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Abstract : Extending our previous theory of random processes with dead time [1], we
discuss the case where events during the dead time are recorded with the aid of buffer
memories. Expressions are given for the probability distribution in the finite time in-
terval in the case of one buffer memory the detection probability for the infinite time
interval and the arbitrary number of buffer memories, and the detection probability for
the definite resolving time and one buffer memory. The results will be applied to the
analysis of rocket data transmitted through a telemeter channel of a finite frequency
response, as shown by numerical examples.

1. INTRODUCTION

In the observation of random events of a high rate, the time required
for the transmission of information is not negligible. In such a case, buffer
memories are emplyed to reduce missing events due to dead time at the
sacrifice of information on the arrival time. The missing probability has
to be known for the design of a recording system. For the precise mea-
surement the live time has to be measured. Sometimes, the observation is
carried out without live time measurement because of a tightly limited band-
width as in the case of space observations.

The probability distribution and variance have been given for the system
without buffer memories [1], which is referred to as A hereafter. How-
ever, general treatment of the system with buffer memories looks much
complicated. In this paper the solutions of three practical problems are
given along with their examples. A general method for obtaining the pro-
bability distribution in the system with one buffer memory and in a finite
time interval is described in 2. This is the case of observing a certain
portion of the sky with photon counters by a spinning rocket. In 3 and 4,
the detection probabilities for the system with the arbitrary number of
buffers in an infinite observation time and for the system with one buffer
and a difinite resolving time are calculated, respectively. The latter case
corresponds to a detection system with one buffer and one analog to digital
converter whose conversion time is not negligible.
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2 S. Hayakawa, F. Makino and F. Nagase

2. PROBABILITY DISTRIBUTION OF THE SYSTEM WITH ONE BUFFER MEMORY

We consider random events of the average rate f and one buffer memory.
The first event arriving during a time length 7 after the arrival of the pre-
ceding event is stored in the memory and is read out just after the end of
this period.

(i) Open-open case

We define P(n, T') as the probability that 7z events are observed in the
time interval 7', and Q(n, T') as the probability that » events are observed
provided that the first event arrives at the same time of the start of time
interval. P(n, T) and Q(n, T') are expressed as follows

Qn, T)=pPn—1, T—7)+1—p)Q(n—1, T—7),

T—nt

P, T)=\ ~ e1faQ(n, T—2), (1)
0
for 1<n<m,
with
PO, T)=e'T,Q(0, T)=0,
where

(m—1c<T<mt and p=e "
Putting P(n, T') and Q(n, T) as

n—1
P(n’ T)= > F,,,,’(T-——nf)e"f(T—it),
i=0
(2)

n—1
Q(?’l, T): 2 Gn, i(T_nZ-)e-—f(T—it),
i=0

and substituting (2) in (1), we obtain

'z

Fris, @)=\ Fo,i@)dz—Foi(2)+ Fr,i-i(2)

0

for 1<i<n—1,

Friso@) = Fro(@)dz—Fool2)

(3)
Fn+1,n(x)=Fn, n-—l(x):

Gﬂ,i(x) :%Fﬂ,i(x):

with

Fl,o(x)=x.
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Random Processes with Dead Time and Buffer Memories 3

To solve the integral equation (3), we put F,,:(x) as
Fo,i(2)=Bay,i([-1)=i"1ez (4)

where T is an integral operator and B,-,,; are constants:
T
IES dz.
0

Substituting (4) in (3), relations between B,,; are obtained as

Bn+1,0:Bn,():Bn+1,n+1=Bn,n:1 5 }
Bai1,i=B,,i+Ba,i-1 .

(5)

Eq. (5) shows that B,,; are binomial coefficients. P(n, T') is given by

n—1 n—i—1 n—i—j
Pn, T)= 3 Byy,ie=fT-i0) 33 (—1)"37.—{—1,,'(l——@.r)—.——i (6)
i=0 =0 _ (n—i—51! ,
k!
Where Bk,[:'i*!*(*k”:l’)*!'

(ii) Effect of events in the preceding time interval

We take into account only the adjacent time interval. This is permitted
in the case of T >t; if T'<t, the event rate in all time intervals within 7
would have to be taken into consideration.

As in A, we introduce G, and G(s)ds, probabilities that the final event
in the preceding time interval arrives earlier than ¢ before the initial epoch
of the observation period concerned and that the final event in the pre-
ceding time interval arrives between t—s and t—s—ds, respectively. These
satisfy the normalization condition

G0+S G(s)ds=1. (7)

0

If the preceding time interval is infinite G, and G(s) are independent of
epoch. If we shift the time coordinate by z (2<7), the following relations
hold for arbitrary =z:

G(s)=G(z+s), (8)
GozGoe‘”2+SzG(s)e“”(”z")ds, (9)
0

where ¢ is is the average event rate in the preceding time interval. Eq.
(8) implies that G(s) is independent of s. Hence Eq. (9) yields
(1—e=9%)(gGo—Gse™97%)=0; (10)

here we denote G(s) as G..
Combining Eq. (10) with Eq. (8), we obtain
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— e—gr
O_g’c+e“7r
(11)
Gy=—1H9
gT+e"9°

This is to be compared with 1/(1+g7) and ¢/(1+4gt), corresponding expres-
sions without buffer memories given in A.

(iif) Probability distribution for the general case
The probability S(n, T') that the number of events observed in an arbitrary
time interval T is n is expressed by

S(0, T)=G,R,(0, T)+GSS 2.R:(0, T—5)ds,
0

S(n, T)=G\Ry(n, T)—I—GSS:[psRl(n, T—s)+(1—p)R)/(n, T—s)lds

S(m—1,T)
T—(m—1)

—GoRy(m—1, T)+GSS [p:Rim—1, T—s)+(1—p) R/ (m—1, T—s)ds
0

+ngr[pst(m—l, T—§)-+(1—p)Ry (m—1, T— s)1ds,

T—(m—1)T

T—(m—1)T

S(m, T)=GoRa(m, T)+GSS LosRo(m, T—s)+(1—p) R, (m, T—s)]ds
0
(12)

Here p; is the probability that no event arrives during ¢ after the last event
in the preceding time interval,

Ps:e—gr—(f-y)s (13)
R(n,T') and R/(n, T') are the distributions when the initial epoch is open

and the fiinal epoch is not always open, the definition being the same as
P(n, T) and Q(n, T') respectively in 2 and expressed
R (n, T') T>nt

, R'(n, T):{ ,
Ry (n, T) (n—Dc<T<nr,

Ry (n, T)=pRi(n—1, T—7)+(1=p)R\'(n—1, T—7),

Ry (n, T)=pRy(n—1, T—7)+(1—p)R, (n—1, T—7),

T—nt

Riln, T):S0 eIt fdt Ry (n, T—1)
(14)

T—(n—-1)
+S e~ F AR (n, T—1),

T—nt
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T—(n—1)T

Ra(n, T):S eIt fdtRy (n, T—1),

0
with
Ry(0, T)=¢ /%,

R, (0, T)=R,'(0, T)=0,
R,(1, T)=1.

We do not give general explicit expressions, but show some examples for

m=1, 2 and 3. TFirstly, we give examples of R(n, T') and R'(n, T').
R,(0, T)=R,'(0, T')=0,
R0, T)=e"/T,
R,(0, T')=indefinite.
R/(1, T)=e'7,
R,/(1,T)=1,
R, TY={f(T—1t)—1}e /THe /T,
R,(1, T)y=1—e/T.
R/2, T)Y={f(T—2t)—2¢ /TH2} e~ 177,
R/ (2, T)=1—e /T,

-~ ——

Ri(2, T)= [fi(TZZZT?f —9f(T—27)— ft}e‘fT

+ 2F(T—2c)—1} e~/ T=9) f o=/ (T20),
Ry(2, T)=—f(T—1)e fT—e 7 T-9 41,

RY/(3, T):{ff(T:%)f—s (T —3¢)— fr+ Z}e‘fT

-+ {Bf(T—3Z‘)—5} e~ S (T-0) _*_Be—f(’r;zf),
R2,(3’ T): {_f(T—ZZ')—l—l} e /T —Qe-fT-0) +1,

Ri(3, T)Z[fg(TG_BT)S—S)fZ(Y;*BT)f#—2f(T—3r)—fr(fT—-Agff—lﬂ

X e IT+ {g’fLTZ;BT_)_Z +5F(T—3c)— 2ff}e—f (T-7)

4 BA(T—30)—1] e~/ T=29) 4 g=r T=50),
R.(3, T):{—ﬂTZTZ?)f+ f(T—Zr)}e—fT—Z F(T—20)e~7 =0

— e~ f(T-27) +1.
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S(n, T') for various values of 7 are expressed as follows.

e~ fT+9(T-1)
m=1: S(O, T):_——__
. gz‘+e—gr s
(19)
= 1 -gT - -
S(l, T)—m{gT—l—e It _ ¢ SfT+g(T t)}

g(t—T)/(gr+e777) has to be added to S(0, T') which is the probability that

the time interval is entirely blocked by the last event in the preceding
time interval.

~fT
gT-+e?%,
S(1, T)—‘ _gz[g( T — T)—{—ae'f’—(l—I—a)e-fT
( l_)e fT—-gt (1_}<_e“f1')e—fT+g(T—Zr)]
“ * , (20)
0. 7= LT —e)tes—ae-rearr
( 1—)e“fT‘“+<l—_l——g f‘f) —fT+g(T—zr)J
o o ,
where a=g/f.
m=3:
—fT
S, T)=—5"—
gt+e?7,

s T):—e—ff—{f(T—ZT)—z—a+i+(1+i)e-w+(1+a)efr}
’ gt+e 9T a a

1
—_————— — -fT
S(2, T) p e_gr[g(Sr T)+2ce

+ {1 —(f+ g)(T—Z'c)—i—Sa—%}e‘fT—(1+3a)e‘f(T">

{2 f(T 2T)+E~L(T—2t)+2%“z}g-f7'—gr

+2(1+ 1) f(T-1) g'c_l_(l__L)z ~fT+g(T-37) (21)
(24
_2(1 __1_>e—f(T—1:) +9(T=32) 4. p=f(T—27) +g (T—3t):|
(04

b
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S(3, T):b—z_je_;[g(T—Zt)+e‘ff—2ae‘f’+ {g(T—2t)—2a}e=/7

+[1—f(T—2r)+—c%—-—5(T—2r)+2%2}e‘f7'“9f

A
_ +ku e f(T—-t)—gr ___ 1__ e fT+g(T-37)
[0 (24

_*_2(1 - l )ef (I'-7)+g(I'-37) _€~f('1'—2r) i y('l'——:ir)j!
a .

The mean number of events,

1.2 T T T
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Fi1G. 1. The average number of counts <»n> versus the event rate f
for m=2 (T=356msec, t=2.4msec). The value of <n>
depends on the event rate in the preceding period ¢ through

a=qglf.
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<n>=S1, T)+2S82, T) (22)

for m=2, is given as a function of f and f/g in Fig. 1. The value of ©
is chosen for a telemeter channel of the highest response frequency avail-
able for the K-9M rocket observation, and the value of 7T corresponds to
the spin angle of 3° for the flight of K-9M-44,

3. DETECTION PROBABILITY OF THE SYSTEM WITH THE ARBITRARY NUMBER
OF BUFFER MEMORIES FOR AN INFINITE TIME INTERVAL

In the random process with [ buffer meories, we define A; as the pro-
bability that the number of unoccupied memories is i(i=1,2, ---I) just after
the initiation of the events. A; are determined from the following linear
equations.

l
Al:Z A,P(lé),
i=1
7 (24)
Aj: R A,P(Z—]—}—l), ]:2, 3, e l__l,

i=j—1

l
A= > AP(E—1+1)+A,P0),
i=l—-1

Z-)ke—fr

where P(i<)= %P(k) and P(k)zgf k!
E=i '

There are /41 equations in Eq. (23), but the second equation can be derived
from the third and the fourth equations. The mean dead time 7Tp is ex-
pressed as

!
TD: ZAiTDi-
i=1

where T'p; is the dead time when the available number of memories is i
and is given by

T T—tyr—tiy

TD,:S =7t fdtls ) le"f‘Zfdtg---S eI f At (T —ty— Ly — 1)
0 0 0
; ~frizly
e LR R ey (25)

o f =0 k!

The detection probability f7/f, the ratio of the apparent event rate f’ to
the true rate f, is

VA (26)

f_1+fTD-
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FIG. 2. The detection probability f'/f of the system with buffer

memories versus f7 for various number of buffer memories.

We give explicit expressions for /=1,2 and 3.

[=1: A,=1,
L —(frtero) @7
v
=2 1#1—14%%%,
Aq 1_6];;;—1‘2
Tp—t—tg e /s
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f’ e—2ft -1
f Jr+ l—fl:ﬁ i (28)

_3. 1 2l (l—fre 7) }
=3 A=l et (foie ),

2¢~/*(1—e~f°— fre=/7)

Az:2_4fz_e-ff+(fr)2e—2fr,
A= 2¢72fr
3_2—4fre—ff+(fr)2e-2ff,
T 2e73fc
2=t 5 Fafee for (e,
’ -3ft -1
vid [ frt e } (29)
f 1—2fre-se4 U g

The values of f”/f against fr are graphically shown in F ig. 2.
4. DETECTION PROBABILITY OF THE SYSTEM WITH RESOLVING
TIME AND ONE BUFFER MEMORY

The mean dead time of the system with resolving z;, during which the
system is insensitive, and one buffer memory is given by

TD:r1+S e~fic—t,—t)fdt (t>1,)
0
1 e—ft—1) (30)
= z‘———l—-—w
f o,
TD:T1. (Z-Stl)

The detection probability is given by

4 1
§=Jm’ (t=>17,)
. (31)
:l+f7:1. (r<m)
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