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An Approximate Method for Prediction of Ignition by
Thermal Explosion Theory
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Summary: A new method of analysis is developed to predict the critical ignition
condition in the thermal explosion theory, which is simple and yet can give the correct
dependency of the critical Frank-Kamenetskii parameter 4. on the activation energy.
It is shown that in this method the usual Frank-Kamenetskii approximation corresponds
to the special case of large activation energy.

1. INTRODUCTION

The behavior of system with exothermic chemical reaction has been studied by a
number of investigators and now the thermal explosion theory is well established [/, 2].
The critical condition for ignition to occur is identified with the one for which a steady-
state temperature distribution just ceases to exist. To derive the criticality, it is usual
to adopt the Frank-Kamenetskii approximation to the exponential term of Arrhenius
rate expression. With this approximation the criticality is specified by the maximum
value of a single dimensionless parameter ¢ (Frank-Kamenetskii parameter). The
critical value J, depends only on the geometry of system and has been evaluated for the
simple shapes of slab, cylinder and sphere, and also for more complicated shapes [3]-[5].
However, it has long been known that the numerical solution with the exact Arrhenius
rate expression gives the value of ¢, which also depends on the activation energy [6].
The value of d, obtained through the F-K approximation is a limiting value which is
accurate only for large values of activation energy. Recently, there are several studies
(7], [8], which aim to obtain the exact values of 6, by means of numerical solution.
Although the method of numerical solution is quite familiar and there are no essential
difficulties in obtaining critical values, the numerical integration of two point boundary
value problem is rather laborious, especially when the accurate values are wanted.
In order to overcome this difficulty, a new method of analysis which can predict the
correct dependency of 4, on activation energy has been developed and the main idea
has been described in a brief communication [9]. The essential point of the method
lies in that the argument of exponential term is expanded about the unknown maximum
temperature, instead of about the ambient temperature. This is based on the assertion
that the chemical reaction rate in the system is governed mostly by the maximum
temperature. The equation and the boundary conditions to be solved are found
identical with those of the F-K approximation, yet the derived values of ., are much
more accurate and show the correct dependency on activation energy as is predicted

[209]
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210 T. Takeno

by the numerical solution. The purpose of the present paper is to supplement the
communication and to give a detailed explanation of the proposed method.

2. GOVERNING EQUATION AND F-K APPROXIMATION

The dimensionless steady-state heat conduction equation for a one-dimensional
solid with an exothermic zeroth order chemical reaction, and the appropriate boundary
conditions, are:

d’t j dt E.\
52 + E d& +Bexp< T >_Oa (1)
70 =0, «(1)=1, 2

where t=1T/T, is temperature made nondimensional by the ambient temperature
Ty, §=x/L is the space coordinate made nondimensional by the half-length L of the
system, and j is an integer denoting the shape of system. It is equal to 0, 1 and 2 for

slab, cylinder and sphere, respectively. The dimensionless parameters B and E, are
defined by

QL . _ E

= = 3
B= 22 =g, 3

where 4, Q, 4, E and R° are frequency factor, exothermicity, thermal conductivity,
activation energy and the universal gas constant, respectively. When we can find a
solution for Egs. (1) and (2) for a given set of values of B and E,, the heat production
rate by chemical reaction just balances the heat loss rate by conduction and the steady
state is attained. In this case the ignition will not occur. If we cannot find solutions
for another set of values of B and E,, the steady state cannot be realized since the heat
production rate exceeds the heat loss rate and the temperature will increase in time
resulting in the spontaneous ignition of system. In the former case, the steady-state
temperature is not so high above the ambient temperature, with the nondimensional
maximum temperature t,, close to unity. The nondimensional activation energy E,
is, in general, large as compared to unity. Therefore, we seek a solution in the form

T(S)—1+#—a(5)+( ) 6:(8) +

For simplicity we truncate the series after the second term

w(§) =1+ “4)
and the argument of exponential is expanded and approximated as
L _E 0. 5)
T
Consequently, the equation and boundary conditions for §(§) reduce to
ae | j do
6
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An Approximate Method for Prediction of Ignition by Thermal Explosion Theory 211
6'(0) =06(1) =0, (7)
where
0 = BE,exp(— E,). (8)

The approximation (5) is called as F-K (Frank-Kamenetskii) approximation and the
dimensionless parameter 6 as F-K parameter. Mathematically, this approximation
simplifies the exponential term to enable to obtain the analytical solution. Physically,
it elucidates the fact that the ignition process is governed mostly by the single parameter
d, instead of the original two parameters B and E,.

Equations (6) and (7) indicate that §’(¢) should become negative for £>0 so long
as 0>0. Then 6(¢) has only one maximum at £=0 and the nondimensional maximum
temperature z,, is given by

1
E,

Tw =1+ —06(0), ©)
where 6(0) is to be obtained as an eigenvalue of Egs. (6) and (7). The latter equations
can be solved analytically for j=0 and 1, and the parameter 4 is related to the eigen-

value 6(0) by

2
0= 2exp(— 0(0))[cosh‘1{exp(@>” (0>0), (10)
7 2
5= — 2exp(— 0(0))[cos“ {exp(%o))ﬂ (5 < 0) )
for j=0 and
5 — 8 exp (— (9(0))[exp <fgﬂ> _ 1] (6 = 0) (12)
for j=1. Although in the present analysis these relations have a definite meaning

only for 6>0. However, the extension to the region 6 <0 will be useful in a future

v2g + seb-0

8101=8(1)=0

i 800 3.

O 1186842 0.8784577

1 1386294 2.0

2 1607457 3.3219921

-7 -6 -5 -4 -3 -2 -1

. Y B i L A —
-2 F

Fic. 1. Relation between Eigenvalue 6(0) and Parameter & of Egs. (6) and (7).
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212 T. Takeno
TasLE 1. Eigenvalue #(0) as Function of Parameter é of Egs. (6) and (7) for Spherical
Symmetry (j=2).
—é —60(0) —d —0(0) é 6(0) 6(0)
0.1 0.01647546 3.1 0.39158011 0.1 0.01686449
0.2 0.03258100 3.2 0.40138467 0.2 0.03413867
0.3 0.04833427 3.3 0.41106732 0.3 0.05184501
0.4 0.06375165 3.4 0.42063124 0.4 0.07000794
0.5 0.07884837 3.5 0.43007951 0.5 0.08865415
0.6 0.09363859 3.6 0.43941506 0.6 0.10781285
0.7 0.10813553 3.7 0.44864073 0.7 0.12751611
0.8 0.12235155 3.8 0.45775924 0.8 0.14779928
0.9 0.13629818 3.9 0.46677322 0.9 0.16870146
1.0 0.14998626 4.0 0.47568518 1.0 0.19026604
1.1 0.16342597 4.1 0.48449755 1.1 0.21254142
1.2 0.17662685 4.2 0.49321267 1.2 0.23558179
1.3 0.18959790 4.3 0.50183280 1.3 0.25944816
1.4 0.20234760 4.4 0.51036012 1.4 0.28420957
1.5 0.21488395 4.5 0.51879672 1.5.  0.30994464
1.6 0.22721452 4.6 0.52714464 1.6 0.33674347
1.7 0.23934645 4.7 0.53540583 1.7 0.36471012 6.04155371
1.8 0.25128652 4.8 0.54358219 1.8 0.39396570 5.40205606
1.9 0.26304114 4.9 0.55167555 1.9 0.42465250 4.99208137
2.0 0.27461641 5.0 0.55968767 2.0 0.45693948 4.66637095
2.1 0.28601811 5.1 0.56762026 2.1 0.49102962 4.38781271
2.2 0.29725176 5.2 0.57547499 2.2 0.52717014 4.13993874
2.3 0.30832257 5.3 0.58325345 2.3 0.56566702 3.91358244
2.4 0.31923554 | 5.4 0.59095721 2.4 0.60690620 3.70288075
2.5 0.32999542 5.5 0.59858776 2.5 0.65138557 3.50366539
2.6 0.34060675 5.6 0.60614657 2.6 0.69976551 3.31267177
2.7 0.35107385 5.7 0.61363504 2.7 0.75295280 3.12706503
2.8 0.36140087 5.8 0.62105456 2.8 0.81224944 2.94406783
2.9 0.37159175 5.9 0.62840644 2.9 0.87964060 2.76053606
3.0 0.38165029 6.0 0.63569200 3.0 0.95842230 2.57724356
3.1 1.05483920 2.37218582
3.2 1.18391066 2.14471316
3.3 1.41664248 1.81829045

study and hence is included here. The solution for j=2 can only be obtained by
numerical calculation and Table 1 gives the calculated §(0) as the function of . Figure
1 shows the relation between #(0) and 0 and 1t can be seen that there exists a maximum
value of ¢ above which we have no steady state solutions. The critical value 4§, is a
constant depending only on j and found to be 0.87845768, 2.0, 3.32199214 for j=0, 1, 2,
respectively. The corresponding values of 4.(0) are 1.186842, In 4=1.386294, 1.607457,
respectively. The dotted curves in Figs. 2 and 3 show examples of calculated 7,, as
the function of 4.
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METHOD BASED ON EXPANSION ABOUT MAXIMUM TEMPERATURE

In the F-K approximation, the temperature is expanded about the ambient tem-

perature and the approximation is exact at =1, while it is worst at r=1,,.

This

is unfavorable since the reaction rate is governed mainly by the maximum temper-

ature.

Itis better to adopt the method of expansion which is most accurate at r=r¢,,.

This can be done by introducing a new dependent variable ¢(§),

(&) = tm — %’fso(f) :

(13)

Then the argument of the exponential term is expanded and approximated as

E,

T

(14)

The equation and boundary conditions for ¢(§) reduce to

where

d? J do

+ -5 = —

as* = ¢ dé

©'(0) =0,

cexp(—¢) =0,

(1) =15,

(15)
(16)

(17)

(18)
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Since 7 is maximum at §=0, there is another condition

¢0)=0. (19)

Now we have three boundary conditions for the second order equation. One extra
condition makes it possible to determine the unknown quantity 5, and hence the
unknown maximum temperature 7., as the eigenvalue of the equations. The method
of solution is straightforward. For a given value of F, and an arbitrary value of e,
Eq. (15) with the boundary conditions (19) and the first part of (16) is solved as an
initial value problem, and the value of b can be determined. This in turn makes it
possible to calculate 7, by using Eq. (18) as

T — fgil i<1—j§)m}. (20)

Substitution of the calculated z,, into Eq. (17) yields the value of B and hence of ¢ for
the prescribed value of e. The calculation is repeated for other values of ¢ and we
obtain 7, as a function of d for the given E,. In Eq. (20) the upper plus sign cor-
responds to 7,>2, while the lower minus sign corresponds to 2>7,>1. In the
present analysis of ignition, we are concerned with 7, close to unity and hence only
the minus sign will be considered hereafter.

The above described method seems to require the solution of the new Eq. (15).
However, this can be avoided as follows. We introduce another dependent variable

(€),

$(€) =b — o(§) . 21
Then the equation and boundary conditions for ¢(§) reduce to*
adp  jdd _
Je £ dt + dexp(¢) =0, _ (22)
¢'(0) =¢(1) =0, ¢0)=5b, (23)
where
0 n— 1\’
4= =) exp{E,,(T - > } . 24)

Now we find the derived Eqgs. (22) and (23) are identical with Eqgs. (6) and (7) of the
F-K approximation. Moreover, we notice that the quantity b defined by Eq. (18) is
just the eigenvalue of the equations. Therefore, the relation between the eigenvalue
b and the parameter 4 is exactly the same as that between 6(0) and ¢ of the F-K ap-
proximation. We can utilize the relations given by Egs. (10) through (12) and by
Table 1, by replacing 6(0) by b and 0 by 4. Now the method of calculation is very
simple. For a given value of E, and an arbitrary value of z,, we calculate b by using

* When Egs. (21) and (18) are substituted into Eq. (13), r=1+72¢/E, is obtained. If this expression

is further substituted into Eq. (1), the resulting equation does not coincide with Eq. (22). This is
because in the process of derivation the argument of exponential is expanded about unity and not

about ¢, as in the case of Eq. (22).
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Eq. (18) and then the value of J can be determined. Substitution of the latter into
Eq. (24) yields the value of 6. Thus we obtain z,, as a function of ¢ for the given E,.
The solid curves in Figs. 2 and 3 show examples of the calculated -, as the function of
d, as compared to the dotted curves of the F-K approximation and also to open circles
of the exact numerical solution. The latter has been obtained by solving numerically
the original boundary value problem of Egs. (1) and (2). It can be seen that the
present analytical method gives the solution which is very close to the exact solution
and brings about a significant improvement in the accuracy. In these figures the
critical values =, and 4., derived by the respective method, are also shown. The
present method predicts the larger critical values than the F-K approximation, but
they are still smaller than the exact values. The accuracy of the derived critical
values increase with the increase of E,,.

4. CORRELATION OF PRESENT METHOD WITH F-K APPROXIMATION

Although it is now possible by means of the present method to calculate ¢, as the
function of é for any given value of E,, it will be instructive to examine its correlation
with the F-K approximation. The two methods utilize the identical relation between
the eigenvalue b and the parameter 4 of Eqs. (22) and (23), yet the derived values of
7., and d are different for the two methods because of the following two causes.  Firstly,
for a given value of b the present method calculate =, through Eq. (20), while the
F-K approximation uses Eq. (9), in which #(0) should be replaced by 5. Figure 4
compares the derived ¢, as the function of /E,. In Eq. (20) E,, is large as compared
to unity, while b is the order of unity as is seen in Fig. 1. Then the expansion of the
root for small values of b/E,, gives

b b \?

=1t p 2 g) 4o (25)
which reveals that 7, of the F-K approximation corresponds to the first two terms of
the present method. Secondly, in view of Eq. (24) we have

=G4 (26)

where
G = 72 exp {— En<7:"—‘r—~l>} . (27)

Therefore, in the present method 4 must be multiplied by the factor G in order to
obtain 4, whereas in the F-K approximation 4 is just equal to . For a fixed value
of E,, G is a function of r,, or if Eq. (20) is used it is a function of . Figure 5 re-
presents G as the function of b with E, as a parameter. G becomes maximum at
b==1 and the maximum value decreases with the decrease of 1/E,. When Eq. (27)

is expanded for small values of 1/E, for a fixed value of b, we have

G=1+£(2—b)+--- (28)
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It is interesting

to note that in the F-K approximation r,, is valid to the first order of 1/E,, whereas ¢

cannot account for the effect of E, at all.

In any way we see that in the present method

the F-K approximation corresponds to the special case of large activation energy.

5.

CRITICALITY

In the present method the critical values 7, and J, can be determined analytically.
For a fixed value of E,, the independent variable is z,, or b and the criticality is given by

do _ dé db

dr, — db drm

Differentiation of Eq. (26) yields
1ds

dG dc, _(b—1)

6 db —
while that of Egs. (20) and (27) yields
1 46 _ 1

G db — G dr, db

Substitution of Egs. (30) and (31) into Eq. (29) yields

dé _5<db>[d,ln4)+

dc, \dc,/l db*

b

b

b

On the other hand, from Eq. (18) we obtain

db

E.
d‘:m - ?}(2 - fm) ’

(29)

1 4G (30)
_OS DBy @30
LIS 1><1 _ 4Eb )j (32)
(33)
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which indicates that (db/dz,)>0 for | <7, <<2. In view of 6>0, the criticality is now
reduced to

b — 1) IVARTTINE ,
b =) + bd(in = E5) (34)

This is the equation to be used to determine the critical values b, and 4,, when 4 is
given as a function of b. The left-hand side is the function of b only, while the right-
hand side contains the parameter E,. By plotting the left-hand side against 4, and
then the right-hand side for a given value of E,, we can determine the critical value
b, for that value of E, from the cross point of the two curves. Then the critical value
4, can be determined. Substitution of b, into Eq. (20) yields =,, and then d, is ob-
tained through Eqgs. (26) and (27). The examination of Eq. (34) reveals that the
limiting value of b,=1 is obtained for £,=4 on one hand, and of b,=6,.(0) for E,—
on the other hand. In the latter case, d, coincides with that of the F-K approximation.

When Egs. (10) and (12) are substituted into the left-hand side of Eq. (34), which is
now denoted here as F(b), we have

(b — D{l —exp (— b)}** cosh™ {exp (b/2)}
b — {I — exp (— b)}''? cosh™ {exp (b/2)}

E(b) = (35)

for j=0, and

2(b — D {exp (b)) — 1}

FOY = 2 exp (52) + 2

(36)

for j=1, respectively. For j=2, we have to resort to numerical calculation. As an
example of the determination of the critical value b., the case for j=1 is shown in
Fig. 6. It can be seen that b, is restricted in the range 1<<{b,<In 4 for the variation

-1 F be=1 be=In4d

2t Cylinder(j=1)

Fic. 6. Determination of Critical Value b, by Means of Eq. (34).

of E, between 4 and infinity. Figure 7 compares the critical maximum temperature
z. calculated by the three methods. The numerical solution is obtained from the
paper by Shouman et al. [7]. It can be seen that the prediction by the present method
correlates satisfactory with the exact solution. Figure 8 compares the critical F-K
parameter §, obtained by the present method with that of the numerical solution [6], [7].
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ant improvement. These results shown in Fi

As was pointed out before, the F-K
approximation cannot account for
the effect of E, on 4. but only gives
the limiting value of large E,. On
the other hand, we see that the pre-
sent analytical method can predict
the correct dependency of d, on E,
as is predicted by the exact numerical
solution. The effect of E, becomes
more important with the increase of
J> while the accuracy of the predic-
tion increases, as is expected, with
E, and decreases with the increase
of j. Figure 9 compares the ac-
curacy of the critical values predicted
by the two analytical methods, on
the basis of the exact numerical
method has brought about an signific-
gs. 7 through 9 indicate that the ac-

curacy of the proposed method is satisfactory over a wide range of E, and it is almost
unnecessary to solve numerically the original two point boundary value problem.
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6. Discussions

The excellent correlation between the present method and the exact numerical
solution confirms the validity of the premise, on which it is based, that the chemical
reaction rate in the system is mostly governed by the maximum temperature. The
predicted critical values, as well as those of the F-K approximation, are always larger
than those of the numerical solution. This is because the present method of ex-
pansion about the maximum temperature still overestimates the chemical reaction
rate. The expansion (14) is valid only to the first order of the small quantity < .¢(5)/E,.
Since the maximum value of ¢(£) is given by b, when Eq. (18) is used we find that the
accuracy depends on (t,—1)/r,. Therefore, the application of this method may not
be restricted to the spontaneous ignition problem, so long as the critical value of this
quantity remains small. Moreover, the method concerns only the expansion of the
exponential term and is independent of the form and boundary conditions of governing
equations. Although in the present paper the method was applied for the simple
one-dimensional geometry and symmetric boundary conditions, it can be applied for
any other shapes and boundary conditions. The only restriction is that there should
be one maximum temperature in the field. Therefore, it may also be applied for
other problems of combustion phenomena, in which the nonlinear effect of Arrhenius
rate expression plays a crucial role.

The author gratefully acknowledges the assistance of Mr. Y. Kotani and Mr. K.
Sato with the numerical calculation.
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