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Starting-length Problem of Laminar Film Condensation**

By

Nobuhide NisHikawa*

Summary: The film condnsation in a laminar boundary layer flow is analyzed for the
case of combined body force with forced convection. Introduction of the starting length
parameter X. enables us to formulate the problem without any specification for a flow
model that film formation initiates at a certain point downstream of the leading edge;
a non-wetted initial section exists over 0<x< X.. With the assumed various lengths
of initial non-wetted region the boundary layer equations for a steam-air mixture have
actually been computed by means of the finite difference schemes, for a wide variety
of flow parameters: the uniform flow velocity, the mass fraction of steam and the bulk-
to-wall temperature difference. The effect of initial non-wetted length on the heat
transfer is examined. The results for the limiting case X.—0 are estimated by extra-
polation of the solutions for finite X.’s, and these are compared with the previous studies
for the cases of mixed convection, and also the limiting case of body force only.

1. INnTrRODUCTION

The problem of laminar film condensation has been analyzed by many
investigators. The characteristic features involved in the relevant flow
phenomena have been clarified: the effect of the presence of non-condens-
able gas in a vapor on condensation heat transfer [1],[2], the effect of
variable transport properties in gaseous and condensate layers [1], and so
on. On taking into account these effect, recently Denny, Mills, and Jusionis
[3] numerically analyzed the flow with laminar film condensation on a
vertical surface by means of an implicit finite difference method, using a
forward marching technique. In applying the forward marching technique,
however the flow-variable profiles must primarily be specified at the leading
edge, if both gas and liquid boundary layers are assumed to initiate just at
the leading edge. Denny et al. assumed the initial profiles which are deter-
mined by a Couette-type analysis together with an approximate relation
between the incoming momentum and shear stress at the interface [3].

In the present paper we are still concerned with a numerical analysis of
laminar film condensation on a vertical surface. To the author’s knowledge,
all of the previous works concerned dealt with the flow along the surface
wholly wetted from the leading edge. Here we suppose the flow model that
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28 Nobuhide Nishikawa

the surface is non-wetted over a leading section, so that the liquid film
grows up from the rear end of this region toward downstream. Then the
problem is treated under a varying wall condition with sudden change in
both surface temperature and mass flux at film initiation point. The distance
from the leading edge to the film initiation point is designated as the starting-
length.

For the analysis of the problem above described, we should refer to the
laminar boundary layer problems with stepwise variation in wall tempera-
ture or mass flux. This kind of problem was analyzed by Eckert [4],
Lighthill [5], Scesa and Levy [6], Fox and Libby [7], and Cheng et al. [8].
Eckert, Scesa and Levy confirmed that the solution for cases of finite but
small starting-length approaches closely the exact solution [9] for the case
of constant surface temperature with vanishing starting-length. The similar
result was obtained by Libby [10] for the boundary layer with stepwise
variation in mass flux toward the surface.

In the present analysis, first we obtain the solutions for ceses of various
lengths of the non-wetted leading section, and examine the effect of the
length of the non-wetted section on the heat transfer. Moreover the solu-
tion for the case of vanishing non-wetted region or wholly wetted wall is
estimated by extrapolation of the solutions for cases of finite starting-lengths.

2. MATHEMATICAL FORMULATION

2.1 Physical model and basic assumptions

A schematic diagram of the physical model concerned is illustrated in Fig.
1; that is, the wall is assumed to be non-wetted from the leading edge down
to a point x*=X.* and the liquid film initiates to grow at this point. The
flow of vapor-gas mixture covers a condensate layer adjacent to a finite flat
plate. The wall temperature T, is held lower than the free stream tem-
perature 7. which is assumed to take the saturation value at the free stream
state. Suppose a plate placed vertically, then the liquid film flows down
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FiG, 1. Sehematic illustration of flow model.

This document is provided by JAXA.

.




Starting-length Problem of Laminar Film Condensation 29

due to both gravity and interfacial drag.

Prior to introduction of the governing equations the following assumptions
are made;

1. Liquid flow through a condensate layer as well as vapor-gas mixture flow
are laminar.

2. The radius of curvature of the film surface is sufficiently greater than
the thickness of the gas-phase boundary layer.

3. In vapor-gas mixture the transport effect of thermal diffusion is negligible.
The viscous dissipation as well as the work done by pressure are also
ignored, because the free stream velocity u, concerned is comparatively
low.

2.2 Governing equations v
It is convenient for the analysis of gas-phase boundary layer to choose

the Cartesian coordinates (z*, y*), as illustrated in Fig. 1. The conservations

of mass momentum, vapor species, and energy in the gas-phase boundary
layer along the liquid film are written with the assumption of thin liquid
layer as follows:

8(ou) , 3(ov)_,

0x* = oy* ’ (1)

puaa;*ervazu*: az*<uaaysz)+g(p—pe), (2)

35=0, (3)
pu%+pva?*:az*<pDa?*)’ (4)
pc,,<u§;+v§;;):az*<kg;)+pD<c,,,,,—c,,,g)£C;gy—7; (5)

In these equations u, v are the velocity components pertinent to the x* and
y* coordinates, the symbols o, p, T, and ¢ represent the density of the
mixture, the total pressure of the mixture, the temperature, and the local
mass fraction of the vapor, respectively, and ¢ the gravitational acceralation.
The viscosity, the thermal conductivity, and the binary diffusion coefficients
are denoted by x4, k, and D, respectively, and the specific heat at constant
pressure by C,. The subscripts v and g refer to quantities pertinent to the
vapor and the non-condensable gases, respectively, and the variables without
these subscripts refer to the mixture. The subscript e refers to the free
stream.

To enclose the problem the equation of state for gas mixture is required;
here it is assumed that the mixture behaves like a perfect gas, i.e.

p=pRT, (6)

where R is the gas constant for the mixture.
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30 Nobuhide Nishikawa

As for the liquid motion through the film the velocity is so small that

the convective terms in the conservation equations can be neglected. Then
we have

dz
0=p g +aloL—p0), (7)
a*T
0= deZ/ (8)

where the the subscript L refers to quantities pertinent to the liquid. These
simplified equations were first proposed by Nusselt [11], being called Nusselt
assumption.

2.8 Introduction of dimensionless quantities

For convenience the following dimensionless variables are introduced for
the two-phase boundary layer; The spatial coordinates z*, y*, are non-
dimensionalized by a reference length L;

x=x*|L, y=y*/L.

The ordinary boundary layer coordinates are introduced

*

ueS ody*
0
= 9
1=V 20 flette* (9)
With the stream function defined by
0 _ o _
ay*_‘pu: ax*— ov, (10)
the dimensionless stream function f is introduced
f= (/’/'\/Zpe:ueuex*- (11)
If we use
U=ulu., 0=T/T., (12)
by the transformations (9)-(12) the basic equations (1)-(5) are rewritten
R
av(pe,u, an fﬁ 0x 0x0p o/4, (13)
pDac) oc 9 (Ugﬁ 8f0c> 14
677(0,,/1,., o +f677 Yoz 0x0n (14)
k. ok 66) 06 ( 00 6f86) 02D C,,—C,,,0c00
2z| Uz——2-— —— 15
ﬂeCp577<.0ek o +f077 \“ox ozon pa. C» onoy, U
where

G=gL/u?
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gives the magnitude of body force.
The equations (7) and (8) for the liquid layer are rewritten in the
dimensionless forms:

22U Le (pL )
=—GR, (L1
ay? L\ Oe ,

a*g
a” —o,
dy?
with the Reynolds number Re defined by
Re=p.u.L/u..

Assuming that o; and g vary in the streamwise direction but are constant
across the film, we have the following solutions of Eq. (7) and Eq. (8),
respectively.

U= —G-Re-Ay2+(%—“+GReAa>y, (16)

e=0w+(6,-—ew>—g— (17)

b

where

A=(or/pe—1)u/2pL.

In these equations d is the nondimensional film thickness and the subscripts
i and w refer to the quantities respectively at the interface and at the wall.

2.4 Boundary Conditions
Assuming that there is no slip at the wall and the wall temperature is
fixed constant, we have the conditions:

y*=0, u=0, T'="T,,. (18)
The external flow is assumed to be uniform, and then

y*—>OO, U Ue, T—’Te: C—>Ce. (19)

Once both 7. and c. are given for saturated vapor, we can determine the
mixture pressure p.

The film geomtry 0*(x) is unknown prior to the solution. The following
relations must be satisfied at the interface, regarding the velocity, the tem-
perature, the shear stress, mass flux, and the heat flux.

y*=0%(z);
U=ur=1u;, (20)
T=T.=T; (21)

shear stress balance:
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ou du

ﬂ"@”_#Ldy ’ (22)
mass flux continuity:
fféiaij*:di*gz*pLuLdy*Em*. (23)
heat balance:
3 Qm*hﬁ—h ;,”; (24)

where the subscript i refers to quantities pertinent to the interface, and
m* is the condensation rate per unit area and per unit time and Ap* is the
latent heat per unit mass.

The interface conditions above derived still contain four unknwns; 8*, w;,
T;, and ¢;. In order to attain closure of the problem, we need one more
constraint. We assume that the vapor in contact with the interface is
saturated. If the mixture and its components behave like perfect gases,
than the vapor mass fraction ¢; at the interface is given by

o M,
Myp/Pv(Ti)_‘(Mg’—Mv)s
where M denotes the molecular weight, and p.(7T:) the vapor pressure is
available from thermodynamic tables.

On the non-wetted wall at x<<X_,, there occurs no condensation, and thus
the mass conservation yields the following condition at the wall,

O _
ay*—

(25)

Ci—

(26)

Consequently the problem is reduced to solving the equations (13), (14),
(15) so as to satisfy the boundary condition: (18), (19), and (26) for non-wetted
region and (18)-(25) for wetted region, respectively. These conditions are
rewritten in the dlmensmnless forms with the assumption of thin liquid
layer as,

y=0; U=0, 0=0., . ' 27
Yy—>00; U——>1, 0—+1, C—>Ce, (28)
y=0;
U=U,=U; 60=6.=6, (29)
OU_pmaU .
"oy pidy, (30)
00 krdo
AT =ELEYT Re. P
o kidy e+ Prhim, | (31)
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where
A,=pil0.-V Re[2x, Pr=u.C,,ilk:,
he=hr*|Cy,. T, m=m*[p.u. .

As for the surface conditions for vapor mass fraction, we have

6(::

0zx<X., y=0; 57; 0, (32)

s
oL Urdy=m ,

r=x:, Y=0; a
00 (33)

S.(1—c)op dzx

cC=Ci,

A, Oc dS

where

Sc:'.ae/‘oiDio

3. COMPUTATIONAL METHOD

3.1 Finite difference schemes

We conveniently divide the whole region into three regions: 1) the non-
wetted wall region, II) the wetted wall region from the film initiation down
to a moderate downstream, and III) further downstream region.

It follows from the solution of Eq. (14) with the wall condition (32) that
for the region I the vapor mass fraction ¢ is constant across the gas-phase
boundary layer. Thus, it suffices to deal with the momentum and energy
equations alone. For this region we apply the Hartree-Womersley method
modified by Smith et al. [12]. This method leads an accurate solution with-
out any specification for the initial profiles of flow variables at the leading
edge.

In the region II, the liquid film initiates to grow up toward downstream;
i.e. the diffusion layer begins to grow up from the point =X, along the
film. Therefore, the H-W method is still appropriate to the numerical
analysis of the diffusion layer in this region. However the H-W method is
not necessarily appropriate to evaluation of the momentum and thermal
boundary layers, because of the complexity in matching of the gas phase
solution with that of the liquid layer. To circumvent this complexity, a stan-
dard explicit difference scheme is applied to the analysis of the momentum
and the thermal boundary layers, which are growing up comparatively
thicker in this region. In this paper, the standard explicit scheme is applied;
the 7p-wise derivatives are represented by the central finite difference ap-
proximation. In application of the H-W method to the diffusion layer
remaining variables, U, f, o, and D involved in the species conservation
equation (14), are specified by the interpolation from the velocity and the
temperature profiles evaluated from the standard explicit scheme. The
region II is terminated at the location where the diffusion layer becomes as
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thick as the momentum and thermal boundary layers.

In the region III after the region II, the streamwise variation in flow
variables becomes comparatively small. Therefore, for analysis of region III
it is more efficient for computation to use the finite difference scheme pro-
posed by DuFort and Frankel [13], being much favorable for the stability
of computation. The details of the finite difference scheme employed in
the region III should be referred to Appendix.

3.2 Matching procedure

In analysis of the wetted region, the matching procedure of the gas-phase
solution with the liquid film solution should be made so as to satisfy the
boundary conditions (29)~(31), and (33) at the interface. By the use of the
two-point finite difference appoximation, the left hand sides of (30), (31) are
expressed at the (/+1) th step in 4X as

a_lj_ Uri,e— Ui QQ_@Hl,z—@i

- = 4
o dn , 0p dn (34)

where

Ui=Up(J=1), 60:=0;(J=1).
Here 47 is the grid size and the subscripts I and J denote the grid indices
for the quantities at the coordinates

1
x=I§_]lAX,, n=(J—1)dn.

Then with the aid of Eq. (34), and by substituting (16), (17) into (30), (31),
respectively, we have the following set of algebraic equations for the un-

knowns U;, 6;, 0, and 7:

_y.=(Yi_ dnppr
Upsra U,—< . GReA6) e (35)
0[.,.1,2—0,':(&—;ﬂ%—RePrhI‘m1+l>ﬁz (36)

In making the two-point finite difference approximation for the x-wise
derivative in Eq. (33), the condensation rate is expressed as

m,+1={[g2% ULdylH—[S:%f ULdyl} /AX,H.

The substitution of liquid layer solution (16) into the above equation gives
the following algebraic from

[g—;( Uia——%GRe(%):\ :mHl'Ale—l—[S:% ULdZ/]I. (37)

The matching procedure for Ui, 6;, and 7z is performed as follows:
1. For 77,,, appropriately chosen we evaluate U;, 6; and 0 using (35), (36),

I+1
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Starting-length Problem of Laminar Film Condensation 35

and (37).
2. The c¢; is evaluated using Eq. (25) with p, for 6; above obtained.

3. The species continuity (14) is solved by the H-W method for this c;.
The solution gives (dc/0n);, and thus 77,4, is evaluated from Eq. (33).
The procedure above described was iteratively repeated until the deviation

of the re-evaluated 7,4+, from the previously attains less than 1x1073
For region III instead of step 3 the new value of 7%, is obtained from
the following difference form of Eq. (33);
1 Cr+1,2—Ci Ax

m"”:l—c,- S.4n  Re. (38)

The diffusion layer as the momentum and thermal boundary layers are
analyzed by means of DuFort-Frankel scheme (see Appendix)

3.3 Propriety of the method

The gas-phase boundary layer flow accompanying with the film condensa-
tion has a similar feature to the boundary layer flow along a wall with
suction. To examine the applicability of the numerical method here pro-
posed, therefore we applied this method to the problem of the boundary
layer over a flat plate with suction. The problem is quite the same as one
for which the exact similar solution was obtained by Emmons and Leigh
114].

We assume a physical model that the wall is impermeable at x<<X. and
the suction is distributed with the suction velocity Vw~1/Vz along the wall
at x==X.. For the case of small wall mass flux, Libby [10] presented an
expression for the deviation of stream fuction from the similar solution [14]

x107?
3

fw=3.0/v2

...... Extrapolated Curve

S S N Y S N S P B 102
o 1 S 10
Xe

F1G. 2. Velocity data computed for the boundary layer
problem with surface suction.
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36 Nobuhide Nishikawa

by the power series in terms of the impermeable length X.. It was confirmed
that the solution approaches closely to the similar solution [14] with decreas-
ing impermeable length. We examine here the validity of the extrapolation
method, which provides the solution for X.—0, in the case of comparatively
large flux f.>1; f. is the dimensionless stream function at the wall.

For this problem we have the Blasius solution for £<X. and thus the
momentum equation (without body force term) concerned has been solved
by the standard explicit scheme at x=X,. The computation was performed
for the various suction parameters f., ranging from 0.1/v' 2 to 5.0/v 2.

For each suction parameter, the location X. of suction initiation is chosen
as X.=0.001, 0.005, and 0.01. In Fig. 2 the variation of the dimensionless
streamwise velocity at x=X.+0.02 is expressed by 1—U/Ugyx. and plotted
against X, for fixed 7’s; Ugn. denotes the results for X.=0 obtained by
Emmons and Leigh [14]. The solution for X.—0 was evaluated from the
extrapolation of the solutions for various finite X.’s. The deviation of the
results thus obtained from the exact solution [14] is found to be less than
2%. Therefore the extrapolation procedure proposed here is expected to
provide a reasonably accurate solution for the suction problem as well as
the condensation problem.

4, RESULTS AND DISCUSSIONS

4.1 Flow parameters for computation

Numerical solutions of the boundary layer problem in steam-air mixture
undergoing forced flow along a vertical surface was obtained by the afore-
mentioned numerical method. The solutions for several X.’s were obtained
for the free stream velocity of 1 fps, 10 fps, and 100 fps for the steam mass
fraction c. of 0.9, 0.09, 0.99, and 0.999 and for the temperature difference
(T.—T,) ranging from 5 to 36 deg F, with the specified temperature level
T.=212 deg F. The reference length L was chosen as 0.5 ft.

With reference to the proposal by Denny and Mills [15], the properties
of water were assumed to be the locally constans which can be evaluated
at the reference temperature 7', given by

T,=T,+033(T:i—Tu). (39)

For the steam-air mixture concerned, the viscosity, the conductivity, and the
diffusion coefficient were evaluated from the data listed in Hilsenrath et al.
[16], by the use of the mixture rule described in Mason and Monchik [17].

4.2 Accuracy of numerical results
From consideration of truncation error the grid size 4n was taken as 0.1
with 7,=7.0 at the outer edge of the boundary layer. For the case of small
z-wise velocity it was tolerable to choose the larger grid size 4p, say 0.2.
The marching step size was chosen as follows. For the region I, the
number of steps were ranged from 2 to 20, depending on the magnitude of
X.. At each z-step the solutions were obtained such that deviation from
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the uniform stream condition at 7.=7.0 is less than the accumulated error
caused by the R~-K-G program employes in the H-W method. For the
region II, the step size 4x was chosen so as to satisfy the Karplus’ Criterion
[18] at each step. The region III was divided into about 300 steps with
varying step size for which the truncation errors were less than 0.195. The
resulting accuracy of computation is estimated to be within 0.1% or so.

4.8 Boundary layers in the vapor-gas mixture A

As an example the the profiles of vapor mas fraction and velocity are
shown to illustrate the flow near the film initiation point in Figs. 3 and 4,
respectively. Figure 3 shows the development of diffusion layer along the
film. The concentration gradient d¢/07 at the film surface sharply decreases
toward downstream near the film initiation point x=X.. From Fig. 4 we
can observe a sudden reduction of boundary layer thicknes just behind the
film initiation point z=2X,; this is caused by the momentum transfer to-
wards the film, being accompanied by the condensing vapor. At moderate
downstream the recovery of the thickness of momentum boundary layer can
be seen; this is partly attributed to the decrease in condensation rate.

The velocity profiles for the case of u.=10fps and for the case of u.=1

5
u.=100tps
41 ce=0.9
Te—Tw=36"F

0—75 0 0 0 02 04 06 08 1.0
(c—ci)/(ce—ci)

FIG. 3. Profiles of steam mass fraction.

Same Condition as in Fig. 3

: g | | I
O O 0 0 0O 02 04 06 08 10O
u/ue

FIG. 4. Velocity profiles «.=100 fps.
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7
ue=10fps
ce=0.9
o Te—Tw=36°F
5
4+
&
3 |
X=1.0 «_
0.5
0.0t
2 |
1
o) A I ] !
0 0.2 0.4 O.b 08 1.0
U/Ue

F1G. 5. Velocity profiles «.=10 fps.

e 1 1 [ l
0] 0.4 0.8 1.2 1.6

U/Ue

FiG. 6. Velocity profiles «.=1 fps.

are shown in Fig. 5 and Fig. 6, respectively. The velocity profiles for the
cases of #,=10fps is similar to that for the case of %.=100fps. On the
contrast to these cases in the case of u.=1fps the flow near the film is
accelerated over the free stream velocity because of dominant body force.
4.4 Effect of starting-length on the heat transfer

Let introduce the dimensionless wall heat flux ¢/gx., where gn. is the wall
heat flux obtained from the classical Nusselt model analysis. With the liquid
properties evaluated at the reference temperature T, given by (39), gw. is
expressed as follows [1]:
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g :[C,,, ( Te—Tw)]s“(gmzﬂf)1/411[4* (40)
Nu P,.’ LhL* 4x*

In Fig. 7 the heat transfer q/qy. is plotted against x— X, for various X.’s.
As mentioned before the limiting values of g/qy. as X.—0 were estimated
by a simple extrapolation from the results for finite X.’s. We can see from
this figure that the ratio g/gy. is nearly constant over the region near the
rear edge x=1 for each X.’s. Therefore the ratio g/gx.o at the rear edge
z=1 provides a measure of the effect of the starting-length on the heat

2.5 S ¢, =0.999 ’
20
!
1.5 5
- Te=Tw=36'F,
o \\%\”\ Ue=100fps
= e ]
e Ty T
1 O
Te—Tw=5"F, uc=1fps |
0.5} '
0o | L L | 1
0 02 04 0.6 08 1.0
X=X,

FIG. 7. Heat transfer variation with the starting-length X, as a
parameter. C.=0.999:

—, X.=0.001; —_—, X.=0.005; ~-—-- , X.=001;
_—— X.=002; —--—, X.=005; —---—, X.=0.1.
5
Ue=1fps
ce=0.999
4 T-T.=sF
< 3
«© . X&/L
25 h \\ 0.1
\\0.05
0.01
= \0.005
0.001
O H | J L
@] 0.2 04 06 0.8 1.0

X*/L
F1G. 8. Dependence of film thickness on assumed location of film
initiation.
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06l
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Xe

FiGg. 9. Effect of /1" Re on the heat transfer ratio g/¢gxc.o at
the rear edge.

TEBLE 1
A B c D
VR 8.64 0.4 1.7 236
w.CEps] 10 1 10 1
a'e_g% 36 36 36 20

Ce 0.9 0.999 0.99 0.999

transfer; gx.., denotes the value of ¢ for the vanishing starting length X.
—0. Sampling data of the film thickness are plotted in Fig. 8 which shows
that for smaller X. the liquid film is relatively thin.

To clarify the starting-length on heat transfer, we plot the heat tranfer
ratio q/qxc.—olz=1 in Fig. 9. As naturally expected, the ratio gq/gx.—olz=1
decreases with increasing starting-length X, or with increasing length of
non-wetted leading section. It can be shown from a simple dimensional
analysis that the ratio of the momentum driven by condensation to the dis-
sipated momentum is measured by the magnitude of 72v'Re; although the
mv Re varies along the liquid surface, as a measure the value at rx=X,
+0.02 is tabulated in Table 1 with the flow parameters. From physical point
of view it is suggested that for the greater m+ Re the existence of the non-
wetted region less affects the behavior of the flow over the following wetted
region. In fact we can see from Fig. 9 with reference to Table 1 that for
smaller 77+ Re the decrease in ¢/gxc—o|z=1 is much appreciable with increas-

ing X., while for greater mv Re q/qxc—o|z=1 indicates a weak dependence
on X..

4.5 Comparison with other analyses

Most of the previous analyses dealt with the flow model that the film
initiation occurs just at the leading edge. Recently the case of mixed con-
vection, with which the present analysis is also concerned, was numerically
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analyzed by Denny, Mills. and Jusionis [3] by means of an implicit finite
difference method. As for difference of the present analysis from the analysis
by Denny et al. [3], the type of the numerical scheme is not the subject
to be noteworthy, but the following should be noted. The starting-length
method proposed here does not require any additional approximation, say an
asymptotic shear expression made in the analysis by Denny et al. at the
leading edge. Comparison of the present results for X.—0 with those by
Denny et al. [8] is made in Fig. 10. We can see from the figure an ap-
parent contrast that the heat transfer ratio q/qy. predicted by the present
method asymptotically approaches a nearly constant value as one proceeds

14, — === - — -
To-Tw=36"F |
2k |
. €e=0.999 -~y u. =10fps
~— -
1.0 R X&' —————— =
sl N— \
- _8\; 1fps
= - \\

e e —— ]

Fic. 10. Comparison with others’ results for the case of mixed
convection. -—, present method (X.—0); --—,
Denny et al.

L e
. Present, ue=11ps
: ~=== Ref. (1), u.=0
1.2} ’
1.0} <
N ~
- ook _ /—CF—O 999

e e

0.6_ ——— //"C.,:‘O.g l
0.5 | | |
*~0 10 20 30 40
Te_T\v (oF ]

F1G. Comparison with others’ resuls for the limiting case.
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toward downstream, while the data by Denny et al. [8] do not clearly in-
dicate such a trend. This asymptotic behavior of g/qy. with increasing z,
which is shown in the present results, is likely to be reasonable in view of
the fact that at far downstream the effect of body force prevails over the
effect of the forced convection. As can be seen from Fig. 7 and 10, for the
range #=10 fps the magnitude of g/gy., for any =z, except for small =z, is
roughly close to q/qy. at x=1.0.

The comparison of the present results for the mixed convection is made
with the results of the analysis for the limiting case of the body force only
[1]. For the case of u.=1fps the q/qy.|.=1 is plotted against the tempera-
ture difference T.—7T', in Fig. 11. In this figure the deviation of the pre-
sent results from those for the case of body force only [1] shows the effect
of the free stream velocity. For the case of u.=1fps the behavior of g/gy.
[z=1 is well analogous to that for the case of body force only [1]. Thus
we conclude that in the range u.=1 fps the condensation is predicted by the
results for the case of u.=0fps or the case of body force only.

5. CONCLUDING REMARKS

We presented a numerical analysis of the laminar boundary layer over a
condensate film flowing down a vertical flat plate with the non-wetted lead-
ing section; as the limiting case, the solution is obtained for the case of
vanishing non-wetted section or wholly wetted wall. Finally emphasis is

TEBLE 2 q/qnu|x*/:=1.0; L=0.5ft, Te=212°F.

Ce=0.9
o “ 100 fps| 10F 1fps | 0.1F
0fps| 10 fps s | 0.1fps
Te-TwrFl~| | | F
5 0.792 0.521 0. 206 0.162
20 0.484 0. 391 0.187
36 0. 462 0.295 0.163
Ce=0.99

= ”
100 fps | 10 fps 1fps
Te—Tw [°F] ™~ P P P

5 1.132 | 0.931| 0.630

20 1.153 | 0.879 | 0.608

36 1.175 | 0.861 | 0.569
Ce=0.999

T e U,

T 100 fps| 10fps | 1fps
Te—Tw [°F] . P P P

5 | 1.204 | 0.9805 | 0.8310
20 1.221 | 0.9810 | 0.8311
36 1.250 | 0.9831 | 0.8312
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made on the followings,
1) The streamwise variation in flow variables is appreciably large in a nar-
row region behind the film initiation point. The flow behavior at this region
is likely to affect on the flow following toward downstream. Therefore, any
assumptions or approximations made for the flow variables at the film initi-
ation point should be minimized in order to clarify the the real flow feature.
In view of this this fact, the starting-length method proposed here is much
favorable compared with the previous analyses.
2) As regards the heat transfer, it takes the different value depending
on the length of non-wetted section not only near the film intiation point
x=2X. but also at the rear edge of the plate. The difference is much ap-
preciable for the cases of smaller mV Re; the ratio of the momentum driven
by condensation to the dissipated momentum. In other words for smaller
mV Re the ratio g/gx.—o|.=1 largely varies depending on the length of non-
wetted section, while for greater 72V Re it is less sensitive to the length of
non-wetted region.
3) The ratio g/g\. asymptotically approaches a nearly constant value as one
proceed toward downstream, so long as the free stream velocity is not so
large; This asymptotic value provides a useful measure to estimate the heat
transfer (see Table 2).

The author wishes to acknowledge Professor Hakuro Oguchi for his help-
ful advices and stimulating discussions throughout this investigation.
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University of Tokyo, Tokyo

January 10, 1976

APPENDEX

The boundary layer is divided with a grid of size 47 and 4X with

I
x=>34X; and p=(J-—1)-4dy.

It is assumed that the dependent variable ¢ is known at the grid points in
the I-th column and unknown in the (/+1)th column.

In the DuFort-Frankel scheme, the z-wise derivative is expressed in the
form

9% ____¢1+1,JAX1—¢1—1,J'AX1+1 (A1)
0zl s AX1+4X 4 ,

Where Axl-:.r[—xl—l and Ax1+1:x1+1—x1.

Here the subscripts I and J denote the grid indices. The first-order deriva-
tive normal to the interface is approximated by central finite difference, and
the second-order derivative is expressed in the form
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1 - .
6 1,71+ Pr 1= (Bre1, 74X+ P11, 74X 41)
5 = > (A2)
n*lr,y dn*

where s=U4X;+4X;41)/2.

>

Applying the difference approximation (Al) and (A2) to the conservation.
equations (13), (14), and (15), after some manipulation we obtain the follow-
ing difference expressions for the unknowns Urii,s, Cre1,y, and Or44,s:

2s 4X
— CR( , + , _ I+1 _ >
Pre1,7 T 12-CR) AX[{ Pr,741+P1,01 o PI-L
Unr@r-1,7° 44X | $1r,001— 91 J—1<f1 i~Jf1,0-1, f1,0 )
+ LLs Pt +2n = J L =T, I CM)+ F
2s 24n 4X, + 2x + +
-
where
CR:RI,J+1+RI,J—1 CM:RI,J+1"'RI,J—1
dx An? , 4z dn ,
4y
Sfrni=fr,0+WUr;+ UI,J—l)'é‘
In the above expression R;,; and F' are represented in calculation of each
unknown Ufsy,7, Cr+1,7, Or O741,7 as follows:
6=U. F:G<l—&) R, =ty
01,7/, Pelle
2
p=c; F=0, Ry, =Ly
‘Oeﬂe >
¢:0; FZHI’J+1—QI:J—ICP"”—_CP,Q[IOZD]I,JCI,J+1_CI,J~1 »
dzdy Co, | Pefle 24 ,
R____[pk/CP]I)J
LS Qefle
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