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Abstract: A simple analysis has been carried out to examine acoustic characteristics of
a vaneless diffuser through which incident plane waves propagate and radiate out
circumferentially. This involves the evaluation of the radiation impedance of circum-
ferential openings as well as the longitudinal wave motion in which the sound speed
varies locally. An effect of the through flow deceleration is also examined. The
results are shown in the form of a reflection coefficient which expresses the ratio of the
incident and reflected waves at the diffuser inlet.

1. INTRODUCTION

A particular problem posed in the study of noise generation in axial fan and/or
compressor is that the presence of duct walls and intake bells or outlet diffusers will
influence the spatial distribution of the acoustic energy travelling away from the fan,
so the overall radiated noise levels.

A complete study on that subject has been carried out by Tyler and Sofrin (1962),
Morfey (1964), and several fundamental facts, such as spinning acoustic modes and the
corresponding duct cut-off phenomenon, have been correctly pointed out. In his
paper (1964, 1969) Morfey also calculated the modal acoustic radiation impedance of a
flanged annular opening, the concept of which had been developed by Rayleigh (1945)
and Morse (1948) in the classical acoustic theory. A general analysis for the radiated
noise level dependence upon the rotor speed, including the calculation of the acoustic
impedance of the duct open end, has been done by Kaji and Okazaki (1972) who ob-
tained excellent results based on a simple piston model replacing the actual sound
source.

The cases so far handled are for the annular openings with bafile plates, which there-
fore send sounds more or less axially. In practice we encounter a situation in which
the sounds propagating axially are often bent and radiated out through a diffuser
towards the radial direction. The effects of this will be twofold, since firstly the acoustic
impedance of circumferential openings might be different from that of annular open
ends, and secondly the propagating surface area changes as the sound waves go along
the diffuser passage. Further there is a question of the sound transmission around the
annulus corner bend.

In this paper we therefore examine acoustic characteristics of a vaneless diffuser
through which incident plane waves propagate and radiate out circumferentially. An
effect of the through flow which yields some wave convection will be also examined.
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For the sake of simplicity, the following assumptions are made;

(i) The perturbations are small in amplitude so that the first order approximation
is valid.

(i) A mean flow is present, but its circumferential velocity component is zero;
i. e., no swirling flow is considered.

(iii) The flow is isentropic and the fluid is ideal.

(iv) The area change in the diffuser is only gradual and the wave length is large
compared with the passage height.

The last assumption will be a weak point of the present analysis, since the corner
bend is sometimes sharp enough to invalidate the approximation of quasi-one dimen-
sional flow. The proper handling of this region, however, will involve much numeri-
cal work employing some three dimensional flow calculation methods, which has been
avoided here. The effect of the annular corner bend upon the sound transmission
therefore remains to be solved.

2. FORMULATION

Suppose that the incident sound waves A+ propagate towards the longitudinal direc-
tion along the passage and radiate out through the diffuser into the semi-infinite open
space bounded by a baffle plate. (Fig. 1)

Now the questions are the followings;

(1) How the sound waves propagate through the diffuser?

(il) How much reflection occurs at the diffuser outlet?

(iii) What is the through flow effect on the diffuser acoustic characteristics?

We start from the calculation of radiation impedance at the diffuser outlet.

ﬁ A’ incident waves

baffle plate

Vi heknknd

| outlet
/

FiG. 1. Analysis model
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2. 1. Radiation impedance of radial diffuser outlet
Firstly we remark that the presence of a baffle plate imposes the vanishing normal
velocity there. This condition can be easily satisfied by considering the image of dis-

charging flow against the baffle plate. (Fig. 2)
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FiG. 2. Boundary condition. FiG. 3. A strip of equivalent acoustic source

Therefore we can simplify the problem, so that a strip of the cylindrical boundary
surface (—h=z=<h, r=rj) fluctuates with the particle velocity v, which is symmetrical
against z=0. (Fig. 3)

Here we neglect the uniform discharging flow velocity V..

Equivalent simple source strength ¢ may be expressed as follows, using a vector nota-

tion r for the coordinates (r, 4, z) in the open space;

. 1 . .
q:qE(r)-e“”tEpo-wE(r, 0, z) L c0(r—rg)-e'vt 2.1

The corresponding basic equations valid in the open space are

0p _

’é;—f‘PoV vy=q

ov 1

e ?0,,17 p 2.2)
pP=¢50; cﬁzri%

where
Po» 0o, Co are the pressure, density and sound speed in the uniform open space, while
P, o, v are the respective perturbations.
Equation (2.2) yields the wave equation written as
2
0-p(r, 0, 23 )=— 20, UEA—;% 2z 2.3)

where A is the Laplacian.
This should be solved under the following boundary conditions;

(i) 0dp/dr=0 at r=ry, since the normal velocity at the cylinder surface vanishes.

(ii) p takes the form of outgoing waves as r— co.
The Green function of (2.3) satisfying the boundary conditions can be obtained and the
solution is written as

This document is provided by JAXA.



84 T. Nagashima and Y. Tanida

o(r, 0, z: t)ze“”‘r SMST(—)M  qu(re) G(rlro) - rodrodfodzy 2.4)

—00dJ 0

where all the length parameters are nondimensionalized by the opening radius rz, and

I L . ~ ' ‘R, 0 p— d
G(r/ro)z(Z?) Z e""m(ﬁ_ﬁO)S R):,;g;—[—%gé;; ce~ Vi —k%|z—z| :/_Ju_/i. (2 5)

k=wrz/c,
Ry (ur)=Jn(ur) Na()—J () - Np(ur)

where J,, N, are Bessel and Neumann functions of order m and prime implies the
differentiation with respect to the argument.

m=—oo

In the case of circumferentially uniform discharge,

1
qu(ro)=po-vAz0)- 705(’”0_ 1) (2.6)
and we reduce (2.4) to the following form,
| p(r, z; )= e“"”S 00°Co V20 dzo L(r, z—2¢; k) 2.7
where
_ __ ik (™ Ro(ur)-Ro(#) . e gz)zezy . Md/“
=20 D=\ NG Vs

If v,(z,) is given for 0=z, < h, we write

02)= X, va-c0s ' 205 —h=z=<h 2.9)

n=0

where

h
V= o S ?}T(ZO)'COSﬂZ()'dZO; En=— {2 n#0

2n ), h 1’ n=0

Correspondingly the pressure fluctuation at the diffuser outlet is expressed as a Fourier
cosine series,

p(1,z; )—eot 37 p,-cos oz —h=z<h (2.10)
v=0
Then, (2.7) and (2.9) yield,

Z 00 Co*Vy* ZhS C(1,z—zy; k) -cos 1720 cos h ——z-dzy-dz

iMs 1

00" Co* Vs> Cyn(K) (2.11)

0

The modal radiation impedance may be defined by {,,, since it gives the contribution
of n -mode particle velocity perturbation at the diffuser outlet to v -mode sound pres-
sure level there.

Manipulation shows,
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( )» n, (lu k2) l_e—2hvyz —k?2 d,U«
o o) N an (2.12)
2h —k?
{o k“*(”h”)}{ ()} e
where
1 n=v
Om= {0 n+y

2. 2. Sound propagation through the diffuser

Within the diffuser region it is convenient to take the coordinate & along the passage.
(Fig. 4) The basic equations of mass continuity, momentum and isentropy may be
written as follows;

d
~d%-(R'S W)=0
Do\, 9 p.s.
RS‘D'I< >+85(RSW)
+’;" W(R'S'vo):() (2.13)
aw 1 dP
W’d? TR af
aw op
(R -S*w)+2R-Sw g =—F. P
_po. aw
R R-S- st (2.14) )
b _ 1.1 dp
D= TR a6 (2.15) z
*gu =const F1G. 4. Z-coordinate along diffuser
passage
P
BB o= (2.16)
where

S(€), r(§) are the cross section area and the radius height, respectively. Flow para-
meters are P+p, R+p, (W-+w)e:+v, ey, in which P, R, W are pressure, density and
flow speed of the main stream, while p, p, w, v, are the corresponding perturbations
taking the harmonic wave form of exp (iwt+imf) and e,, e, are the unit vectors towards
&, 0 direction. Thus,

1 o _im D d

= P ‘DT_lw—l—WTE

r o0
Note that the sound speed C depends upon &.
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They can be arranged into more appropriate forms to yield the wave equation, e. g.

(s = oL (- Tt 5y

e )W W c?
(2.17)
AW
2w L
D7 gy sdW W dr dg* | im v,
LE[P]— P e N |+ 72 G 7 (2.18)
iw-+2——
\ dé
0 (im v \_ ¢ .mz.L_{- 1 d LTS
WdE(r W>*7'W r:e P lw_l_r dE(rW)} r W (2.19)
where
_ 1 o 0 1 D* m o [, dW r—3 AW
Le=73p ¢ (Spas>“ ¢ D e <2d€ " d52>
iw+2——
ds
4
R R e At
iw+2——

dé

The solution can be easily recognized for the following extreme cases;
(i) Constant area annular duct, in which S,. P,, R,, W, are all constants and r
means the radial distance up to the mean passage surface. (Fig. 5) (2.18) becomes

[62_1 D _mp
082 ¢ Dtz o | P,

whence

P ; ; 0
P, exp[zwt—{—zm&-}— 1= M3

This is well known as the solution for an annulus duct of high hub/tip ratio. The cut-
off frequency is given by
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Fic. 5. Annular duct of large boss ratio Fig. 6. Coaxial parellel disks
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Y < i;l VI=ME

(i) Coaxial parallel disks, in which no through flow is present. (Fig. 6) & can be
identified as r and S=rzrh. (2.18) yields

1 ag dN o m7lp
|:r 6r<r8r>+ c2 r?‘]PO—O

whence
w
H,‘,}’(—f‘r)
P ~elottimd Co
PO (2) o
H> —r
Co

In the present analysis the attention will be restricted to the problem of circumferentially
uniform cases, so the value of m is chosen to be zero or (0/00)=0, hereafter.
Then (2.15) yields, directly

v o\ 9

r_valezo—exp[—l(ugo W] (2.20)
which shows the conservation of angular momentum.
In the inlet section of the diffuser (6 <0), (2.18) becomes a familiar plane wave equation,
since S,, P,. R,. W, are all constants, i. e.

o1 Dp .
95* & Dirlp,

whence we obtain

e )

‘.E.,: iwt - ; e £ +. —_7 (i)CNJ.A
P, e (A exp[zl_Mo s_+A exp[ 11+M0 q:D

% —eiot. ~T}‘ZD~(—A- -exp [’1(1/16\040 :I+A+ -exp [—i I“J’r/j\;’-[z g]) 2.21)
where M, is the Mach number of the inlet flow and A%, A~ are the amplitude of the
incident and reflected waves, respectively.

On the other hand, the solution of (2.18) will have to be found numerically for the
diffuser section (0=£=</). In general it consists of two oppositely going waves, which
we express as

,f;“:eiwt (B~ -e'* ¢ B* -ei1+'5) (2.22)
where B+, A* are the amplitude and the wave number of corresponding waves and are
functions of such parameters as &, ¢, W, (dW/d§), (d*W[d&?), w.

Then, (2.17) allows us to evaluate w, thereby the acoustic impedance of the propagat-
ing waves. Since the radiation impedance at the diffuser outlet £=/is known, we can
proceed the calculation to obtain the impedance at the diffuser inlet £=0 by firstly
assuming the value of B~ (B* being fixed to be 1.0) and solving (2.18) and (2.17)
employing, for instance, R K G method to check whether the impedance thus calculat-
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ed agrees with the known value at the diffuser outlet.
When the frequency is relatively high and the cross section area varies so that linear
deceleration should hold, we can obtain an approximate solution in a closed analytical

form, e. g.
putting
ng Wi=Wo — W ~s—nl/—°, ¢ deceleration rate (constant)>0 (2.23)
or
WG:W(l—a%>
we have
7—1 2 *1%1‘
D7 S T N
So M 1+7—1M2
2
1 /4
c H—T 2 1M‘2’ M:T
D Mo="C"
Co
T_'l 2
M T e

Relationships (2.24) describe the geometry and flow condition along the diffuser passage.
Now, introducing nondimensional frequency parameter @ by

dw

o=0[ e (2.25)
equations (2.17) and (2.18) yield
w1 y. ¢ . dlp
(0423 [zww—l—(l—M) o ds} 2 (2.26)
W.__
d¢
N Law( rFl 1=M\ d
[(l——Ju)cz'{‘2 @ M- ¢ dé (H— +21@M2>d5
@® (dW 2iN\1. p
v (@) (1-3) 5 @27

Retaining the terms of the highest order of @, WKB method gives the following solu-
tion;
P _ glot {B" exp [—lwaMo S 1 a . dE:l

P 1—M
] (2.29)

¢
+B™* -exp [i@eMo-S
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w —_ﬁeiwt . pae. e fL' Co g
W ‘{ B expl: iweM, Sol M ¢ dE—J
T, | Co :
+. D N dE
+B exp[zwsMo Sol M e dq]} (2.28)

where B* are constants and £=£//.
The solution (2.28) physically indicates that the waves are convected by the local mean
flow stream. We can show that it reduces to the form (2.21) when the main flow
velocity remains to be constant. (¢=0, W= W,#0, §=.5)).

In particular the limiting case of no wind can be considered, in which equation (2.18)
takes a very simple form; i. e.

1o g 81 @ Py
[S (S35 )~ i ar]P =0 e=r g, (2.29)

where W,=0 and P,, R, are constant.
Discussions are focussed on a diffuser having similar geometry. Equation (2.24)
yields the following variation of the cross section area as M(=M,) becomes zero;

| y—1 116 y—1, 17+
LA — o 2 LA, -
s om(T2 MV 147 S
Se T M 1+7’T—1M§ e8| 7 —M2 1+%M2
1
R (2.30)

The apparent deceleration rate ¢, in the case of no through flow is therefore given by
co=1—1/(S:/S0), S:/S, is the diffuser outlet/inlet area ratio.
The solution of (2.29) is obtained, i. e.

S T R R e ] O R (S ) | CE I

which represents the superposition of outgoing and incoming waves. B; are constant
and H{¥, H{®» are Hankel functions of 1st and 2nd kind, order 1. Corresponding
velocity perturbation can be found by (2.17), e. g.

S < B
W= ;” dE PO
whence
-%:7;-(1-—50-5)-{30—- 0 [‘“’/00(1—50 Q)J+B+ Hm[ ‘”’/"0(1—50 5)]}

(2.32)
2. 3. Reflection coefficient

The presence of the diffuser results in a change in the reflected waves or in the acoustic
impedance at the duct opening, as viewed from the otherwise terminated upstream
duct in which the incident waves originate. The reflection coefficient y is defined by
A~ |A* which is equal to B~/B* at the diffuser inlet £=0.
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According to the approximate solutions of (2.28), that can be expressed by

_ Cz——l . . 1 2 Co ->
X= C, 1 exp(zweMo- So—l—Mz - dé
where {; is the radiation impedance at the diffuser outlet £=/, and is given by putting
n=vy=0 in (2.12).

The integral appearing in the argument of the exponent can be performed by substitut-
ing the relationship (2.24), e. g.

_ 2 e gz ‘M‘ 2« df,
(Mo, Ml)=3M0'Sol_M2' c 'dE—SMO'.MOI—Mz. c dM a
l+dM2 71?
g 1M LEM, (1M T2 (2.33)
—_ —_— 2 - '

L—1 o G—1 . T w’] (2.34)

e B R S e R T

In terms of the acoustic impedance at the diffuser inlet £=0, viewed from the upstream
annular duct, we obtain

C — Po/Wo _ 1 . po/Po :1+X
0 .Ro *Co TMO Wo/ Wo l—x

(2.35)

As the deceleration rate ¢ approaches zero, in other words, the diffuser becomes nothing
but the extension of an another annular duct, (2.34) takes the following form,

-1 2 ol
=G~ e | (2.36)

in which £; has been changed into {} i. e. the corresponding radiation impedance of a
flanged duct opening, since the coefficient now applies for obtaining the acoustic impe-
dance in a constant area duct at the station a distance 1 upstream from the opening. In
the limit of no flow, equations (2.31) and (2.32) yield

Hinl:iejoﬂ.‘z_:]_i_i.cl.}[él)[l_fﬂ.ﬂé:l Hiz’[—l—' wl:l

€o Co €o Co
X:—-—- . - (2.37)
1—e wl ) 11— ol 1 wl]
)y - ~v == . . (2)} = 9 7" |y -, "
HY [ 0. & :l—i—z 2, HY [ = co] HY [80 .

In this way, once the radiation impedance {; at the diffuser outlet is known, we can easily
estimate the diffuser effect upon the reflection coefficient.

3. EXAMPLE

A case study has been made on a diffuser having an outlet/inlet area ratio S,/S, of
5.99 and a circumferential opening width/radius ratio 4/rz of 0.1 under the assumption
of linear deceleration.
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The relationship between the inlet and outlet Mach number and the deceleration rate
¢ are given in Fig. 7. The value of ¢ is close to that of the apparent deceleration rate
¢ for a wide range of M,. The corresponding = function of equation (2.33) is shown
in Fig. 8. Fig. 9 compares the impedance of an incident plane wave as radiated from
the diffuser outlet with that for a flanged duct opening. The corresponding radius a
of the latter may be obtained by equating the radiation area at both types of opening,

e g.

S)=2rnrp-h=na> or alrp=+2hjrg 3.1
Morse (1948) gives the formula to calculate the impedance of such a duct opening,
. % /2
C;*‘zl——%%k—)*-i—i-%-g sin (k*-cos ¢)-sin®* ¢ -d¢ 3.2)
7 0
where
wrg 2a

k*=2wajc, =22
¢t Ig
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In can be noticed from the figure that the present diffuser is a less efficient radiator than

the corresponding flanged duct.

In the calculation of the radiation impedance
the presence of the main through flow has
been neglected. When this is the case, the
reflection coefficient x for the plane waves is
calculated according to equation (2.37). Fig.
10 shows the result of the calculation for /=
rz. The result given by equation (2.36) for a
constant area duct is also shown in the figure.

The corresponding acoustic impedance at
the diffuser inlet is calculated from equation
(2.35) and is shown in Fig. 11. Comparison
shows that resonance peaks are much more
marked for the diffuser and shifted to the
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higher frequencies.

In the present analysis the through flow effect appears only in the wave propagation
within the diffuser passage. This can be allowed, since the outlet Mach number be-
comes very low due to the deceleration. Along the passage the main flow is decelerated,
which causes the change in the wave convection. z function (2.33) includes this effect.
The solution (2.34) yields the shift in the phase, but not in the modulus, of the reflec-
tion coefficient. Figure 12 compares the modulus of the solution (2.34) with that of
the exact limiting solution of no wind (2.37). We remind that the present approxi-
mation is valid for relatively high frequencies. The figure indicates at high frequencies
the larger coefficient values in the presence of a through flow. Further comparison
between (2.34) and (2.37) shows that the phase of the coefficient is less affected in a dif-
fuser than in a duct of constant cross section by a change of the inlet Mach number,
because of the large deceleration in the passage.

4. CONCLUSION

Quasiplane wave propagation within the diffuser passage and the reflection at the
outlet opening have been examined in detail based upon a simple one-dimensional
analysis. A case study for a proposed diffuser which has an outlet/inlet area ratio
5.99 and an outlet opening width/radius ratio 0.1 showed that the wave reflection, thus
the longitudinal resonance peaks built up within the diffuser passage is more marked
than that of the corresponding flanged duct. The presence of a through flow causes
wave convection, and hence a change in the wave pitch. Compared with that of a duct
of constant cross section, the acoustic impedance of a diffuser will be less affected by a
change of the inlet Mach number, because of the large deceleration in the passage. The
results are available in terms of a reflection coefficient which expresses the ratio between
the incident and reflected waves at the diffuser inlet.

Department of Propulsion

Institute of Space and Aeronautical Science
University of Tokyo

November 20, 1979
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NOTATION

amplitude of waves

radius of circular duct opening
sound speed

unit vectors of (&, ) coordinates
Green function of equation 2.3
circumferential opening width

H{P, H{® Hankel function of 1st and 2nd kind, order m

]
Jy
k

&
*

‘l\xqw’?gsgx.
N

e~ ~
ST
<
3

m\(QS
<

o
<

R vy B N QD e

g R 1

151

imaginary unit

Bessel function of 1st order

wave number factor of diffuser opening wrz/c;
wave number factor of duct opening 2wa/c;
diffuser length

Mach number W/c

circumferential mode order

transverse mode order

Neumann function of 1st order

pressure of the main flow and its perturbation
simple acoustic source strength

density of the main flow

radius (function of &)

vector representation of coordinate (r, 6, z)
radial distance of diffuser outlet

function defined by equation 2.5

cross section area of diffuser passage

time

perturbation velocity

radial discharge velocity and its perturbation
velocity perturbation in the ¢ direction
velocity of the main flow and its perturbation
ratio of specific heats

deceleration rate (equation 2.23)

deceleration rate of no wind limit

radiation impedance

circumferential coordinate

wave number in the & direction

transverse mode order

londitudinal coordinate along diffuser passage
nondimensionalised & coordinate £//

density perturbation

function defined by equation 2.33

reflection coefficient

radian frequency

nondimensionalised radian frequency w/(dW/d¢&)

Superscript

+

*

Subscript

0
/

n

incident or transmitted wave
reflected wave
related to cylindrical duct opening

inlet (¢=0) or free space condition
outlet (¢=1)
transverse mode order
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3 transverse mode order
Operator
D 9 a
or = T
_ 1 92
O=A '2_;2 o
A the Laplacian
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