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Summary: This paper concerns with the non-linear steady condensation and/or evaporation
processes of pure vapor flowing along an infinitely plane wall. The aim is to analyze these
processes by means of an extended two-stream moment method for a wide variety of flow
parameters, and to clarify the dependence of the processes on various flow parameters with or
without mean parallel velocity. The condensation rate depends, in general, on the ambient,
uniform flow parameters (density, pressure or temperature, and mean parallel velocity), while
for smaller condensation rates it depends on the pressure alone. The evaporation rate depends
on the ambient pressure alone for any rate and the solution is achieved only for the cases
without the mean parallel velocity. As regards the effect of the mean parallel velocity on the
condensation rate, the rate indicates pronounced decrease with increasing the mean parallel
velocity. For the Couette flow, the effect of the mass flux on the flow behavior is also clarified.

I. INTRODUCTION

In the present paper, we are concerned with the non-linear steady condensation
and/or evaporation processes of pure vapor flowing along an infinitely plane wall and
also flowing between the two parallel plates with or without mean parallel velocity.

For simplicity, first suppose the half space problem of condensation which takes place
on an infinitely plane interphase. The problem on condensation was analyzed based on
the free molecule theory by Hertz[/] and Knudsen[2], and thereafter by Schrage [3]
with some improvements. According to these analyses, the mass flux can be determined
for any temperatures and pressures specified at the boundaries; that is, both on the
interphase and at the infinitely far region.

In the past decade, a number of analyses on the problem of condensation and/or
evaporation have been progressed on the basis of the kinetic theory. In a linearized
version, the analysis was made by several authors [5-8]. In an ordinary linearization of
the problem, the heat flux normal to the interphase may be neglected as the higher-
order small quantity. With no heat-flux, however, the solution is obtained only for the
selected values of temperatures and pressures at the boundaries [6-8]. With the heat
flux retained, for the condensation problem the solution can be achieved for any
specified temperatures and pressures at the boundaries[5, /5]. This implies that the
condensation problem must be dealt with from a non-linear version.

The half space problem with or without the mean parallel velocity was analyzed by
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58 M. Hatakeyama and H. Oguchi

Kogan and Makashev [9] on the basis of the non-linear BGK model equation. The flow
structure and the relevant characteristic quantities were presented for several numerical
examples. Gajewski et al. [10] also presented some numerical examples under a restricted
flow condition without the mean parallel velocity. Since, however, the analysis of the
non-linear problem necessarily relies on numerical computations, a number of examples
so far presented are unlikely to be sufficient to provide the full understanding of the
problem.

In the half space problem, the evaporation problem involves some different features
from the condensation problem. As pointed out in the literatures [9, 11, 12], the solution
for the problem can be achieved only for flows without the mean parallel velocity, along
with the selected values of temperatures and pressures at the boundaries.

For both the two-surface and the Couette flow problems, the similar analysis was
made by Makashev [/3]. More recently for the two-surface problem Yen [/4] solved the
Boltzmann equation by the Monte-Carlo method. As regards the two-surface problem,
the ordinary linearization leads to no restricted solution [8], because the heat flux retains
finite on the contrast to that in the half space condensation problem. On the
aforementioned fact it can be said that the linearized analysis provides a proper
understanding of the two-surface problem for the case of smaller mass flux.

In view of the present status above reviewed, we aim to perform the non-linear
analysis of the flow structure with condensation and/or evaporation over a wide variety
of flow parameters and also focus a particular attention on the dependence of
condensation processes on various flow parameters with or without the mean parallel
velocity. To achieve the present aim, a simple but comparatively accurate method of
analysis is developed on the basis of the two-stream Maxwellian moment method
primarily proposed by Lees[4].
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Non-linear Condensation Processes 59

II. MATHEMATICAL FORMULATION

We consider one dimentional, steady vapor flows in the absence of external forces. A
sketch of flow field is shown in Fig. 1; the Couette flow and the half space flow. For the
Couette flow case, Fig. 1a, the vapor evaporates out of the lower interphase at y =0, and
condenses onto the upper interphase at y = 1. For the half space flow case, Fig. 1b, the
vapor condenses onto the interphase at y=0. It is assumed that no reaction occurs in the
gas phase. The gas molecules are assumed to be the Maxwell molecule model whose
intermolecular force F is defined as follows;

K
F=m>—,
rS
where m is the molecular mass, K is the force constant, and r is the distance between
molecules. The Maxwell-Boltzmann transport equation is written using the standard
symbols as

d :
ZJ ViefdV = j((ﬁ' — @)ff1gbdbdedVdV, , (2.1)

where ¢ is any function of the molecular velocity ¥, and the primed ¢’ denotes the
function of V after the collision. Apparently, in the moment method, the accuracy of
the solution depends on the choice of the explicit form of ¢. The second- or third-order
functions of V¥ together with the four collisional invariants (1, V,, V,, V'?) may be
chosen; for example, V., V,, V& V. V2, V) V?V, and V?V, are selected as the transport
quantities. To hold the accuracy of the approximation of the moment equations, the ¢
is usually selected under the criterion that a priority should be given to the lower order
¢ (i.e. lower order moment equation) and to the ¢ in the direction normal to the wall
(for example, V).

In the present analysis, the two-stream Maxwellian velocity distribution function f,
is assumed for the form of the solution f(y, ¥) in Eq. (2.1). In this method, the velocity
space V is divided into two half velocity space, V,>0 and V<0, and the half range
Maxwellian distribution functions containing four unknown functions for each half
velocity space are assumed;

V) =f o Vi V>0 + (3 Vs ¥, <0)
r, =W [_(V— L>i<y))2]

=T e (y)p © c.(y)?
ui(y)=us(y)vei(y)0),
c.(y) = 2RT.(y)"?.

For convenience, all the variables are non-dimensionarized; that is, the temperature T
is referred to the 7, at the lower wall (y=0), the number density n to the saturated
number density n, corresponding to T,, the velocities (V, u,, v,) to the thermal
velocity ¢, (=(2RT,)'?), and y-coordinate to the mean free path 2, for the half space
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flow case and to the width D between two parallel walls for the Couette flow case. The
2, for the Maxwell molecule model is

Ay = (kT,)'?/[34,(5)(nK)'*mn,,]

The Knudsen number for the Couette flow case is defined as Kn = 4,,/D. In what
follows, we shall employ the same symbols as the dimensional variables for the non-
dimensionarized variables unless otherwise stated.

By using the two-stream distribution function £, , the n-th order moments are defined

as follows:
Mflnl)az. .LaN = ﬁ[[l I/t;ﬂfist

(2.2)
'ﬂ;nl)az. - AN = l_[ (V;B - uap)fidV’
p=1

where

,;DI Vi fudV = LIJI Vi fs dV + ,,Ul Vif-dV.

¥, >0 (¥, <0

The macroscopic flow quantities are expressed using the n-th order moment as follows:

n(y)=M®
M®
u(y) =
n
(1)
u(y) =—=

(2.3)
2
I(y) = 3—,;(«/”@ + MP + Jl‘;’;’)

p(y)=nT

. 1 3
100 = (A8 + 3+ a2 )

where ¢,(») is the heat flux normal to the wall. The two-stream moment equations
generated are listed up as follows:
(1) ¢@=1 (mass conservation)

M:(:v)z Z,,
or n,c, KV +n_c_ LV =7,. (2.4)
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Non-linear Condensation Processes 61

(2) ¢@=V, (momentum conservation parallel to wall)
M3=Z,,
or nyc,u, KV +n_c_u_L'V=2. (2.5)
(3) ¢=V, (momentum conservation normal to wall)
MP= 7,
or n,AK®+n_c*L% =2,. (2.6)
(4) @ = V?*(energy conservation)
My = Zs,
or n, (1 + w3 /A )KY + K9
+n_ (1 + 2 /ALY + L] = Z,. 2.7

where KV, K@, K® and K“ are the functions with respect to v, /c,,and L"), L®, L®
and L™ are the functions with respect to v_/c_. The table of contents for these
functions is presented in Appendix. The Z,, Z,, Z, and Z, are the conservation
fluxes. For the transport quantities the following moment equations are derived;

(5) o=Vl

iM(ii) - 3 (M(I)M(l) — M(O)M(Z))

dy " 4Kn' Y 7 0
(6) o=V}

d 1

ay Mo = e, M) IMOMY) + MOME) — (MY)?),
(7) o=V;

d 1

— M3 = M1))2 MO (2) 0)Af(2) M 2

d xxy 4Kn(2( x ) 3 M + M Maa, ( y ) )’
(8) o=V3

,d_M(4) — 3 (M(I)M(2)+M(1)M(2) + MOMP

dy yyyy 8Kn y yy ¥ ajay aja;y

— 3M(0)M§:j.;. _ M(I)M(Z))

(9) o=V;

d 3

MY = M(l)M(Z) M(l)M(Z) M(O)M(3)

d XXXy 8Kn( X + + ajo;x

3M(0)M(3) _

xXxXx

M(I)M(Z))
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(10) o = V?V,
iMM) _ 1 MM _ A2 ©O)Af(3) (M Af(2)
dy ey 2Kn( y Maga, = My "My — MM g, — MOM),
(11) @ =V?V,
d

1
RV (C)) _ (1) 2 1) 2
M S ML M2 — MPMZ — MOME)  — MPME) .

dy ajapxy aja;x

It should be noted that the repeated subscript a;x; means the summation and that the
Knudsen number is equal to unity for the half space flow case. With regard to the
detailed derivation of the above moment equations, Ref. 16 should be referred to.

As for the boundary conditions, the distribution function f, for the molecules
emitting out of the interphase is assumed to be the Maxwellian distribution function
with the temperature of the interphase T',, and the saturated number density n,,
corresponding to T,,. That is, the fully diffuse reemission distribution function is
assumed, and the evaporation coefficient «, is unity. It is assumed that all the molecules
coming onto the interphase are absorbed. That is, the condensation coefficient «, is also
unity. At the lower boundary,

n,(0)=1,u,0=0,0,00)=0,c,(0)=1. (2.8)
At the upper boundary for the Couette flow case,
u ()=S,v_(1)=0,c_(1)=T*, (2.9)

where S is the speed ratio. The boundary condition for n_(1) is not given explicitly in
Eq.(2.9). There are two schemes to set the boundary condition for n_(1). The first
scheme is to give the evaporation mass flux m as the free parameter instead of n_(1).
The n_(1) is obtained by solving the mass conservation equation

nyc, K +n_c_ LY =m.

The second scheme is to give n_(1) explicitly through the Clausius-Clapeyron formula
with the parameter f(=Q/RT), where Q is the specific latent heat and is assumed
constant:

n(1) = o exp [ — 1/T))

We use the evaporation mass flux rate m as the flow parameter for the Couette flow
case to simplify the numerical procedures which are described in the next section.

At infinity, for the half space flow case, the flow approaches to equilibrium with the
velocity u,(=(S,, v, 0)) and the temperature T . In other words, the distribution
function f, tends to the full range Maxwellian distribution function. Therefore we
have
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n,(c)y=n_(c)=n,, u,(c)=u_(0)==S_,
(2.10)

U+(OO)=v—(OC):st C+(OO)=C—(OO)= TL/Z’

where the v, is obtained as the result of the calculation, and the number density »__ is

given by the following formula;

1 ; _In(n,.T,)
n, =Texp (ﬁ(l - I/Tx))’ ‘B_(l — I/Tl), (211)

xX

which have the same form of the Clausius-Clapeyron formula. Equation (2.11) is used
as a convenient formula to give the number density n,.. When Eq. (2.11) is linearized
under the assumption of the slight deviation from equilibrium, the following simple
formula is obtained;

n, =1+4+p8(T, = 1), B =E—';ji—__—3. (2.12)

which are often used in the linearized analyses [5]-[8].

A. A simple analysis in the linearized flow regime for the half space flow case

First we consider the linearized case, in which all the quantities are slightly deviated
from equilibrium values; that is, n, =1+ An,, ¢, =1+Ac,, and then |An,| <1, |Ac,|
<1,and|v,| < 1. Forsimplicity we consider the cases of vanishing mean parallel velocity
or S, =0. The boundary conditions for An,, Ac,, v,, are as follows:

at y =0; An, =0,v, =0, Ac, =0. (2.13)
at y—oc; An, =An_=m, — 1), v, =v_=v,,Ac, =Ac_=(T, — 1)

Using Eq. (2.13), the conservation equations (2.4-2.7) are applied to the conditions at
the interphase and at infinity:

Zy= —(An_(0) + Ac_(0))/2rn'?) =v_(0)2 =0, ,

Z, = 1/2 + (An_(0) + 2Ac_(0))/4 — v _(0)/n'* = (1 + Ap,)/2,

Zy = — (An_(0) + 3Ac_(0)) + 5v_(0)/4 = Sv,. /2.

The above equations are simultaneously solved and then we have
An_(0) = — 18.79v, — 11.81Ap, .
Ac (0) = —2.685v, — 1.686Ap., . (2.14)
v_(0)= — 15.18v, — 7.612Ap
(or, Ap, = — 1.994v, — 0.1314v_(0)).
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It is assumed that v_(0) is nearly equal to v,. Then we can rewrite Eq. (2.14) in the
following form:

v, =m=—0470(p, — 1). (2.15)

That is, the condensation rate #1 depends on the pressure alone. Equation (2.15) is quite
the same as the one obtained by Muratova and Labuntsov[5], Pao[6], Sone and
Onishi [7] and Matsushita [8]. Using the relation (2.12) and (2.15), the macroscopic flow
quantities are expressed as follows:

n0) =1+ 0.630(1 + 1/8)(n, — 1),  v(0)=no,,
7(0) = 1 + 0.237(1 + BT, — 1), (2.16)
p0)=1+0867(p, — 1),  4,(0)=(0.572 — 0.178B),. (T, — 1).

As can be seen from Eq.(2.16), the flow quantities except v(0) are proportional to
(ny,—1), (T, —1)and (p, — 1), respectively, and also proportional to 1/f, or §,. It
should be noted that the relation 7(0)=T, is obtained for the particular value of
B.(=3.22). In this case the temperature 7(y) is constant in the whole flow field and that
4,(y)is also zero in the whole flow field. Moreover, the flow field shows the peculiar flow
pattern which is nearly uniform across the whole field when f,=3.22.

The value 3.22 of the parameter f; nearly corresponds to the uniquely determined
value of f, for which the solution can be obtained by the ordinary linearized
analyses [6—8]. It should be noted that it can be seen from Eq. (2.16) that the negative
gradient of the temperature profile exists when f,>3.22.

III. NUMERICAL PROCEDURES

The straightforward computation is not necessarily feasible because the problem is
the two-point boundary value one involving four unknown boundary values n_(0),
u_(0), v_(0), c_(0). Since it is not at all practical to guess the four unknown boundary
conditions at y=0 directly and simultaneously, a set of alternate four quantities for easy
guess should be picked up. In this paper, the conservation fluxes Z,, Z,, Z,, Z; which
appear in Eqs. (2.4-2.7) are selected. When a set of these flux Z is obtained, the
remaining unknown boundary values can easly be derived by solving the conservation
equations (2.4-2.7) simultaneously with the boundary conditions (2.8) and flow
parameters. The schemes to make the proper guess for the conservation flux Z are
obtained through the different manner for each configuration. Thus, with the aid of the
initial guess of the conservation fluxes the present two point boundary value problem is
reduced to the initial-value one.

For the Couette flow case, the solution of Lees[4] is made use of for the case of no
evaporation. When the evaporation is extremely strong, the conseravation flux Z is
easily derived; that is, Z, = 1/(2n'/?), Z, =0, Z,=n'?/4 and Z,=1. For the intermediate
value of the evaporation rate m1, linear relations among fluxes are found to be valid
approximately by examining some numerical results under the conditions of the fixed
temperature ratio 7* and the fixed Speed ratio S, and the existence of these relations is
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proved in[/6]. Using these approximate relations, the initial guess of the fluxes for the
intermediate value of the evaporation rate is given by the following forms,

Zy=m, Z, =(1-21'22)Z7],
Z,=2Z; + (n — 4n'2Z3)Z,)2 3.1
Z, =27 =21Vl — Z)Z,,

where Z/, Z;, Z; are the corresponding fluxes when #»1=0. In Fig. 2, comparison
between the initial guess by Eq. (3.1) and the numerical results are shown. The
agreement with the initial guess is considered good. These relations make the
numerical calculations very easy.

For the half space flow case, simple relations between conservation fluxes are
analytically derived. Since the conservation equations (2.4-2.7) must asymptotically
satisfy the boundary conditions (2.8) at infinity, then the conservation equations are
rewritten in the following forms:

Zy=n,v,, Z, =n,v,S,,

xX

N
|

=n, T, 2+n, 1%, (3.2)
Zy=n,v,(5T,/2 +S% +1%).

In these relations the unknown variables are v, Z,, Z,, Z, and Z;. When one of these
variables, for example v, is suitably selected, the conservation fluxes are estimated
correctly and simultaneously for the solution.

Using these conservation fluxes Z thus evaluated, the unknown boundary values
n_(0), u_(0), v_(0) and ¢_(0) at the lower boundary are evaluated by applying the

0 0.1 0.2

_____ Kn—x —_— - —— Kn=0.2
—--—Kn=05 ——— Kn-0
$=0.707, T*=04

FiG. 2. Linear relation among fluxes for Couette flow case. $=0.707, T*=0.4.
(@ ; numerical results for Kn=0.2, 0.5)
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boundary conditions (2.8) to the conservation equations (2.4-2.7). Thus the problem is
reduced to the initial-value one. In fact, the solution for a set of moment equations can
be easily achieved by numerical integration by menas of the Runge-Kutta-Gill method
starting from the lower boundary at y =0 toward the upper boundaryat y=1 (or y— o0).

When the numerical integration is performed up to the upper boundary, the set of the
obtained values F(=(u_(1),v_(1),c_(1)) or =(u_(o0),v_(o0), c_(00))do not in general
satisfy the boundary conditions F®<) (=(S, 0, T*)or =(S,, v, T..)). In order to adjust
F with F®<), the set of the initial guess of the conservation fluxes Z must be corrected.
The scheme to correct Z to the suitable values is given by the following procedures; that
is, the effects of the slight deviation of each conservation fluxes AZ(AZ;, j=1-3)on F
are estimated. These effects are expressed by a;; (=Au_/AZ;, Av_|AZ;, Ac_|AZ),
where, Au_, Av_ and Ac_ are the variations as the result of slight deviation of Z. Then
the corrections AZ (or AZ;) are given by solving the follwing equations with respect to
AZS;

F(b.c.) =F + Z .aijAZ;- (33)
J

When the corrected values of Z are obtained, the numerical integration are performed
and checked whether the new F coincides with F*) or not. This numerical iteration
procedures, which are often called the error propagation method, are repeated until
F®<) s satisfied within the tolerance of a desired accuracy. The detailed scheme and
of this procedure are shown in Ref. [76].

IV. RESULTS AND DISCUSSION

A. Examination of Choice of a Set of Moments

The choice of higher-order generating functions such as V7, V73 except the collisional
invariants is not unique, so that the deviation among the resulting solutions from
possible choices of generating functions should be examined. Actually, for a few
examples the examination was made. Liu and Lees[4] selected V', V, and V?V, for the
higher-order generating functions together with four collisional invariants (1, V,, V,,
1'?). In the present problem, however, we need further two generating functions. Five set
of additional generating functions (VZ, V3), (V2, V3), (V3, V3, (V*V,, VI, (V*V,, V3)
are chosen. It was confirmed that the results indicate only slight deviation among
solutions so far as the criterion that provides ‘‘the higher priority to the lower order
moment equations” is satisfied [/6]. Actual computation was carried out by using the set
(V3, V3) for the additional generating functions.

B. Dependence of Condensation Rate on Specified External Conditions v
Since the simple analyses by Hertz[/] and Knudsen [2], it has been the important aim
to estimate the condensation rate »7 under the specific circumstances; that is, under the
specified flow parameters (n_,p.,S..)or(f,p., S, ), where the parameter £ is defined in
Eq. (2.11).
First, we consider the cases of vanishing parallel velocity or S =0, in which the most
of primary characteristics of condensation phenomena are retained. As for these cases,
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the linearized analyses based on the BGK model equation provide the relation
m= —0.470 (p., — 1) [6-8]. The similar relation is also derived from the linearized two-
stream moment method by Muratova and Labuntsov[5]. However, in the non-linear
flow regime the condensation rate m for the specified external flow parameters has not
been estimated except a few numerical analyses[9, /0].In the present analysis, therefore a
systematic estimation of m for a wide variety of external flow parameters was carried
out. The dependence of the mass flux rate on the external pressure is shown for various 8
in Fig. 3. It can be seen from this figure that for smaller condensation rates the relation of
pressure versus condensation rate reduces to the one given by Eq. (2.15) regardless of
any f3, while for larger condensation rates this relation deviates largely from Eq. (2.15),
depending also on the parameter f. This leads to the argument that the condensation
rates depend, in general, on both p_ and n, (or ), while for smaller condensation rates
depend on p_ alone regardless of any number density n_ (or f).

15
B=1
p=2
p=4
Po—1
p=10
$=20 J1.o
f—x
o5
1 1 1 1 ) N S | 1 l
~1.0 05 oN T !
m

FiG. 3. Pressure at infinity versus mass flux rate m. S =0.
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It should be noted that the similar dependence of »1 on p_ is also confirmed for smaller
condensation rates by both the linearized analysis and the present non-linear analysis.
The solution by the linearized analysis is valid only for a fixed value of f(=4.66), while
the solution by the non-linear analysis is obtained for any values of . Muratova and
Labuntsov [5] and Sone [/5] dealt with the condensation processes taking into account
non-linearity for cases of smaller condensation rates and pointed out that two external
parameters (p_, f) need to obtain the flow field itself even for the smaller
condensation rates and that the same relation as Eq. (2.15) is also valid. In what follows,
we shall give a simple explanation for the aforementioned feature of the condensation.
We pay the particular attention to the heat flux 4,(0). The heat flux has the second order
of magnitude as is shown in the following:

4,(0) = 3v.(T,, — T(0))/4. 4.1

In the linearized analysis ¢,( y) is required to vanish in the whole flow field in order to
satisfy the boundary conditions at infinity[5-8]. However, if the heat flux ¢, is neglected,
then a restrictive condition is naturally derived from Eq. (4.1) that the temperature 7°(0)
isequal to T',. This condition shows that T( y)= T, for any coordinate of y, and this is
satisfied only when f,=3.22 as already discussed in Chapter II [Eq. (2.16)]. The value
3.22 for B, corresponds nearly to 4.66 for . This result leads to the argument that if the
heat flux ¢, is formally neglected because of its smallness in the linearized flow analysis, a
free parameter B, is restricted to a fixed value: ;= 3.22. Therefore the half space flow
with condensation is essentially the non-linear flow phenomena, and its non-linearity
must be taken into account even in nearly equilibrium flow case. However, only when
p,=3.22 for the nearly equilibrium flow, the non-linear kinetic solution coincides with
the linearized kinetic solution. The above explanation gives the reason why the
linearized analysis is valid only when f,=3.22.

The cases for evaporation (»1 > 0) are also calculated. The results are shown in Figs. 3
and 4. As can be seen from Fig. 3, the evaporation rate depends on the ambient pressure
alone for any rate m. This was previously pointed out in the references [9, 1/ and 12]. The
solution for evaporation can be achieved only for the specified values of the parameter £.
These slightly decrease with increasing evaporation rate; for example, f=4.48 (m—0),
B=4.47 (1=0.10), f=3.90 (#1=0.20), and f=3.34 (m1=0.23). Moreover, the solution
for evaporation can be achieved only for flows without the mean parallel velocity.
Dependence of evaporation rate on n, and 7T, is shown in Fig. 4 in comparison with the
results of previous works [9, /7, and 12].

C. Structure of Non-linear Condensation Layer

As mentioned in the introduction, only a few numerical analyses have been performed
in the non-linear cases of the problem [9—15]. Therefore, it is of significance to clarify the
flow fields for a wide variety of flow parameters and also the relevant characteristic
structures of the non-linear condensation layer for the half space flow case. Several
typical examples are presented for both larger m (4 cases) and smaller 71 (2 cases). Their
profiles are shown in Figs. 5 and 7. These numerical examples were performed for the
fixed value of p..

In Fig. 5 shown are the density profile. As can be seen from the figure, the density #, of
gases at the interphase is not necessarily smaller than the density »_, at infinity. It can be
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Present - Soga

Fi1G. 4. Density and temperature at infinity versus evaporation rate.

said that the density profiles can be characterized by the ratio of the density difference
(n, —ng) to (n, —1). In Fig. 6, the ratio aA[=(n_, —n,)/(n, —1)], is plotted versus m for
various set of (f8, T, ) covering theranges2< <10and 1.02< 7, <1.5. In the figure, for
the cases of constant f3, 7 does not change so much. On the other hand, for the cases of
constant 7, /i changes greatly for smaller condensation rates, while 7 does not change
for larger condensation rates. That is, the density profile which depends on 7 is roughly
characterized by the parameter f.

In Fig. 7, the temperature profiles are shown. As can be seen from this figure, the
profiles are rather monotonical so that the characteristics of temperature profile can be
represented by the ratio of temperature difference (T, — T,)) to (T, — 1) for both linear
and non-linear flow regimes. In Fig. 8, T[=(T, — T,)/(T, — 1)] is plotted versus m for
various set of (f, T, ) covering theranges2<f<10and 1.02< 7, £1.8. Inthe figure, for
a case of fixed T, , T changes greatly for smaller condensation rates, while T does not
change so much for larger condensation rates. It can be said from the figure that for 7 s
greater than roughly 1.10 or so, the temperature difference (7', — T,,) is always positive for
any condensation rate, while for 7', s smaller than roughly 1.10 or so, it changes the sign
from positive to negative with increasing »1; in other words, the temperature gradient
within the layer varies from positive to negative with increasing condensation rate m.
The occurrence of the negative temperature gradient can be identified in Fig. § when T,
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FiG. 5. Comparison of density profiles. S,.=0.

and f are specified. Such a negative gradient of temperature profile has been pointed out
by Pao[6], Matsushita [8] and Gajewski et al. [10] for cases of smaller temperature
differences, while it was not shown in the results of the analysis by Kogan and
Makashev [9] for cases of larger temperature differences. Therefore, it can be said that
the present results are consistent with the previous results.

Moreover, it can be seen from Fig. 8 that for a certain value of B close to 4, the
temperature difference or temperature profile does not indicate appreciable change for
variation in T as well as #2. It should be noticing that this specific value of § is likely to
be close to the one for which the solution can be obtined by the linearized analysis (or
f=4.66).

The other parameter characterizing the profile (or flow structure) is the one
representing the layer thickness. By the definition similar to that of boundary layer
thickness, we define a characteristic length L, pertinent to temperature such that the
temperature 7; at y= L, deviates from T, by as much as 19;. In Fig. 9, the L, defined
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FiG. 6. na[=(n, —ny)/(n, —1)] versus m for various (B, T,) S, =0.

above is plotted against the condensation rate » for various 7', covering the range
1.02< T, <1.2. For T, given, the temperature layer thickness L is likely to vanish at a
certain value of m_,,. In a region m<m,, the thickness increases sharply with
decreasing condensation rate, while in a region m > n1_; ., the thickness is likely to vanish
again after slow increase with increasing condensation rate. Though the parameter £ is
not shown in the figure, it varies with m for a fixed T, . For the weak condensation case
when T is close to unity, the f# for which the L, vanishes is found to be close to the
particular value (f=4.66), for which the solution can be achieved by the ordinary
linearized analysis.

n

D. Half Space Flow with Mean Parallel Velocity

In this section, we consider the half space flow with condensation in the presence of the
flow velocity u( y) parallel to the wall. The condensation flow for the case of S, =0 is
often observed in the actual condensation phenomena. In such a flow, it is natural that
the structure of the flow field changes more or less. In authors’ knowledge only the
analysis by Kogan and Makashev [9] was carried out for a special Speed ratio S, (=0.5).

In the present analysis, the flow parameters are f=2.0, 7, =2.3, (p,. =3.1), and the
Speed ratio is selected over a wide range 0< S, <6. In Fig. 10, condensation rate is
plotted against the Speed ratio S, for a set of fixed f and 7, . In the figure, the
condensation rate scarcely changes for smaller S, while it indicates pronounced
decrease with increasing S, beyond unity or so. The condensation rate when S, =6.01s
about 1/3 of that when §, =0.

Next we consider the effect of S, on the flow profiles. For S =0, the distribution
function f, shows the bimodal character by the presence of the parallel velocity u, (y)
especially near the condensing surface, so that the presence of u, ( y) directly affects the
flow profiles. Since the definition of pressure is expressed by the second order moments
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FiG. 7. Comparison of temperature profiles. S =0.

around the mean velocity u=(u(y), v(y), 0), the pressure increases as the bimodal
character becomes stronger. The numerical results are presented in Fig. 11. In the figure
the pressure profiles for the cases S, =0, 2.0, and 4.0 are shown. The increase of pressure
is remarkable especially near the condensing surface. Thus, p(0)/p, is plotted versus S,
in Fig. 12. In the figure, the p(0) is higher than p_ by about 40%/ when S,=06.0. The
occurrence of this high pressure near the condensing wall is considered to be one of the
causes which prevent the vapor from coming onto the interphase.

The effect of the parallel velocity on the temperature profiles is shown in Fig. 13. The
temperature increases greatly as S increases in the whole region of the flow field. The
tendency becomes clearer by illustrating the 7(0)/ T, versus S, whichis shownin Fig. 14.
Asis clearly observed in the figure, the presence of the parallel velocity affects greatly the
condensation rate and the structure of the flow field. Such a great change of the flow field
causes the change of the temperature layer thickness L, and of the parallel velocity layer
thickness L,. The definition of the parallel velocity layer thickness L, is quite the same as
that for the temperature layer thickness L.

The Ly and L, are summarized in Fig. 15. Both L; and L, are nearly the same in
magnitude and show a slow increase for smaller S, and a sharp increase for larger S,
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FiG. 11. Comparison of pressure profiles for various S,. f=2.0, T,,=2.3.

beyond unity or so. To observe the whole flow field for the case S, =4.0, the flow profiles
are presented in Fig. 16.

E. Couette Flow with Evaporation and Condensation

We consider the Couette flow with evaporation and condensation through the both
interphases at y=0 and y=1 as is illustrated in Fig. 1. The aims are to clarify the
differences of flow profiles between the cases with and without evaporation and
condensation, and to present some numerical examples for the case with the mean
parallel valocity, which have scarcely been presented except a few numerical examples
by Makashev [/3].

In Figs. 17-19, the flow profiles are presented for the case when Kn=0.2, §=0.707,
and T*=0.7. The mass flux »is selected as the flow parameter instead of the parameter
B. Four kinds of mass flux rate (evaporation rate) are taken: 0.0, 0.05, 0.10, 0.15. The
attainable evaporation rate is 1/27'/2 (=0.282). The corresponding values of ff are 0.73
(for m1=0.05), 1.40 (for m=0.10), and 2.33 (for m=0.15).
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FiG. 13. Comparison of temperature profiles for various S, . f=2.0, T =2.3.

The density profiles n( y) are presented in Fig. 17. In the figure, two characteristics are
observed when compared the cases m1>:0 with the case »7=0. One is that the density for
the case of larger mass flux is lower over the whole region than the case with smaller or
zero mass flux. It is due to the lower number density of the saturated vapor at the
condensing surface for the cases of 22 0 in comparison with that when »1=0. The other
characteristic is that the gradients of the profiles near the both boundaries for the cases
m =0.10 are contrary to those for the case m <0.05.

In Fig. 18, the parallel velocity profiles are presented. The parallel velocity for larger
mass flux 1s lower over the whole region than that for smaller or zero mass flux. This
suggests that the influence of the condensing wall with the parallel velocity on the flow
field becomes smaller with increasing the mass flux. In Fig. 19, the temperature profiles
are presented. The temperature decreases monotonically with approaching the condens-
ing surface. It should be noted that with increasing mass flux the variation in
temperature becomes much slower.
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F1G. 17. Comparison of density profiles for Couette flow. Kn=0.2, $=0.707, T*=0.7.
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FiG. 18. Comparison of parallel velocity profiles for Couette flow. Kn=0.2, $=0.707,
T*=0.7.
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