O, Re=80; (P, Re=200; @, Re=400; (J, Re=5000;
&, Re=T000; /O/, Re=10000; @, Re=15000; ——-, inviscid flutter
theory for flat plate.
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normal forces smaller than 2z as shown in Fig. 15, where at a=0°, GCN/6a~7r
for the lower Reynolds numbers and 6CN/aa~0 6r for the higher Reynolds
numbers. So, at rather small angles of attack, the fluctuating normal forces
may be predicted approximately by using these values of the slopes of static
normal forces which can be obtained from Fig. 15, instead of the value
of 2z from the potential flutter theory. In the range of higher Reynolds
numbers (Re=5000 to 15000) as shown in Fig. 16 (b), when the elliptic
cylinder oscillates at an angle of attack in the stalled region, e.g. a=15°
the amplitudes of the fluctuating normal forces may increase abruptly with
an increase in reduced frequency, in spite of the negative slope of the static
normal forces. Referring to Fig. 16 (b), it is seen that for the low reduced
frequencies, the phases of the fluctuating normal forces reach as much as
100° ahead of those of the quasi-steady normal force. This can be explained
by the quasi-steady consideration as follows: when the elliptic cylinder
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FIG. 17. The in-phase components of fluctuating normal force
of the transversally oscillating elliptic cylinder with
the thickness ratio of 20%.
—-O--, (Cn)z; -@-> (Cn)es=Fk(cosa-dCy[da+2Cn sina).
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oscillates with very low frequencies, the normal force exerted on it may be
nearly proportional to the slope of the static normal force, so that in the
stalled region where this slope becomes negative the fluctuation of the normal
forces and the oscillatory velocity of the cylinder are naturally out of phase,
each other and its phase difference is ahead of that of the force exerted in
the non-stalled state. As the reduced frequency becomes fast, however, the
viscous effect is much more complicated and brings about a change not only
in the amplitude of the fluctuating normal forces but also in their phase.
We examine the effects of the angle of attack and Reynolds number on
the force exerted on the oscillating cylinder. In Fig. 17, both the in-phase
component (Cx)r=Cy cosdny of the fluctuating normal forces with the
oscillatory velocity which is the so-called aerodynamic damping coeflicient
and the quasi-steady aerodynamic damping coeflicient (Cn)as calculated by
(Crn)as=E(0C n/da cos a+2C y sin ) are plotted for comparison, against the
angle of attack a as a parameter of Reynolds number. This figure shows
that at a small angle of attack, a=0° to 5° both results are in essential
agreement, but with an increase in the angle of attack the two become
noticeably different. (Cy)r abruptly increases with the angle of attack «,
even if the Reynolds number is so small that there is little sign of stall
characteristic in the static curve of the normal force Cy, as shown in Fig.
15, e.g. Re=200. Furthermore, when the cylinder operates in the stalled
state for both large Reynolds number and large angle of attack such as
Re=10000 and a=12°, (Cy)r is found to take positive values which are
considerably larger than those for (Cn)os which is often negative. This
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FIG. 18. Fluctuating nornal force of the transversally oscillating
elliptic cylinder with the thickness ratio of 20%, with
reduced frequency k=1.2.

O, a=0; O, a=5% O, a=10° Q, a=15"; ©, a=20".
P, inviscid flutter theory for flat plate.
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discrepancy, also, can be attributed to the viscous effect of the flow around
the oscillating cylinder.

Fig. 18 illustrates the typical variations of the amplitude and phase of
the fluctuating normal force with the Reynolds number, as a parameter of
the angle of attack, at the constant reduced frequency, i.e. 2=1.2. In the
case of a small angle of attack, the region of separated flow is confined to
only the vicinity of the trailing edge of the elliptic cylinder and the amplitude
and phase of the fluctuating normal force, therefore, keep the constant
value in the wide range of Reynolds number, in spite of such fast frequency
as k=1.2.

However, increasing the angle of attack, we can see more pronounced
dependence of the fluctuating normal force on Reynolds number. The in-
crease of the angle of attack and Reynolds number causes the boundary
layer on the upper surface of the elliptic cylinder to separate near the
leading edge, and the amplitude of the normal force becomes over twice
as much as the value of the potential theory accompanied with the phase-
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Fic. 19. The amplitude and phase of fluctuating pressures
along the surface of the transversally oscillating
elliptic cylinder with the thickness ratio of 20%
at Re=10000 and £=0.8.
®, a=0°; -O-, a=15° upper side of the cylinder;
-@-, a=15, lower side of the cylinder; ——-, in-
viscid flutter theory for flat plate.
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lagging as shown in Fig. 18.
(c) Fluctuating pressure on the elliptic cylinder at Re=10000

Fig. 19 shows the amplitude and phase of the fluctuating pressure on
the surface of the elliptic cylinder for the case of a=0° (non-stalling) or
a=15° (stalling) at Re=10000 and 2=0.8. It is seen from this figure that
in the non-stalled state the experimental values have the same tendency as
those of the potential flutter theory shown by broken lines, except for
smaller amplitudes in the former. In the stalled state, however, the ampli-
tudes of the pressures become uniformly as large as that of the leading
edge (z/c=0) over the whole upper surface of the elliptic cylinder on which
the boundary layer is observed to be separating. Furthermore, it may be
noticed that the amplitude of the pressure at the trailing edge is (x/c=1)
not zero but some finite value such that the phases of pressures on upper
and lower surfaces coincide with each other at that edge. Finally, Fig. 20
presents a comparison between the values of the normal force measured
directly by the strain-gauge method and those of the component of the
normal force due to pressure obtained from the preceding pressure distri-
bution, since the component of the normal force due to skin friction seems
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FIG. 20. Comparison between the values of the fluctuating
normal force measured by the pressure pick-up
and those by the strain gauge at Re=10000, a=
15° and £=1.0.
O, Cwn measured by the strain gauge; @, Cne
measured by the pressure pick-up.
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to be negligible at such high Reynolds number. The measured values of
pressure around the cylinder are so small in number, ie. 12, that the
accuracy of the latter method is not satisfactory. The results measured
by two different methods are, however, seen almost to agree in this figure,
which indicates that the two kinds of methods verify one another.

6. CoNcLUDING REMARKS

By similar methods to that for the case of circular cylinder, we have
numerically calculated the viscous flow around both stationary and trans-
versally oscillating elliptic cylinders at Re=40 and 80, and also measured
aerodynamic forces and pressure in the range of Reynolds number, Re=40
to 20000. The time-variation of the flow configurations and the aerodynamic
parameters are calculated numerically by a finite difference method. For
the stationary case of the elliptic cylinder with the thickness ratio of 20%,
the flow separation is hardly observed on the surface and the point of
downstream stagnation where the shear stress vanishes stays very near the
vicinity of the trailing edge, in spite of its round edge, for such small
Reynolds number as 40 or 80, and a high angle of attack of @=20°. Further
a periodic transversal oscillation of this elliptic cylinder has no great
affect on the flow around the cylinder operating in the ranges of Reynolds
number Re=40 and 80, angle of attack a@=0° to 20° and the oscillatory
frequency £=0.1 to 1.4. However, it causes the point. of downstream
stagnation to move periodically with small amplitude about its location for
stationary case, with some phase lead difference.

For the stationary elliptic cylinder with the thickness ratio of 509, it is
found that a standing twin vortex (¢=0°) or the Karman vortex street (a=
15°) forms behind the cylinder accompanied with separation of the boundary
layer. The transversal oscillation of the 50% elliptic cylinder induces the
vortex street to shed behind the cylinder with the same frequency as this
oscillation and exhibits a sign of the vortex-excitation phenomenon.

Aerodynamic parameters measured with satisfactory accuracy are compared
with the values by the numerical calculation and it is confirmed that there
is a good agreement between them for both stationary and oscillating elliptic
cylinders.

Furthermore, some information is supplied from the experimental results
in the relatively wide range of Reynolds number. When an elliptic cylinder
operates in the non-stalled state, the fluctuating components of the normal
force and the moment are found to be weakly dependent on Reynolds
number, in the range of Re=40 to 20000. The shape of the curves, but
not the magnitudes, agree with the values obtained with the inviscid potential
theory. On the other hand, when the cylinder on which the boundary layer
separates in the vicinity of the leading edge operates in the stalled state,
the pressures on the upper surface of the oscillating cylinder are observed
to fluctuate in a sinusoidal fashion with a large amplitude. In addition, the
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amplitudes of the fluctuating aerodynamic parameters become considerably
larger than values inferred by the quasi-steady consideration, accompanied
by a great change in the phase shift.

Therefore, in a small angle of attack, the effects of Reynolds number is
not seen on the fluctuating force, but within large angle of attack, there
arises the phenomenon of the stalling, and Reynolds number has pronounced
effects on the fluctuating force.

Department of Jet Propulsion

Institute of Space and Aeronautical Science
University of Tokyo

July 30, 1975
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