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Flow and Temperature Fields around a Heated Circular
Cylinder in a Fluctuating Flow of Low Reynolds
Number—A Numerical Study on
Thermo-Fluiddynamic Response
of the Hot-Wire*

By

Tomio OBOKATA**, Atsushi OKAJIMA*** and Yoshimichi TANIDA

Summary: The purpose of the present paper is to elucidate the thermo-fluiddynamic
characteristics of the constant-temperature hot-wire anemometer by a numerical calcu-
lation. Solving the vorticity and energy equations by an implicit difference approxi-
mation, obtained are the flow patterns and isotherms around a heated circular cylinder
in a fluctuating flow for the time-mean flow of Re=4 and 40. The drag force and the
rates of heat transfer from the cylinder are then determined. Their dependence on the
amplitude and frequency of flow fluctuations are discussed, remarking the validity of
the quasi-steady approximation.

1. INTRODUCTION

The constant-temperature hot-wire anemometer is utilized as one of the most
common devises for the measurement of flow velocity. Its characteristic that is the
so-called frequency response has been studied by many investigators especially in the
case where the fluctuations in flow were sufficiently small as compared with the time-
mean flow. The investigations made so far, however, are almost concerned with the
estimation and improvement of the frequency response of the hot-wire anemometer
from the electronic engineering point of view, assuming that heat transfer from the
hot-wire occurs in a quasi-steady manner over a moderate frequency range.

The heat transfer to and from a cylindrical body immersed in a fluctuating flow
has also been noticed in connection with heat exchangers and turbine blades. The-
oretical study on a fluctuating heat transfer of a periodic boundary layer on a cylin-
drical body has been made by, for example, Lighthill (1954), Mori & Tokuda (1966),
Ishigaki (1970, 1972). The solutions thus obtained apply only at Reynolds number
for which the boundary-layer approximation has some validity.

The principal parts of this paper were published already in Transactions of the Japan
Society of Mechanical Engineers, 43-367 (1977), 1103. (in Japanese)
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272 T. Obokata et al.

So far, for the hot-wire, the assumption of the quasi-steady characteristics for the
flow and temperature fields around the heated wire has been considered to be valid,
although no reliable theoretical and experimental proofs existed. Further, for more
extended availability of the hot-wire anemometer, there will be encountered necessarily
not only with the case where the fluctuations of much higher frequency should be
searched out but also with the case where the velocity fluctuations are large enough
such that reversed flow occurs inevitabley.

The purpose of the present paper is to elucidate the thermo-fluiddynamic charac-
teristics of the hot-wire by a numerical calculation, remarking its dependence on the

amplitude and frequency of flow fluctuation as well as the validity of the quasi-steady
approximation.

2. FORMULATION OF THE PROBLEM

Consider the motion of a viscous incompressible fluid around a stationary circular
cylinder of radius a (see figure 1). Two-dimensional, symmetric case is considered,

u(T)=uy(14 AUsin(27FT)) ®

Fic. 1. Model and notation.

thereby precluding the possibility of the generation of the Kdrman vortex street
behind the cylinder. The surface of the cylinder is kept at a uniform temperature
6,, and the fluid which is infinitely far from the cylinder is at a uniform temperature
0.<6,. The main stream velocity far from the cylinder oscillates sinusoidally at
a frequency f with the dimensionless amplitude 4U about a time-mean velocity u,,
that is expressed as u=u(1 + 4U sin 2z ft).

All the fluid properties are taken as constant: density (p), kinematic viscosity (v),
and thermal diffusivity (). The following dimensionless quantities are introduced:
time, T =u,t/a; temperature, § =(0—06..)/(0,—06.,); frequency, F =af/u,; radial and
circumferential components of velocity, U =u/u, and V =v/u,. Further defined are
the Reynolds number Re=_2au,/v and the Prandtl number Pr=y/x.

The physical polar coordinates (r, ) is mapped onto an orthogonal coordinate
system (&, n) by a transformation that £ =In (r/a) and 7p=¢. Eliminating pressure
by taking the rotation of the momentum equations leads to the equation for vorticity

i _L(U_a_é Vﬂ):L 1 pe =9 L0 I
oT T as+ op/ Re R > o&* oy’ )

where A=e¢ is the scale factor of this cooordinate system and ¢ is the vorticity de-
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Response of the Hot-Wire in a Fluctuating Flow 273

fined as {={a(hV)/0& —a(hU)/on}/h*. The energy equation takes the form

CARSN (TR RR AT b ®
oT h o0& oy RePr K
in the absence of viscous dissipation and radiation effects.

By introducing a dimensionless stream function 4, the continuity equation is

automatically satisfied, and the following relations are provided.

v=L o oy _ Lok 3
h oy h 0§
and
Vap= —h )

Equations (1)—-(4) are to be solved for v, {, and @ subject to specific initial con-
ditions and boundary conditions. The boundary conditions for 77>>0 are: on the
surface of the circular cylinder (¢ =0),

9’
<

\{f:' :0’ 0:1 (5)

i
o

and for the flow field infinitely far from the cylinder, where the velocity and temper-
ature of the fluid asymptotically tends to the uniform values of free stream as the
distance becomes infinite,

V.. =2(1+4U sin 2z FT) sinh & sin 7, .=06_,=0. (6)

In practical computation, however, the latter boundary conditions should be imposed
on a far but finite boundary, which are taken in the present calculation £ =z and
3/2x or r,/Ja=23 and 111 for Re=4 and 40, respectively.

The coefficients of the pressure and viscous shear stress on the surface of the cylin-
der are obtained by

Cr(n)—Cp0)= J:e : <Z§> f=°d77)

A (N
CS(7]) = "R; Ce:() S

Then the coefficient of the drag force is
Cp=Cpp+Chps

2
where Cpp=— LJ Cp(n) cospdy
2Jo (8)

1 27 .
Cpe=— _Z_L Cs() sin 7 dy
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274 T. Obokata et al.

The local heat transfer rate per unit area of the cylinder surface which is expressed
by the dimensionless Nusselt number is

The rate of the average heat transfer from the cylinder or the average Nusselt num-
ber is

2
Ny,= j Nody. (10)
2x Jo

3. NUMERICAL METHOD

The governing partial differential equations for vorticity and energy are approxi-
mated by an implicit finite difference scheme. The numerical method which was
developed by one of the authors (Okajima, Takata & Asanuma 1971) is applied as
follows.

Approximate solutions of equations (1)-(4) will be obtained at a finite number of
grid points in the (&, n)-plane for each discrete time. The (&, »)-plane is first divided
into a finite discrete mesh of grid points having coordinates iS, jS where S is the grid
spacing and i and j are integers. The circumference of the cylinder is cut into N
equal parts, such that S =2x/N. The gradation of mesh size is conveniently achieved
by transforming the physical plane onto the (¢, 7)-plane. Just outside of the cylin-
der where the radial gradients of flow velocity and temperature are abrupt, the radial
mesh is divided into two, S/2, in the range r =a~r,. This finer mesh is certainly
desirable in view of both the accuracy of computation and the economy of computing
time.

Suppose that all quantities are known at a time 7. By using implicit finite dif-
ference approximation to the vorticity and temperature equations, the vorticity and
temperature at the next discrete time 7+ 4T are obtained for all grid points except
on the cylinder surface. The stream function which corresponds to the new vorticities
is obtained from equation (4) by the method of successive over-relaxation. The new
surface vorticities are then computed from the stream function in the vicinity of the
cylinder. The above-mentioned procedures are repeated untill all quantities converge
to reasonably accurate values at each time. Finally, drag coefficients and heat
transfer rates can be determined from equations (7)—(10).

Table 1 gives the conditions adopted for the present calculation.

TaBLE 1. Conditions for computation

Re N re/a ry/a AT
4 20 23 4.8 <0.025
40 40 111 1.9 <0.05
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4. RESULTS

The numerical calculations are carried out for Reynolds numbers Re=4 and 40,
covering a range of fluctuating frequency from F=0 to 2.5 and that of the amplitude
of flow fluctuation 4U =0 to 1.2. For example, the dimensionless frequency F =0.01
for Re=4 corresponds to the frequency f =48 kHz for the flow velocity u,=12 m/s
when the hot-wire of 5y diameter is placed in an air stream. The Prandtl number
is taken as 1.0 throughout the present calcualtion.

4.1 Case of Steady Flow

The flow patterns and temperature field around a circular cylinder in uniform
steady flows are illustrated in figure 2. Only a symmetrical case being considered,
sets of streamlines and isotherms are displayed in the upper and lower halves of the
figure, respectively.

b) Re=40

FiG. 2. Steady-state streamline (the upper half) and temperature (the lower half)
fields. (a) Re=4, (b) Re=40.

The flow patterns at Re=4 agrees well with the previous numerical results (Keller
& Takami 1960) revealing no separation of flow which results in the smooth configu-
rations of isotherms. At Re=40, a pair of standing vortices are formed behind the
cylinder, as was calculated by Apelt (1961), and then the isotherms reveal the defect
of thermal wake behind the cylinder. Taking the local Nusselt number at the front
stagnation point as unity, N, drops along the surface to 0.25 at the separation
point, but it falls only slowly in the region of the vortex pair (see figure 5 (b)), that is

TABLE 2. Calculated results for steady flow, in
comparison with experimental results

C'D Num
Re . N 9
present Tritton’s present McAdams
calculation experiments calculation book
4 5.2 4.8 1.5 1.4
40 1.4 1.6 3.7 3.4
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276 T. Obokata et al.

in contrast with the turbulent case when it recovers to 1 again at the rear stagnation
point due to the recirculating vortex pair (Howarth 1953).

Table 2 gives the calculated results of the drag coefficient C, and the average
Nusselt number N,,, in comparison with the experimental results given by Tritton
(1959) and in McAdams’ book (1954), respectively.

4.2 Case of Fluctuating Flow

The flow and temperature fields in the case of a fluctuating flow are obtained by
carrying the numerical calculation from the initial steady-state conditions which were
already given in the previous section. The regular periodicity of the fluctuations in
flow is nearly attained after the lapse of a few cyles of the fluctuations since the initial
situation (7' =0).

4.2.1 Flow Patterns and Isotherms

(1) Small Amplitude Case (4U =0.2)

At Re=4, the flow and temperature fields of the flows fluctuating with the fre-
quencies F=0.025 and 1.0 are illustrated in figure 3 only at the crest and trough
phase of the fluctuating flow velocity, ¢, =90° and 270°.

The states at a lower frequency such as F =0.025 resemble closely the steady flow
case in both flow and temperature fields. At F=1.0, the generation and release of
the vortex pair are observed behind the cylinder in the deceralating phase (¢y=
160° ~315°), whereas no marked variation in the temperature field appears over all
the period.

$,=272°

a) F=0.025 b) F=1.0

Fic. 3. Unsteady streamline (the upper half) and temperature (the lower half)
fields. 4U=0.2, Re=4. (a) F=0.025, (b) F=1.0.
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The flow and temperature fields of the fluctuating flows at Re=40 are illustrated

in figure 4 for the frequencies F=0.025 and 0.25.

At F=0.025, the vortex pair

exists during all the period while growing and degenerating repeatedly; that is, in the
accelerating phase the vortices diminish in size and the defect of the thermal wake

b)

F=10.25

FiG. 4. Unsteady streamline (the upper half) and temperature (the lower half)

fields. 4U=0.2, Re=40.
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(a) F=0.025, (b) F=0.25.
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Fic. 5. Local Nusselt number versus time. 4U=0.2.

(a) Re=4, (b) Re=40.
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disappears, while in the decelerating phase the vortices grow very large extending far
downstream and the defect of the thermal wake appears. At a high frequency such
as F=0.25, the vortex pair which is generated during the decelerating phase is released
downstream during the accelerating phase, when the flow pattern in the vicinity of
the cylinder is like that at much lower Reynolds number. The apparent defect of
the thermal wake is obseved over all the period.

The variation of the rate of local heat transfer with time is nearly sinusoidal as

$, = 180°

— [toled ot

$, = 45° 0.1

s (nafor o
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NS 04 0l 9L S5 -
,f; /T
9.4 \ "’;s}
¢U= 135° Q?' %)
02
$,= 315° -

Fi6. 6. Unsteady streamline (the upper half) and temperature (the lower half)
fields. 4U=1.0, Re=4, F=0.0833.
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illustrated in figure 5, where the parameter »* is the coordinate along the cylinder
surface from the front stagnation point (see figure 1). For higher fluctuating fre-
quency, the local Nusselt number varies with larger phase lagging behind the fluctu-
ating flow velocity and with small amplitude. No marked variation of the phase of
the local Nusselt number against the fluctuating flow velocity exists in the front three-
quarter region of the cylinder surface, but apparent phase reversal occurs at the back
near the rear stagnation point, being attributed to the recirculating vortex pair.

(i1) Large Amplitude Case (4U =1.0)

The flow and temperature fields of the flow at Re=4 with the fluctuating frequency
F=0.0833 are illustrated in figure 6. In the accelerating phase, no vortex pair is
observed behind the cylinder, when the flow patterns and isotherms are almost simi-
lar to the steady case. The vortex pair begins to be formed as soon as the flow is
decelerated. The vortex pair develops so strongly and abruptly that the cylinder is
entirely embedded in the reversed wake flow at the phase of the minimum flow ve-
locity (¢, =270°). This striking featre of the flow patterns is exmined by an experi-
ment of flow visualization. Figure 7 presents a sequence of the photographs taken
under the same conditions with figure 6. The experiment was performed by towing
a circular cylinder of 30 mm diameter in a tank (0.7 m wide, 0.4 m deep, and 10 m
long) which is filled with mobile oil. The cylinder is oscillated by a mechanical oscil-
lator with the conditions corresponding to the flow fluctuation. The flow around
the cylinder was visualized by floating Aluminium powder on the free surface and
photographed by a camera which was fixed to the cylinder. Comparison of figure
7 with figure 6 shows that the flow patterns obtained agree quite well with each other.

The flow and temperature fields of the flows at Re=40 with the fluctuating fre-
quency F=0.025 are illustrated in figure 8. In the accelerating phase, it is seen that
the new vortex pair is being generated behind the cylinder immediately after the old
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280 T. Obokata et al.

Fic. 8. Unsteady streamline (the upper half) and temperature (the lower half) fields.
4U=1.0, Re=40, F=0.025.

one is released downstream. Similarly as in the case of Re=4, the cylinder is en-
tirely embedded in the reversed wake flow in the decelerating phase. The isotherms
are much deformed according to the generation and degeneration of the wake
vortices, so that the marked defect of the thermal wake appears especially in the
decelerating phase.

The variation of the local Nusselt number with time is shown in figure 9. N « In
the vicinity of the rear stagnation point varies in anti-phase with others. This extra-
ordinary feature can be attributed to the reversed wake flow at around ¢, =270°,
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Fi1G. 9. Local Nusselt number versus time. 4U=1.0. (a) Re=4, F=0.0833
(b) Re=40, F=0.025.
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Fic. 10. Average Nusselt number and drag coefficient versus time. 4U=1.0, Re=4.
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when the rear stagnation point behaves like the front stagnation point in the reversed
flow and the heat transfer over rear half of the cylinder becomes prevailing.

4.2.2 Heat Transfer Rates and Drag Force

When the velocity fluctuation is much smaller than the time-mean velocity, both
of the heat transfer rates and drag force vary in nearly sinusoidal manner with the
amplitude proportional to the velocity amplitude (see figure 15). So, only the time-
variation of the average Nusselt number and the drag coefficient for 4U=1.0 are
presented here in figures 10 and 11, for Re=4 and 40 respectively. Only a few cycles
of the period elapses before regular periodicity is nearly attained.

Figures 10 and 11 shows that at lower fluctuating frequency the waveform of N,
is markedly deformed in the phase of the low flow velocity, whereas at higher fre-
quency it varies in sinusoidal manner with reduced amplitude lagging much behind
the fluctuating flow velocity. This deformed waveform of N, is attributable to the
reversed wake flow which embeds the cylinder and promotes the heat transfer at the
back of the cylinder.

0° ' ° 180° ° 360°
1 !

|

0 0.5 1.0 1.5 2.0 2.5

1

F-T

FiG. 11. Average Nusselt number and drag coefficient versus time. 4U=1.0, Re=40.
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4.2.3 Frequency Dependence of Heat Transfer Rates and Drag Force

The frequency dependence of the average heat transfer rate and the drag force are
obtained from their waveform discussed in the previous section.
(1) Small Amplitude Case (4U =0.2)

The amplitude of the average Nusselt number N,,, and its phase angle ¢ (relative
to ¢y) as a function of the fluctuating frequency are presented in figure 12. The

1.2~ Re |Num  #am| Nos  #as
. 410 g | o o
zzj 1.0 —| 40 | ® ¢ | = w
E
15 MORI- — o
0.8* P
.8 e
1 g
S 0.6F Ay -60°
Lz
0.4+
-30°
0.2 -
F h
0 Cjﬂ‘:’ ﬁ:;”? l \ | 1 0°
0.01 0.1 1 10

F

FiG. 12. Frequency response of Nusselt numbers. 4U=0.2.

amplitude of the local Nusselt number at the front stagnation point ﬁus is also given
in this figure. The ordinate is the ratio ﬁu/ﬁw, where ZVMQ is the quasi-steady
Nusselt number presumed from the steady values corresponding to the maximum
and minimum of the fluctuating velocity. Both N wm and N, vary in similar tendency
at each Reynolds number. Define the critical frequency at which the amplitude of
the Nusselt number deteriorates by 5%, below the quasi-steady value, that is N,/ ]\7uQ
<0.95. The critical frequencies at Re=4, 0.033 and 0.04 for N,, and ﬁuS respec-
tively, are much lower than those at Re=40.

At Re=40, an overshoot of the amplitude of the average Nusselt number, Nu/ﬁw
> 1.0, appears in the lower frequency range, which may be attributed to the unsteady
behaviour of the vortex pair. For comparison, theoretical results for the local Nus-
selt number at the front stagnation point which were obtained by the boundary-layer
approximation (Mori & Tokuda 1966) are presented by dot-dash lines in this figure.
The agreement between theory and numerical calculation is rather encouraging.

Figure 13 shows the amplitude of the drag coefficient C, and its phase angle ¢,,
(relative to ¢;) as a function of the fluctuating frequency. The drag coefficient is
divided into the pressure and friction components, (Cop, épp) and (C s, éns), which
are also presented in this figure. The ordinate is the ratio CD/C',)Q, where C’DQ is the
quasi-steady drag amplitude which is presumed from the steady characteristics. The
amplitude of any drag coefficient increases with increasing frequency. For suffi-
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Fic. 13. Frequency response of drag coefficients. 4U=0.2.

ciently high frequency, the pressure drag overwhelms the friction drag as the effect
of the virtual mass of fluid compels C,p to be proportional to the fluctuating fre-
quency F with negative phase lag ¢,p»= —90°, whereas C s tends to be proportional
to F'* with ¢ps= —45°.
(i) Large Amplitude Case (4U =1.0)

In the large amplitude case when the cylinder experiences the reverse flow during
a part of the cycle, the waveforms of the Nusselt number and the drag force are so
deformed that their time-variations must be evaluated by taking the root-mean-square
value. Figure 14 shows the r.m.s. values of the average Nusselt number and the
drag coefficient as a function of the fluctuating frequency. The ordinate is the ratio

1.0 — — 100
Re Num CD 1

12 1 2
Z i$)
E ~
1z (9

110

1 1

10

Fic. 14. Frequency response of Nusselt number and drag coefficient. 4U =1.0.
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Num/ﬁw or C’D/C’DQ, where ﬁuQ is the quasi-steady r.m.s. value presumed from the
empirical relation N, ,=0.4240.57+/ Re (Hinze 1959) and €, is the quasi-steady
r.m.s. value presumed by assuming that C, varies along the Trition’s (1959) ex-
perimental curve.

Figure 14 shows that the amplitude ratio of the average Nusselt number is much
smaller than unity even in a rather low frequency range, even though the trends with
the frequency are similar to the small amplitude case. That is because the waveform
which is deformed by the reversed wake flow is entirely different from the quasi-steady
one even in the low frequency range.

4.3.3 Amplitude Dependence of Heat Transfer Rates and Drag Force

The average Nusselt number and the drag coefficient depend on the amplitude of
the fluctuating flow velocity not only in their amplitudes but also in their waveforms,
as shown in figure 15 for Re=4 at F=0.025,.

Num

I S S S S
0° 90° 180° 270° 360°
#,.

(b)

Fic. 15. Average Nusselt number and drag coefficient for various amplitudes of
fluctuating flow velocity. Re=4, F=0.025.

For the velocity amplitude much smaller than 4U =1.0, both of the average Nus-
selt number and the drag coefficient vary in nearly sinusoidal manner with the am-
plitudes proportional to the velocity amplitude and with no apparent shift of phase,
whereas for 4U 1.0 the waveform of N,,, is deformed at around the phase of the
lowest flow velocity. The amplitude of the fluctuating flow velocity affects then not
only the amplitudes of Num and €, but also their time-mean value N, , and C,,.

The variations of the amplitude of N,,, and €, with the amplitude of the fluctuat-
ing flow velocity are illustrated in figure 16, where the ordinates are the ratios of
N,.,, and €, for their quasi-steady values. At a low frequency (F=0.025), Ny is
kept nearly constant within 59, departure from the quasi-steady value for 4U <0.4,
while in the high frequency case (F=0.25) it does not coincide with the quasi-
steady value even for infinitesimal velocity amplitude.
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Fic. 16. Dependence of average Nusselt number and drag coefficient on
the amplitude of fluctuating flow velocity. Re=4.
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Fic. 17. Dependence of the time-mean values of average Nusselt
number and drag coefficient on the amplitude of fluc-
tuating flow velocity. Re=4.

The drifts of the time-mean values, N,,, and C,, as a function of the velocity am-
plitude are presented in figure 17, where the ordinates are the ratios for the steady
quantities, N,, and Cp,. The dot-dash lines correspond to the time-mean values
presumed from the quasi-steady variations as the ratios of the steady values.
At F=0.025, N, decreases coincidently with N,,, as 4U increases up to 0.4, whereas
for 4U>0.4 the drift of N, becomes smaller than that of N,,, because the defor-
mation of the waveform due to the reversed flow suppresses the further drift of N,,,.
The drifts of N, and C,, for higher frequency are mucch smaller than those for the

lower frequency.
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5. CONCLUSION

Some fundamental studies concerning the dynamic characteristics of the constant-
temperature hot-wire were carried out by a numerical calculation from the thermo-
fluiddynamic point of view. Solving the vorticity and energy equation, obtained are
the flow and temperature fields around a heated circular cylinder in fluctuating flows
for the time-mean flows of Re=4 and 40. The drag force and the rates of heat
transfer from the cylinder are then determined. Their dependence on the amplitude
and frequency of flow fluctuations are discussed, remarking the validity of the quasi-
steady approximation.

For smaller amplitude of fluctuating flow velocity such as 209 fluctuation, the
quasi-steady approximation may hold in the ordinary Reynolds number and fre-
quency ranges for which the hot-wire is usually applied.

For larger amplitude of fluctuating flow velocity, however, the situation becomes
surprisingly different. During a part of the cycle, the hot-wire may be embedded
occasionally by the reversed wake flow, and hence the waveform of the average Nus-
selt number is much deformed such that the quasi-steady approximation should be
abandoned even in rather low frequency range. It should be noticed that such de-
formed signals from the hot-wire can not be compensated by usual electronic methods
and may lead to the misunderstandings of the phenomena even when no apparent
reverse flow exists.
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