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Laminar Boundary Layer with Foreign Gas Injection
on a Conical Body*

By

Kenichi MATSUNO** and Ryuma KAWAMURA

Abstract: The present paper deals with the theory of laminar boundary layer on a
nonaxisymmetric conical body at supersonic flight with special reference to the effect of
foreign gas injection (or “mas injection™) on the body surface. The over-all flowfield
over the conical body with nearly circular but otherwise arbitrary cross-section at small
angles of attack is analytically solved using small perturbation method. The inviscid flow
solution served as boundary layer edge conditions is obtained by an extension of the
Stone’s solution for a circular cone to the cases of nonaxisymmetric conical bodies. The
similar boundary layer equations with a specific distribution of the mass injection rate
inversely proportional to the square root of the meridional distance from the body apex
are derived for the case of a binary mixturz of nonreacting gases. An exact, first order
perturbation solution not depending on flcw parameters is presented, corresponding to
the inviscid conical flow solution.

The effects of mass injection on three-dimensional boundary layer characteristics are
discussed for the cases of several shapes of conical bodies. The analytical results demon-
strate a significant effect of mass injection on the boundary layer flow, especially on the
local heat transfer and skin friction.

NOMENCLATURE

c;t Mass fraction of injected gas

Cpt Specific heat at constant pressure

D Binary diffusion coefficient

So: Injection rate parameter
Three-dimensional stream functions (see Eq. (2.17))
Thermal conductivity

Freestream Mach Number

Molecular weight of freestream gas, air
Molecular weight of injected gas
Chapman-Rubesin Number (see Eq. (2.17))
Pressure

Prandtl Number (see Eq. (2.7))
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248 K. Matsuno and R. Kawamura

q: Local heat transfer

S.: Schmidt Number (see Eq. (2.7))

t, T: Temperature

T,.: Freestream reservoir temperature

X, ), 8! Boundary layer coodinate system (see Fig. 1)

r, 0, ¢: Spherical polar coodinate system (see Fig. 2)

u, v, w: Velocity components along x, y, s axes or r, 8, ¢ axes (see Figs. [-2)
a: Angle of attack

Bi: =cp;-1 (see Eq. (2.7))

B =M*/M¥-1 (see Eq. (2.8))

7! Ratio of specific heats of freestream, air

Ens E Fourie coefficients of the body (see Eq. (3.1))

¢: =y (see Eqgs. (2.10)-(2.12))

0,: Semi-apex angle of the basic circular cone

d,: Semi-apex angle of the axisymmetric conical shock wave
Osns Ogn: Fourie coeflicients of the conical shock wave (see Eq. (3.23))
A Parabolic similarity variable

7K Viscosity coefficient

p: Density

To: Meridional skin friction

Circumferential skin friction

Three-dimensional stream functions defined by Eq. (2.9)
Dimensional quantity ‘

Inviscid edge condition at the body surface

Injected gas

Freestream condition

Reference condition

Wall condition

Basic term of perturbations

Perturbation term
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1. INTRODUCTION

One of the problems arising from high speed fight of the vehicles is the aerody-
namic heating. At high Reynolds Number conditions, the analysis of such a prob-
lem should essentially be made using Prandtl’s boundary layer approximation. For
a lifting body in particular, the boundary layer is generally three-dimensional. Ad-
ditionally it is pointed out that a small three-dimensional effect in the inviscid flow
can cause a large effect in the boundary layer [/]. Hence a knowledge of the full
three-dimensional boundary layer properties is necessary for a correct estimate of
the local heat transfer and skin friction.

The high speed flow over a sharp conical body at angles of attack represents a
three-dimensional fluid dynamic problem, encompassing a wide variety of phenomena.
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Laminar Boundary Layver with Gas Injection 249

The boundary layer on the conical body provides a practical example thereof, and
leads to useful insights into the nature of more general three-dimensional boundary
layer. Studies of the laminar boundary layer without mass injection on the conical
body, especially a circular cone at angles of attack, have been made by a number of
researchers. A major early paper was written by Moore. Moore [2] published a
solution to similar boundary layer equations for very small angles of attack using
small perturbation method, corresponding to Stone’s perturbation solution for the
inviscid conical flow. In another paper [3], Moore solved the similar boundary layer
equations along the windward and leeward line of symmetry for small to moderate
angles of attack. After the early work of Moore, progress on understanding the
flow over the conical body was very slow, because of the lack of adequate method of
solving boundary layer equations. However, the recent development of digital com-
puters has made it possible to solve the full boundary layer equations numerically.
A number of solutions of the boundary layer equations for the circular cone have
been obtained by streamwise numerical integration, incorporating a wind-to-leeplane
marching procedure at each streamwise location. The numerical methods are of
great advantage to the cases of moderate to large angles of attack. However, these
methods have the complex marching procedure. For the noncircular cone in par-
ticular, these methods become less desirable because of requring the initial profiles
on the windward surface for the marching procedure, which is not readily obtainable.
Moreover, solutions obtained by the numerical methods are not general in the sense
that these depend closely on flow parameters (i.e., freestream Mach Number, wall
temperature, body shape, etc.). To date, there are no general solutions to the equa-
tions of the three-dimensional boundary layer on the conical body.

The governing partial differential equations of the three-dimensional boundary
layer are complex because of many flow parameters included. Moreover, at re-eatry
velocities, the thermal decomposition of protective heat shield introduces a significant
quantity of foreign material into flowfield, further complicating the boundary layer
analysis. Because of the complexities of the fully three-dimensional flow, most
boundary layer analyses have been devoted to two-dimensional or axially symmetric
flows. For the circular cone at angles of attack, many analyses [4]-[9] are available
for estimating the influence of mass injectionon on boundary layer characteristics for
axisymmetric or stagnation point flowfields. However, there are scarecely any analy-
ses dealing with the influence of mass injection on fully three-dimensional boundary
layer characteristics. There are no exact solutions, given in the form independent
of flow parameters, to the equations of the three-dimensional, binary mixture bound-
ary layer on the conical body. The binary mixture may take place under the condi-
tion of foreign gas injection into the boundary layer.

The purpose of the present paper is two-fold: first, to present the exact solution,
given in the form independent of flow parameters, to the equations of the laminar
boundary layer with and without mass injection on the conical body of arbitrary
cross-section; second, to analyze the effects of mass injection on the boundary layer
characteristics.  Attension is especially directed toward estimating the mutual in-
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250 K. Matsuno and R. Kawamura

fluence of mass injection and the cross-flow (or “secondary flow™) on the local heat
transfer and skin friction. For this purpose, the over-all flowfield will be solved
using the small perturbation method. We shall deal with the conical body of which
the cross-section is nearly circular but otherwise arbitrary. The boundary layer is
assumed to be similar under the condition that the outer inviscid flow is conical, so
that the injected mass flux rate is inversely proportional to the square root of the
meridional distance from the body apex.

Chapter 2 gives the basic equations of the boundary layer. The familiar, binary
mixture, three-dimensional boundary layer equations are transformed into similarity
form. The present procedure of transformation is the extension of Moore’s for the
single gas case to the binary mixture case. In chapter 3, the over-all flowfield is
solved. The outer inviscid conical flow solution is determined by the extension of
Stone’s perturbation solution for the circular cone. The exact first order perturba-
tion solution of similar boundary layer equations is obtained in the general form,
corresponding to the inviscid solution. In chapter 4, the Present theory is applied
to the cases of several shapes of nonaxisymmetric conical bodies. At first, in order
to check the validity of the present theoretical approach, solutions are compared with
experimental data as well as those calculated by existing numerical method for the
circular cone without mass injection. Next, the effects of mass injection (air-to-air,
or helium-to-air) on the boundary layer characteristics are discussed in detail.

2. BOUNDARY LAYER EQUATIONS

In this investigation, the following assumptions are imposed on the flowfield: (1)
The boundary layer is laminar and similar, and its thickness is very small compared
with the body radius, (2) The outer inviscid flow has conical symmetry, (3) Constant
Prandtl Number P,, Schmidt Number S,, and Chapman-Rubesin Number », (4)
Constant physical properties of each gas in the case of binary mixture, (5) No chemi-
cal reaction, radiation, ionization and dissociation in the boundary layer.

Since the present paper is concerned with small deformation from the basic circular
cone and corresponding small departures of the entire flow from that occuring at
basic axisymmetric flow condition, it will be convenient to refer all physical proper-
ties to the basic inviscid flow conditions at basic circular cone surface. The varia-
bles are normalized using reference conditions mentioned above as follows:

u=u*lu¥*, v=v*u¥, w=w*lu¥, a=a*/uf
o=0*lp¥, p=p*/(o}ur?), T=T*/(ui9‘2/2€,’f}2 @D
h=hojus, p=ples,  cp=chlel

x=x*[I¥,  y=y*/If, (¥ = p*[(oFu¥)) j

2.1 Basic equations

The steady boundary layer equations in the boundary layer coordinate system
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Fic. 1. Boundary layer coordinate system

shown in Fig. 1 may be written as follows:

(o + —a"?;(pxm% 2 (pxw)=0 22)
ou ou ., w ou w2) op a ( 8u>
=+ - )= — 2 4 2.3
p(u 0x + ay + x 0s X dx 0y “ oy (2-3)
ow ow ow uw) 1 op 0 ( 6w>
T+ - )= 2.4
p( Eix+ 8y+x as+x xas+6y ”ay 24)
oc; ac; W dc, )__ 0 ( 7 ac.i)
Uu—4v -t — )= 2.5
p( 0x oy x os ay\S, dy 23)
ol aT w aT) ap w ap
— v =2 2~
pc,,(zl ox + ay x as Tox ox + Xx as
u aw \? 3 (cpop OT B dc, oT (26)
al(B (G D)
#\ %y 3y ay\ P, ay) S, ay ay
where
iy .~ Y b —
Ci——-—p—‘, SC— p*D:kf ’ Pr_—;éff, ﬁl_ I". p cTn 1 (2.7)
With foundamental thermodynamic relations of the perfect gas,
1 —1 T
cp:1+ﬁlcia ?:LZT— ;(1'1'192‘31'), ﬁz—— M* —1 (2.8)

Egs. (2.2)-(2.6) can be simplified by making following transformations in turn.
First of all, stream functions " and @ are introduced as:

pxu——:—ﬁw—-f, oXV = — o _ 0D
oy

1 oP
. s XW — — 2.9
ox x oS o oy (29)

(a) The Mangler transformation (to reduce the effect of x):
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Py J "Ny = %Lg.\”, S=Lxy, §=s, F=LU, d=LO  (2.10)

0

(b) The Dorodnitsyn-Howarth transformation (to remove explicit dependence on
the density):

X =%, Y:f"pdy, Z=35 F=0, G=d @2.11)
0
(c) The Blasius transformation (to reduce the number of independent variables from
three to two):
A=X"Y, (=Z, f=X"'F, g=X"'"G (2.12)

The Blasius transformation is introduced under the condition that the outer inviscid
flow is conical, that is, dp/ox=0. Application of the above transformation to Egs.
(2.2)~(2.6) produces the following:

1 1 1 .
(57 +59) fam 5 0sfict @R+ Nl =0 2.13)
1 1 1 1 1 !
(‘2—f+ ?gc)gxl—?gxgxc—?ﬁgx_? P£C)“ -I-[Ng“L:O (214)
1 .. 1 1 N
(E‘f‘*‘?gc)ci,a—‘;gaci,z“*’[Sc ci,x]lzo (2.15)
1 1 | 2 !
(‘Q“f‘{' ?g:)cpTl_S’gxcpT;“l'? ‘p—TEC) g.
(2.16)
N2 2 N N
+2N[(f) +(gu)]+[ cpTx] +B——¢i, T;=0
P, 4 S,
and
N=pp, u=f,, w=g, (2.17)

3 (1 1 - .
ov=— \/—i—{—z—(f——l RO+ X afi ZX g (14 p9)]  (218)

2.2  Boundary conditions

At the body surface: The cone surface is assumed to be isothermal. At the cone
surface the temperature of the injected gas is equal to that of the wall; T(0,{)=T,,.
The usual no-slip condition for the tangential velocity components is imposed, so we
put u,=7£(0,0)=0 and w,=¢,0,{)=0. As for mass injection rate, from Eq.
(2.18),

(0= = [ 270,09+ 19.0.0)] @19)
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Under the assumption of the similar boundary layer the distribution of injection
mass flux (pv),, is imposed to be inversely proportional to the square root of the
meridional distance from the cone apex, that is, (ov),~1/v x . The injection
mass flux (pv),, may be determined by giving negative value to [ (0, £)/2+ ¢.(0, £)/3]
in Eq. (2.19), or more simply by putting f(0, )= f,, (f,,: injection rate parameter),
and ¢(0,)=0 [9]. As for the concentration of the injected gas, the condition of
zero net flux of the freestream gas, air, is imposed. Although other conditions are
possible to treat mathematically, it was pointed out in Ref. [/0] that zero net flux of
the freestream gas at the surface is needed for a physically realistic solution from an
aerodynamic point of view. This condition is given as

N ] 1
C i, = l _C'iw) . —_f;v 2.20
| g, = . (2.20)
At the outer edge: At the outer edge of the boundary layer, «, w and T should take
on the corresponding inviscid values. It is assumed that the particles of the injected
gas do not reach the inviscid region, then we put ¢;(o, {)=0.

3. PERTURBATION ANALYSIS

3.1. Method of perturbation

A solution to the boundary layer equations is sought as a perturbation of the basic
axisymmetric flow which is formed around the circular cone with the same cross-
sectional area as the conical body considered.

The conical body may be expressed in the wind-fixed polar coordinate system in
Fig. 2 in the form

0=0,(p)=0,+ 2. (e, cos np+ E,, sin ngp) (3.1

F1G. 2. Polar coordinate system

In this paper we deals with the conical bodies with nearly circular cross-section and
with the case of small angles of attack. We assume

This document is provided by JAXA.



254 K. Matsuno and R. Kawamura

,”571/0”’ I”En/gbl‘ ‘a’/gb‘<<l (32)

Hereafter the order of magnitude of the above will be refered to O(¢). In the per-
turbation analysis, we consider up to the first order in ¢, and neglect the higher
order. 1In the case of small angles of attack, i.e., «/f, = O(e), the effect of the angles
of attack may be contained in the term ¢. For example, a d,-semi-apex circular
cone immersed in the flow at the angle of attack can be expressed by

0=0,(0)=0,+ a cos ¢ (s, =0) (3.3)

If the conical body is expressed by Eq. (3.1), the d, circular cone has the same cross-
sectional area as the conical body considered. We shall refer to this circular cone
as a basic circular cone.

We adopt the axisymmetric flow around this basic circular cone as a basic flow.
The flow around the conical body expressed by Eq. (3.1) may be regarded to be per-
turbed from the basic flow by the small deformation from the basic circular cone.

For the conical body written in (r, 8, ¢) system, it is convenient to rewrite the
basic equations into (4, ¢) system. Relation between { and ¢ is, on neglecting O(¢’),

9 {1 ~ €0ty X (e cos g+ E, sin ngo)} (3.4)
oL sin @, dp

Wwith Eq. (3.4), basic equations (2.13)-(2.16) and boundary conditions become

1 1 )
(5 Y gv,)fu Sang et (.cm-+ Nfu=0 (3.5)
(Lf+ ! —g )J ————9.9
2 3sind, /7" 3sing, ¥
(3.6)
1 1 P'(p)
_ — _ + N =0
3 119 Tsind, o 921
1 1 ) 1 N
—_— I Ci —i.t‘*( CL ® — :O .7
(2f+ 3sin 6, 9e )47 F5in f, 9iupt SCC’“ 3.7)
1 1 ) 1
. T — — T
<2f+ 3 sin 6, 5,9 3sin 8, gir
2 ! )
_ 2 PO g L aN[(f) + (9)] (3.8)
3sinf, p
N N
+ P [CpT1]1+ﬁx S, Ci,sz-_‘O

Boundary conditions
fO, 9=/, f(0,9)=0, g0, p)=9,0,)=0

N 1
Ci,z(()» SD) = [1 - Ci(07 (P)] . '2— ws T(Oa 90) -

4

(3.9)

<
—~
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fl(OO’ ﬂo):”c(ﬁp)a gl(ooa 99):“'0(90)
ci(o0, 9)=0, T(oo, p)=T.(¢)

3.2 Inviscid conical flow solution—outer edge conditions

In order to solve the boundary layer equations, one must have values for the inviscid
velocities and temperature at the surface of the body. These values will serve as
boundary conditions at the outer edge of the boundary layer, and also determine
the pressure gradients in the flow. Many authors [/7]-[/4] have treated the subject
of inviscid conical flow, especially for the case of the circular cone. The Stone’s
perturbation solution for the circular cone at small angles of attack is the simplest,
analytic one [/I]. In this paper, we use the solution in Ref. [9] as the outer edge
conditions, which is the extension of Stone’s to the cases of nonaxisymmetric conical
bodies expressed by Eq. (3.1). This is the first order perturbation solution, and is
essentially the same one as given in Ref. [/4]. Here we give only a brief description.
In this section, normalization is made in the same manner as previous section, but
for the analytical convenience, the freestream reservoir condition and a limiting
velocity are used as the reference conditions. The normalized governing equations
of the inviscid conical flow may be written in the polar coordinate system (Fig. 2) as:

9_(ov sin 6)+ -2 (ow) +2pu sin §=0 (3.10)
o0 o
ou w  ou ) )
U——4_ 7 = —p*—w*=0 3.11
l a0 + sinf@ 0oy G-1h
v w o 1 op .
— 4+ = — 4 uv—wicotfd=0 3.12
00 sing dp p 00 12
ow w o ow 1 op
~ — - ——+uw+ovwcotfd =0 3.13
06 sinf dp psinéd oo + (3.13)
2 l A+t + v+ w=2h+ i+ v+ wi=1 (3.14)
T—Q
=TI (3.15)
V0

where a and & are speed of sound and static enthalpy, respectively.
Combining Egs. (3.10)~(3.15) results in

2 2 2
2—v+w)+vcot6 ﬂ(l—v )
u( at + 06 at

(3.16)

.1 aw{l_wz)_'vw< .1 3w+8w)___0
sinf g \ a’ a®> \sinf dp 06

The flowfield is assumed to be represented as the sum of the basic axisymmetric field
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around the basic circular cone and correction perturbed terms due to the deformation
from the basic circular cone, such as:

w0, o) =u(0) + .; (enttn(0) cOs np + EL, U (0) sin ny) G.17)
v(0, ) =7(0)+ Z (e,v,(0) cos np+ E, V,(0) sin ny) (3.18)
w(l, )= Z}] (e,wo(0) sin np— E, W () cos np) (3.19)
p@, p)=Dp(O)+ Z (e2.04(0) cOs np + E, P ,(6) sin np) (3.20)
(6, 0)=p(6) + ,Z (en0(6) cOs np + E, R, (6) sin nep) (3.21)
16, 9)=h(0) + X (enha(6) c0s np-+ E H o(0) sin ) (3.22)

Here zeroth order terms, denoted by ( ), correspond to the familiar Taylor-Maccoll
solution [/5]. Substituting Eqgs. (3.17)-(3.22) into Egs. (3.10)-(3.16) and equating
the sum of terms of unit order and the sum of terms of first order in ¢,, E,, to zero
separately give differential equations for the unknowns: @(9), uv,(9), - - -, H,(0).

If the conical shock shape is assumed to be

0 =04p)=0,+ 3 (405 cos np+ E, O, sin np) (3.23)

then, Rankin-Hugoniot relations at the shock wave and the tangency condition at
the body surface yield boundary conditions stated at § =60, and §=40,, respectively,
which result from Taylor series expansions about the points 8, and 4,.

Consequently, the inviscid edge properties may be written in the following form
(again corresponding to reference conditions of previous section):

up)=1+ ; (eptten cOS np+ E, U ,, sin ny) (3.24)
wlp)= ZL] (enWen Sin np— E, W, cos np) (3.25)
plo)=p.+ %} (enPen cOs no+ E,P,, sin np) (3.26)
T (p)=t.+ ;} (en(—2ut,,) cos np+ E,(—2U,,) sin np) 3.27)

3.3 Perturbation equations of the boundary layer

With the assumption that the entire flow may be represented as the sum of the
basic axisymmetric flow and correction perturbed term, f(2, ¢), 9(2, ¢), ci(, ¢) and
T(2, ¢) may be written in a form chosen to be consistent with the relation (3.24)-
(3.27) to be imposed as outer edge boundary conditions

S, @)= fo D+ 2 {enttenfn(R) cOs no+ E, U, F () sin nep} (3.28)
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9@, p)= ; {eaWenga(R) sin np— E, W, G ,(2) cos np} (3.29)
¢ (A, p)=c;()+ ‘,VT“ {enticnCin(R) cos np+ E, U, C,p(2) sin ne} (3.30)
T, )=t + %} {en(—2u,)t () cOS o+ E (—2U ., )T,(2) sin np}  (3.31)

The specific heat at constant pressure may be expressed in perturbation form with
the aid of Eqs. (2.8) and (3.30):

¢ (2, p)=c (2, ©) + ; (en€ pn(2) cos np + E,C ,,(2) sin ne) (3.32)

where,

Cpo(z): 1 +ﬂlcz‘o(}\)7 Cpn('z):uenﬂlcin('z)a Cpn('l): Ucn.BlCin('z) (333)

Substituting Eqgs. (3.28)—(3.31) into Egs. (3.5)-(3.8) and into the boundary conditions
Eq. (3.9), and equating the sum of terms of unit order and the sum of first order in ¢,
to zero separately yield following ordinary differential equations and boundary con-
ditions:

Zeroth order,

fofd +2Nf3"=0 (3.34)
f¢g+z§c5=o (3.35)
N o i+ B+ 2N(f))=0 (3.36)
where
1 N , N\,
B:7f00p0+.31<Pr + Sc>cm (3.37)
First order in ¢,, (n=1, 2, 3,--+),
174 I// 2 e
ot fofr +2Nf, ( L W")fogn (3.38)
3sinf, U,
3 og =2 gy + 6N g+ %%U+mm0=0 (3.39)
7" 2n Wen ,
in in [fn ( —— )gn]cm:O (3.40)
3sind, u,,

N /7 7/ 1 1 /7 N / N N ’
Prc”“t"+Bt“_[?ﬁ‘<2 ! ,)C”‘”L ‘BI(P, Sc)tsci"

;%Jvn( n_ Wﬁ%}mwwﬂ=o

3sind, u,,

(3.41)
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Boundary conditions

10 =[1— ¢ w(0)] fv : %f ¢ 1o(00)=0 (3.42)
tO(O):TUva to(oo):ze

9:.00)=g,(0)=0 g (c0)=1

S, 1,
W0)y=— in 0)—%-— wo in =0
c1(0) C'()N 2/ Cin(00)

1,(0)=0,  1,(e0)=1

(3.43)

together with same equations with capital letters (F,, G,, etc.) replacing the small
letters (f,, ¥, €tc.) throughout. Here the primes denote differentiation with respect
to the similarity variable 2.

3.4. Solution of perturbation equations

The flow parameters (T, ., Uen, Wen» 05 and n) appearing in Egs. (3.38)-(3.42)
depend on the problem. It is necessary to eliminate these flow parameters in the
solution in order to obtain the general solution. The functions () and c¢;,(1) are
independent of the flow parameters.

Letting

Z 1
A1:Tw_(te+‘]01(0)), A2: 7 s A3:A1A2

e

w_  2n Wen
Y 3sinb, u,,
A7 =A,A4}, Ay=A,A:4}

, M=AAn, A=A (344

then, the functions 1,(2), f.(2), g.(2), c:»(2) and t,(2) may be expressed as linear
combinations of functions not depending on flow parameters:

£4(2) = j‘ + I (R + A (D) (3.45)
T =T (2 + AV 12+ AZT 14(2) + AL (D) (3.46)
gn(z) :ng('z) '+' AZJgZ(R) + ASJgS(Z) (347)
€ in) =T (D) + AN (D) + AT o(3) + AL () (3.48)

tn(l) :Jn('z) + AlJLZ(z) + AZst(R) + A?JM(D

(3.49)
+ AT 15(2) + AT 1(2) + A3 T 1:(2)

Here J,,(2), Jox(2), - - -, J+(2) satisfy the following equations and boundary conditions:

This document is provided by JAXA.



Laminar Boundary Laver with Gas Injection

N 1’7 ’ s
7[15A(.1)0J01 + BJm + 2N(f0 y=0

IS

_;V~<-,,0J;;+BJ52=0

f(;’Jfl +f0-171 + ZNJ_/,*,{:O
ST ot fod fod 2N+ 1Ty =0
P pat [l fok INT 5 4 £ =0

ST it f ol i+ 2NT G+ f3T 3=0

(./(/,,(0) =0, Ju( OQ)ZO)

(an(o): I, Joz(oo):O)

(J.“(O) :J;‘I(O) =0, J;’l( c0)=1)
(J 12(0)=J00)=J5(0) =0)
(./.,-3(0) = J?‘:{(O) = J;‘:;( 00)=0)

(J ;(0)=J(0)=J () =0)

3fof i —=2f 0 i+ ONT Y +2(1 + Boc 1) =0
(ng(o):Jal(O)—_-O, J;l(oo): 1)

3f0J;,2_2féJ;2 + 6NJ;,,2/ +2J4(1 +{320i0):0
(J j(0) =T ,(0)=J go( 0) =0)

3f ol —2f i os+O6NJ 3 4 2T (1 + Bsc 1) =0
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N ' , 1 1 , N 4.
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1 ’
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N 17 7 1 1 N 7 N /7
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| ’
+ ZCpOJO?(JjJ +Jg3)] =0

(/::(0) :JAY(OO) =0)

These differential equations and boundary conditions for the functions Jy,(2), - - -,

J.(2) can be solved once and for all, with no regard for the flow parameters of the
problem.

3.5. Boundary layer characteristics

Local heat transfer and skin friction: Heat is transfered by means of conduction and
diffusion. The local heat transfer at the surface may be written in the transformed
form as:

3N N N
q:—\/ );‘[_P.Tl—i-ﬂl(P Tt SCTCM)]l (3.70)

7 r v

The meridional and circumferential components of the skin friction are given in the
transformed form as:

T =[Nfulw T(p:[NgU]w (3.71)

In order to show the effects of the mass injection and cross-flow, ¢ and ¢ are nor-
malized by §,and #,,, respectively in the figures. The quantities ¢, and #,, are the
local heat transfer and skin friction in the case of the basic axisymmetic flow without
mass injection.

Streamline: The streamline on the surface is determined by the differential equation:
(1/x sin @)dx/dp=u/w. The inviscid streamline on the surface is dx/dp = x sin 8,1,/ w,.
The limiting streamline of the boundary layer is obtained by use of Eq. (2.17) and
L’Hospital’s rule,

4% _ fim (x sin 0i> = X sin 30[]”1&] (3.72)
dp  v-0 w Juadw
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4. APPLICATION—RESULTS AND DIscussION

Results obtained with the previously derived solution are presented for the tlow-
fields around the several shapes of conical bodies with mass injection (air-to-air, or
helium-to-air) at angles of attack immersed in supersonic freestream of Mach Num-
bers 5 and 10. Computational conditions for cases studied are as follows: The
freestream is the air flow with a ratio of specific heats of 1.4; Prandtl Numbers are
P,=0.738 for air injection or no injection case and P,=0.743 for helium injection
case; In the case of helium injection Schmidt Number S, is 0.834 and the ratio of
constant pressure specific heats ¢ ,;/c,, is 5.18 and the ratio of molecular weights
M¥IM* is 1/7.25; Chapman-Rubesin Number N is unity for all cases studied.

In advance of the presentation of results, it is necessary to check the validity of
the present theoretical approach. In doing so, the present solution is compared
directly with experimental data as well as those calculated by existing numerical
methods. The comparison of the surface pressure distribution for a 20° semi-apex
circular cone is shown in Fig. 3, in which the small circles and the dashed line show

1))

Al

1
P

N

I
S~—

S

——— DPresent Theory
resen eory M.=3.53
0.1 ———— Stocker & Mauger a=5°
O Experiment 20° circular cone
0 ; ] ! I { L I
0 20 40 60 80 100 120 140 160 180
# (degree)

Fi16. 3. Comparison of surface pressure distribution

experimental data from Ref. [/6] and the result calculated using inverse method by
Stocker and Mauger [/3], respectively. The present result shows close agreement
with experimental ones as well as with that of Stocker and Mauger. Only a few
experimental studies are available of laminar boundary layer flow. Among these,
Tracy’s [17] provides valuable raw data which can be used as a basis for comparison
with theoretical results, though it is for the case of no injection. Comparison of
local heat transfer is shown in Fig. 4, in which the dashed line is the result of Mc-
Gowan et al. [/8] obtained by the wind-to-leeplane marching numerical integration
of Moore’s similar boundary layer equations. As can be seen with the figures, the
present theoretical result agrees well with experimental one.
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Fi1g. 4. Comparison of local heat transfer

Circular cone at angles of attack: The results for the case of the 10° circular cone
at 2° angle of attack at M_ =35 are summarized in Figs. 5-8. Fig. 5 shows limiting
streamlines for air and helium injections. In the figure, the outer inviscid streamline
and limiting stream lines for no injection case are also drawn. Since the inviscid
flow about the circular cone at angles of attack is * conical ”’, the pressure gradient
at the outer edge of the boundary layer is entirely circumferential. Since the pres-
sure tends to be constant across the boundary layer, the fluid in the boundary layer
is subject to the same pressure gradient as is the outer flow, but less inertia with
which to resist its effect, and thus it tends to follow the direction of the pressure
gradient more closely than does the outer flow. Fig. 6 shows profiles of circum-

180 L ——(leeward) -
- ad
== Ve
’
150 -
—=--—Outer streamline
120 No inj. o
E —— Air inj. leltmg.
o streamline
&0 o= 7. S/  ———m—— He inj.
=
- M.,=5, a=2°
60 - B
Tw/Tio = 0.35
¢
30 |- M.. ’
af——
(fo=—0.2)
0] ——(windward)
L | } | [ | I 1 I\
0 1 2 3 4 5 6 7 8
In (x/x,)

Fic. 5. Limiting streamlines for air and helium injections; 10° circular cone
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3.0 ~ \\\
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\
\
\I
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’
///
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0 2.0 2.5 3.0
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Fic. 6. Effect on mass injection on profiles of circumferential
velocity component on ¢$=90° plane; 10° circular cone

ferential velocity component on ¢ =90° plane. It is seen that as mass injection rate
increases the boundary layer thickness increases. In addition, maximum values of
w/w, also increase with increasing mass injection rate in order to satisfy the require-
ment of momentum conservation in the circumferential direction. As is seen with
the figure, the maximum value of w/w, is much greater in magnitude for helium
injection than for air injection. Hence, the influence of helium injection on the
boundary layer characteristics is more remarkable than is found in the case of air
injection.

Fig. 7 shows the influence of mass injection on heat transfer. Heat is transported
at the surface by two methods: conduction and diffusion (see Eq. (3.70)). Since the
constant pressure specific heat of helium is large compared with that of air, the con-
tribution of the diffusion to the heat transfer is larger than that of conduction.
Hence, the reduction of heat transfer is more remarkable on the leeward side, on
which the helium concentration becomes maximum, than on the windward side. Fig.
8 shows the influence of mass injection on skin friction. The effect of mass injection
is to decrease skin friction. In the case of air injection, the circumferential skin
friction hardly decreases with increasing mass injection, The circumferential skin
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Fi1G. 7. Heat transfar on the symmetry plane vs. injection rate
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Fi1c. 8. Skin friction vs. injection rate parameter; 10° circular cone

friction, however, increases in the case of helium injection because of large increase
of circumferential velocity component w due to mass injection.

Fig. 9 shows the influence of the variation in wall temperature on profiles of the
circumferential velocity component for f,, = —0.25. It is seen that as wall temper-
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Fi1c. 9. Profiles of circumferential velocity component for various
wall temperatures; 10° circular cone

ature is increased, the circumferential velocity component is greater in magnitude
than in the cold wall case. As is pointed out in Ref. [19], this is physically reason-
able, since the cooler the wall, the greater the fluid density near the wall and hence,
in order to satisfy the requirement of the mass and momentum conservation, the
circumferential velocity component is not so great in magnitude as in the hot wall
case.

Non-circular cones at angles of attack: As examples of non-circular cones, we deal
with following three models:

model 2; 0 =0,(p) =0, +¢, cos 2p (6.1)
model 3; §=80,(¢)=0,+¢; cos 3p (6.2)
model 4; §=80,(p)=0; + ¢, cos 4p (6.3)

Eq. (6.1), the model 2, represents an elliptic cone of which the ratio b/« of the major
axis and the minor axis is tan (6, —e,)/tan (G, +¢,).

The results for the elliptic cone case are presented in Figs. 10-12. Flowfield is
shown by means of streamlines in Fig. 10, in which the dashed lines show the limiting
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streamlines starting from ¢ =45 and 50° for the no injection case. The local heat
transfer distribution and meridional skin friction distribution are shown in Figs. 11
and 12, respectively. The distribution is non-dimensionalized by §, (or #,,), which
is the local heat transfer (or meridional skin friction) for the basic circular cone at
zero angle of attack in the case of no injection. The peak pressure occurs at ¢ =47.9°,
yet peak heating occurs at $=82°. As is pointed out [/8], the peak heating seems
to lie between the value of ¢ at the pressure peak (windward side) and the major
axis (p=90°), and the peak meridional skin friction also does. The local heat
transfer distributions for the cases of the triangular shaped cone (model 3) and the

180

Quter streamline

150
———= No inj. limiting

streamline

120 é

90

¢ (degree)

60

30

0 5 10 15 20 25 30
In(x/x,)

Fic. 10. Streamlines; elliptic cone, b/a=1.23, M..=5, «=2°, T, /T;»=0.35
(no injection)

¢ .
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1 ! ] I I I |
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Fig. 11. Effect of mass injection on heat transfer; elliptic cone, h/a=1.23
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Fi1G. 12. Effect of mass injection on meridional skin friction; elliptic cone,
b/a=1.23

rectangular shaped cone (model 4) are shown in Figs. 13 and 14, in which the local
heat transfer ¢ is non-dimensionalized by §,, i.e., the local heat transfer of the un-
yawed basic circular cone without mass injection. With these figures, the peak
heating also lies between the value of ¢ at the windward side and the major axis
($=120° of model 3, or $=45° of model 4). The basic mechanism of the flow over
the non-circular cones is likely the same as that infered on the analogy of the yawed
circular cone case. However, what seems to be most important for non-circular cone
case, the peak heating and the peak skin friction do not occur at windward side.
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Fic. 13. Effect of mass injection on heat transfer; model 3, 6,=15°+1.0° cos 3¢
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Fic. 14. Effect of mass injection on heat transfar; model 4, 8,=15°—0.75° cos 4¢

5. CONCLUSIONS

The three-dimensional, compressible, laminar boundary layer with and without
foreign gas injection has been analyzed using small perturbation method. The first
order, exact, similar solution is presented in the form not depending on flow para-
meters. For the circular cone without mass injection at angles of attack, the com-
parisons of the predicted local heat transfer with the experimental data as well as those
calculated by existing numerical methods demonstrate the validity of the present theo-
retical approach. The influence of mass injection (air-to-air, or helium-to-air) on
three-dimensional boundary layer characteristics has been investigated. The following
results have been obtained:

(1) The major effect of mass injection is to reduce the local heat transfer and
skin friction because of the increase of boundary layer thickness together with change
in temperature and velocity profiles across the boundary layer. In the case of the
circular cone at small angles of attack, the reduction of local heat transfer is more
remarkable on the leeward side than on the windward side.

(2) The maximum value of the cross-flow velocity component increases with in-
creasing mass injection rates. This value in the case of the helium injection is at
least two times as great in magnitude as in the case of the air injection. Thus, the
helium injection influences more significantly on the three-dimensional character of
the boundary layer than the air injection.

(3) In the cases of non-circular cones, such as the elliptic cone, at angles of attack,
no points at which the local heat transfer and the meridional skin friction have maxi-
mum values coincide with the windward side at which the peak pressure occurs.

The present solution is exact and is, therefore, of interest in itself as well in pro-
viding the initial values for a theoretical study of the downstream influence.
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