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Acoustic Radiation of Inlet-Turbulence/Rotor Interaction
in Free and Ducted Spaces
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Summary: The far-field acoustic radiation caused by the inlet-turbulence/fan-rotor inter-
action in free and ducted spaces is studied theoretically. Incompressible, two-dimensional
unsteady thin-airfoil theory is combined with an acoustic radiation model of concentrated
point dipoles. The effect of duct termination is neglected. The far-field power spectral
density of the associated sound is largely affected by the nature of the incoming turbulence.
The effects of the turbulence scale, rotor speed, duct length and the mean flow upon the
frequency spectrum and directivity are investigated in both cases of free-space and ducted-
space in which “cut-off” and “cut-on” modes have coupled contributions to the radiation
field.
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m mode amplitude coefficient
speed of sound

position vector of v-th dipole
blade number

Wl S x

[1]

This document is provided by JAXA.



o O

SRS QS Ty

N

S

3 ]

&

Wl T vl

o~

12
3
3

" 8 g

S. Kotake

blade span

blade chord

ensemble average

Fourier transform ot

force per unit volume f

Fourier transform of g

Green’s function

Bessel function of first kind

acoustic wave number, w/a, (kR)

mode cross-section wave number
concentrated lift force

axial turbulence scale (% ,/R)

duct length (//R)

flow Mach number, U/a

circumferential and radial mode numbers
Fourier transform of p

acoustic pressure

duct radius

effective radial position of point dipole (R,/R)
power spectral density of acoustic pressure
nondimensionalized S,, Eq. (57)

power spectral density of Sears function
power spectral density of fluctuating lift
defined in Table 1

time

velocity of mean flow

flow velocity relative to rotor, Eq. (45)
turbulent velocity

position vector of observer (x|, @, @)
Catesian coordinates (x along rotor axis)
cylindrical coordinates

blade angle

—VT—M°

specific acoustic admittance of duct wall
defined by Eq. (14)

Dirac delta function

mode axial wave number, defined in Table 1
density

azimuth angle between observer and rotor-axis
angular velocity of rotor (2R/a)

circular frequency (wR/a)

reduced frequency, wc/V
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Acoustic Radiation of Turbulence/Rotor Interaction 3

Superscripts

* complex conjugate

(D) ducted-space case

(F) free-space case

Subscripts

0 acoustic source

X axial component

0 circumferential component
y y-th blade

NoTE:

Dimensionless quantities are denoted in ().

1. INTRODUCTION

Since the problem caused by compressor and fan has become severe with the in-
troduction of high bypass ratio fan-jet engines, theoretical studies for the noise predic-
tion and control have already accomplished with promissing results. The associated
noise is however the product of a long chain of cause and effect, which is under the
influence of a large number of parameters such as geometric configuration of blade
and duct, aerodynamic characteristics of blade, flow fields in and out of the duct,
acoustic characteristics of duct walls, and so on. It is extremely difficult to predict
the contribution of each parameter to the acoustic radiation field in consideration of
all these parameters.

Fluctuating lift forces on the blades caused by stationary distortion or turbulence
of incoming flows have a considerable effect upon the associated sound generation
because they can radiate appreciable acoustic energy compared with steady forces ex-
cept for fans with a high tip speed. The mechanisms by which inlet turbulence might
produce noise are well-understood. The non-uniformity in space and time of velocity
associated with the convected turbulence produces non-stationary fluctuations of forces
on a blade leading to acoustic radiation.

The effects of the unsteady force or mass distrubtions on blades caused by stationary
distortion of incoming flows have considerably studied in both cases of free-field and
ducted fans, since they have high radiation efficiency to produce strong tones at shaft
rotational frequency due to the characteristics of their large spatial coherence. In
practice, however, even with elaborate inlet ducting, there are additional and inevitable
turbulent velocity fluctuations which may be still important sound-generating sources.

Mani [/] studied analytically the problem of sound generation due to free stream
turbulence incident on a two-dimensional rotor or stator row, assuming turbulence to
be homogeneous, isotropic and stationary. Chandrashekhara [2] made a theoretical
and experimental study of estimating the sound radiated by fluctuating forces on blades
of a fan in free-space due to inlet turbulence which was characterized by detailed flow
measurements. Hanson [3] studied the acoustic radiation of fans in free-space due
to inflow turbulence which was not necessarily homogeneous and isotropic, using
random pulse modulation theory. Amiet [4] showed a theoretical expression for
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4 S. Kotake

the far-field acoustic power spectral density produced by an airfoil in a subsonic tur-
bulent flow with a good agreement with experimental measurements available in the
liturature.

The problem of noise generated by a fan operating in some kind of duct is of most
commly encountered types. The presence of duct system, reflecting and/or absorbing
surfaces, affects and modifies considerably the near and far fields of associated sound
radiation. In this cases, the radiation from each blade combines to make acoustic
modes in the duct, propagates through the duct with the efficiency of each mode, and
radiates from the duct ends into the free-field. At the duct end, some degrees of cou-
pling modes with reflection back up the duct must be taken into account, although
modes excited well above their cut-off frequency tend to be less coupled with other
modes. On this respect, detailed studies of the sound field both inside and outside a
duct of semi-infinite or finite length have been done by many investigators [5, 6].
Although the coupling of modes at the duct ends is substantial for the real problems of
sound radiation caused by fans and compressors, the assumption of no mode-coupling
at the duct ends leads to a very appreciable gain in computational simplicity with
fruitfull results. It can split a lengthy calculation dependent upon the conditions both
inside and outside the duct into two independent serial calculations and help on un-
derstanding of a basic aspect of sound radiation problem.

The prediction of the acoustic modes in duct caused by inlet-turbulence and rotor
interaction further requires the statistical knowledge of inlet-turbulence and the un-
steady lift response of blade to the incident velocity field. The turbulence properties
of incoming flows usually encountered are closely approximated by an isotropic homo-
geneous turbulence model. The most widely used models of isotropic turbulence are
the Kdrman and the Liepmann models. On the other hand, the most usefull theo-
retical method of estimating aerodynamic lift in unsteady incompressible flow is the
K4rman-Sears theory for the lift of an infinite single airfoil due to convected sinusoidal
gusts, which can be applied directly to blade operating in two-dimensional incompres-
sible incident turbulent flows. To use this simple relation for the case of blade rotat-
ing in a duct, many factors remain to be unknown such as spanwise variation in the
upwash field, the three-dimensional effect of the finite span of blade, the effect of com-
pressibility, etc. Although there are extended theories to include these effects, as far
as sound radiation is concerned, this incompressible two-dimensional thin airfoil theory
has the advantage of a very simple closed form expression of lift response and may be
most effective in the range of acoustic wave length larger than the blade chord and
smaller than the blade span.

In the present study, the incompressible two-dimensional unsteady air-foil theory is
combined with an acoustic radiation model in which each blade is regarded as an
equivalent point force, and the propagating modes in the duct are linked to the far
field radiation from an open end of the duct without any coupling between modes.
The far fields of acoustic radiation caused by the inlet-turbulence and fan-rotor in-
teraction are investigated theoretically.
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Acoustic Radiation of Turbulence/Rotor Interaction 5

2. FARrR-FIELD AcousTic RADIATION BY RANDOM ROTOR-BLADE LOADING
IN CIRCULAR Duct

2.1 Sound Pressure in an Infinite Cylindrical Duct

Let x denote the coordinate along the duct axis, and r, § denote cross-section posi-
tion coordinates as shown in Fig. 1. The wave equation for the acoustic pressure p
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Fic. 1. Coordinate system of a rotor in ducted and free spaces.
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6 S. Kotake

in a uniform acoustic medium with uniform mean flow U and acted by a distribution
of dipole force fis given by

Pip(r, )= (= U ) Pl ) =P £ (1, ) (1)

where I and F? in the cylindrical coordinates r(x, r, §) are respectively

V:( 0 0 _1_ 0 )

ox’ or r 86
0* 0° 1 o |

V= _ .
ox? * or? T r or T r:  06*

The acoustic particle velocity is related to the acoustic pressure by the equation of
motion

3 a>
9y 9 \p=—pp, 2
p(at ax /)’ P (2)

where p is the mean density of the medium. For a duct wall having the radius R and
the specific acoustic admittance §,,(=pav,/p) at r=R, the boundary condition of Eq.
(1) is thus given by

[ e (gt Jpen| =[50 (3)

By assuming the existence of following Fourier transforms of p(r,t) and f(r,?)
(See NOTE)

P(r,0)=—1 J " p(r, ettt (4)
2z J-w
F(r,w)=_1_ J T f, e dr (5)
27 J-w
Egs. (1) and (3) can be rewritten in the Fourier time-transform as
2
7P (r, w)— (ik~M_aa_) P(r,0)=V - F(r, ») (6)
x
[5w(ik—Mi)P(r, a))] —— [LJ @, ‘“)] (7)
ox r=R or r=R

NOTE: For mathematical strictness, a stochastic Fourier-Stieltjes integral of type
p(r, t)=j- dP(r, w)etvt

should be used. As far as concerned with statistical quantities such as correlation or expected
values, however, both methods yield the same result provided the statistical orthogonality
condition can be assumed

dP(0)-dP*(0')=6(0’'— w)PP(@)dwdw.
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Acoustic Radiation of Turbulence/Rotor Interaction 7

where

To solve Egs. (1) and (3), or (6) and (7), it is convenient to introduce the concept
of Green’s function g(r, t; r,, t,) Which is defined as a solution of the same wave equa-
tion as Eq. (1) having an acoustic source of Dirac delta unit strength at (#,, 7,)

S (8 8\,
g(ratarmto)— _U g(r:vtarOatO)
a* \ ot o0x
= —8(r—r)o(t—1t,) (8)

where
3 — 1) = L 6(x — x)3(r — r,)3(0—6),
r

and satisfies the same boundary condition as Eq. (3)

[%‘;(;Q“ — U_i> g(r, t; r,, to)] = — [airg(r, L r, fo)]r . (9)

at ax r=R =R
Since the time dependence of the Green’s function is in the form of (r—zt,)

g(r,t;rm tO):g(r;ro’ t_to)’

the following Fourier time-transform of the Green’s function corresponding to Eq.
(4) can be defined.

Gr; r, w):-.l_f’ g(r:ro, T)e-edr. (10)
27 J -
The Fourier time-transforms of Eqs. (8) and (9) are then, respectively,

P2G(r; 1,y co)—(z‘k—Mai>G(r; foy @)= — 3(r—r,) (1)
[5w<ik— M—a-a;>G(r; - “’)]T:R: ~ [Bar Gr: 1, “’)LR (12)

of which the solution can be given by a series of Bessel functions as follows (Appendix
A)

1 2 = 1

G(l‘; rO’ a)) - *112;}37 ; Z:(:)_——Jm(km nro)Jm(kmnr)
-exp {—im(0 —0,) — ik, (x —x,)} (13)

where J,, is the Bessel function of the first kind of m-th order, s, and «,,, are func-
tions of M, k and k,,,, defined in Table 1,

This document is provided by JAXA.



8 S. Kotake

TABLE 1. &p, and sn,,

Emn xX—xq>0 x—x9<0
i<k (5 )) i)
kmn > K13 B (e 1—p( e y) 0
Bl > K] S M= K, =) 0
Smn xX—x¢<0
2 kmn 2
(1> ko W i-p( )
Blimn> K| LMV PRk p=v T
(1. m dal,.(r) }2
Am,,_(l e )an(ka)Jr{___dr L (14)

and k,,, are the eigen values which satisfy

1ol kM = — [ #=O] as)

As the usual way, substracting Eq. (11) multiplied by P(r, w) from Eq. (6) multiplied
by G(r, w; ry, w,) and integrating over the entire volume enclosed by the duct walls with
interchanging r and r, and using Eqgs. (7) and (12) and the relation of the same x-de-
pendence of G(r; r,, w) and P(r, ), one obtains

P(r, w)sz(ro, 0)-V,G(r; 1y, 0)dF,. (16)
Substituting Eq. (13) into Eq. (16) yields

P(r,w)=

1 ©e 1
—J k s
i2z R® m;oo/,;) A m( m"r) exp{ l(mﬁ_'_lcmnx)}

mn-mn

. IF(ro, ) Vo[ (ko 11) €Xp {{(mOy+ &, %)} 1d . a7

The acoustic source of a B-bladed rotor is now modelled by B point dipoles rotating
at a constant angular velocity £ around the x-axis in a plane x,=O0 at an effective
radius r,= R,, having the strength f,(¢,) for the y-th dipole whose position is

a»(to)':(OaRe"Qto—l_ﬁv) DIO: 15" aB_l (18)

where 6, is the angular position of the y-th blade at 7,=0. This approximation of
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Acoustic Radiation of Turbulence/Rotor Interaction 9

point dipole sources would be acceptable if the physical dimensinn of the source in
question were of the order less than the wave length of the sound generated. The
dipole strength distribution of the y-th blade is then

Lo, 1) =£(1.)5{r —a,(t,)} = £.(2,)3(x,)5(r, — R ,)6(6, — L2t —6,) rl (19)
and the overall dipole strength is
F(r, w)_— C S s —a i) ods, (20)

—o0 y=0

The force f,(#,) can be decomposed into axial, radial and circumferential components,
(fevs frs fo,)-  From a practical point of view, the radical component may be neglected
in comparison with other two components to result in

1 o
F(r,, (”)_Z i Z {12(2), 0, £5.(2))} - 6{ry —a (1)}e*""od,. 21
Using Eq. (21) in Eq. (17), one obtains the sound pressure spectrum as
1 2 AL 1 .
Pry, w)=—— — - J.(k,r)exp{—i(mb+k,,x
(o 0)= (5 i 2 T3 Tulbar) exp (im0, )

”:) {xmf;,,(to)+ ’::

or in terms of the Fourier time-transform of force components as

ﬂy(t)}Jm(km nro)g{ro —a»(to) cXp {i(mﬁo +EnnXo _U)to)}dtodro

1
27R?

-{/c 0 —m)+

B-1 1

DI ID IR AN S

Plr,w)=

Fh(m m.Q)}exp{—zm(ﬁ 0)—ir,.x}  (22)
where

F,(o—m)= L‘r fo(t))e e mDiogy

3)
Fylo— mm—*j Folt e~ o= miedy,.

From Eq. (22), it is easily seen that the associated spectrum has, in principle, har-
monics of the rotating speed of rotor, being affected by many modal contributions.
The contribution from axial fluctuating force is modified by a factor of mode axial
wave number, «,,,, whereas the circumferenctial force has a multiplication factor m.

2.2 Far-Field Radiation of Sound Pressure from the Open End of Duct

As mentioned in Introduction, the acoustic modes from within the duct are assumed
not to be coupled with each other at duct terminations due to reflection, and hence
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10 S. Kotake

the acoustic field at the duct exit explicitly determines its far-field radiation from the
open end of the duct. The axial particle velocity for an infinite duct then acts as the
normal velocity imparted to the exterior medium. The far-field spectrum of acoustic
radiation from the open end of the duct can thus be estimated by using the Green’s
function for an infinite medium which has no boundaries in it except a simple monopole
distribution in the duct exit plane.

If V (r,w) denotes the distribution of the frequency spectrum of axial particle
velocity at the duct exit, the distribution of the strength of monopoles at the duct is
given by pV,(r, w)rdrdf, and the resulting sound pressure spectrum at the far-field
point x can be expressed as

R M2xn
P(x, @:L L Gy(x; 7, w)iwpV (r, w)rdrds, (24)

where G(x; r, w) is the Green’s function for an infinite medium given by

e~iks

Gx;r,w)=
( ®) 4z S

(25)

where S is the distance between points x and r, expressed in a spherical coordinates
x(x|, 0, @) and #(0, r, 6) as

S={x[?—2r|x|sin @ cos (O — )+ r*}'/2

In the far field ((x|>r) the following approximation can be made

-tk | x|

7eikrsind)cos(6—0). (26)
4r x|

G(x;r,w)=

The frequency spectrum of axial particle velocity at the duct exit is obtainable with
equation of motion in the x-direction, Eq. (2),

__0P(r,w) '

. 3
k—Mw) V.(r, )=
P (’ o) V@) ox

Since P(r, w) and V,(r, w) have the same x-dependence in the form of exp (—ik,,X),
the above equation gives

Vx s == - Emn P s s
O O= ety

and the velocity spectrum at the duct exit x= +/is

1 & & p 7. (k. R)
Vx , — mn m mntte e::xmnl
(r w) 2r R m:Z_:ng(:),,:o ap(k_i"xmnM) Amnsmn
AbnnFo w0 —m @+ Fo(0—m@) [ Jure . (27)

€

Substituting Egs. (26) and (27) into Eq. (24) yields
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o c B-—1 7
P(x. )= D 1 Rkn, In(KnaRe)
4 ! =—oon=0v=0 27Z'RZ k’*]_lcmnM Amnsmw

.e?ixrnnl{xmanv(w_m‘Q)+ Zl F,(0—mQ)

e

: jR Jzn rd (k1) €Xp { —im(6 —6,) + ikr sin @ cos (0 —O)}dodr,  (28)
0Jo

where exp (Fik,,,/) means that the left hand side of equation consists of a linear
summation of the terms at x=/ and x= —/. If M=0, it implies 2 exp (—ik,,[).
With the relations

f” exp {ia cos (0 — @) — im(0 — O)}d =2z J ()

JR 7, (eer )T, (Br)dr — (;5 BRI (PR~ (@RI (GR) (a )

2

Eqg. (28) can be rewritten as

iklimn e:ixmnle—im(e—ﬂu—z/Z)

1
4r|x| Wi R kAt hpaM Ay Spu(Ki,— Kk sin® @)

: {xmnmw —m@Q)+ P Fy(w— mQ)}Jm(ka»
Ak sin @J,,(kp, . R, (KR sin @) — k(K R (KR SN D)} (29)

or in a reduced form as

P(x,0)= 3] B}il {Fol0 —mQ)Pi7(x, o)+ Fp (0 —mQ)Piri(x, w)}  (30)

m=—0 y=

where

P, @)= 2, ko Prina(x, ©)
=

Q

PO(x, 0)=>" 1’? P2)(x, o)

n=0

e—ik |x] 1 lklfmn e?i:mnle—im(e—h—z/m
4z|x| R ktrn,M Ay, .k, —K sin® )
Aksin@J, (k, R, _(kRsin®)—k,, . J, (k,,R)J, (kR sinD)}.

P(D)(x: (1)) = Jm(lcm nRe)

mny

The time-averaged power spectral density of sound pressure can be defined as the
ensemble average of P(x, w)P*(x, )

S,(x, )= E{P(x, ®)P*(x, »)} 31)

where superscript * means the complex conjugate. By Eq. (30), one obtains the power
spectral density
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12 S. Kotake

St a)= 3 3 5 [E{F.(0—mQFL 0 —m)}PE(x, 0)PE(x, )

m=—o0 y=0y/=
+ E{F, (0 —mQ)F (0 —m} P2 (%, 0)Pi7)i(x, )
+ E{F;(0 —mQ)F% (0 —mD} P (x, o) P75 (x, o)
+ E{F, (@ —mQ)Fj (0 —m} P (x, o) P (x, 0)].  (32)

The 6,-dependence of P(2) and P(2) is in the form of exp (—iméd,). The y-th §-
position of equally-spaced blades is given by

6,=2ry/B.

If the turbulent blade loading is not completely correlated for different blades, as for
the case of circumferential small-scale turbulence or large-scale fan, the summations
with respect to v and v/ can be reduced to

B-1B-1 B-1
2 E{F,- F3YPD P05y =5 E{F,- F}}PD PD*.
v=0

v=0 /=0

Further, when the blade has the same turbulent loading,
B-1
E{F,- FX¥}PPPD*=B- E{F- F¥*} PP PP*,
> E(F,-Fr) (F-F*)
The power spectrum is then expressed as

Sy(x,0)=B 3 [E{F.(0—m2)F*(w—mD}PL(x, 0)PL*(x, w)

(non-correlated) m=— o
+ E{F (0 —mQ)F*(0 —m} P2 (x, w)PS7) (X, w)
+ E{F)(0 —mDF (0 —mD} P2 (x, m) P *(x, o)
+ E{F)(0 —mQ)F (0 —m} P (x, o) P2 *(x, »)], (33)

where
PR)(x, 0)= 3 knPi0) (X, )
n=0

PO (x, )= %m«x, )
n=0 e

1 kkpn evtmel  J o (Kmn R (K R)
dr|x| R k+kp M A, oSpn k%,—k*sin> @

——iﬁw(k—{—/cmnM))Jm(kR sin @)}

P2(x, )=

: {k sin@-J,_(ksin cb)—(i
R
where Eq. (15) is used for J,, _,(k,, . R).
If the turbulent blade loading is uniformly correlated, as the case of the turbulence
with large scale in the #-direction or small scale fans, by using the rlation

BZ—JI o 1 m=nB (n: integer)
ety = n: integer
=0 0 m=+nB &
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the v and v summations of Eq. (32) can be reduced to

- - B-1 B-1"
Z Z E{FFJYPD P = E{FF*} 3, P >0 P0*
=0 v/=1 v=0 v/ =0
— B®. E{FF*}PD’P’*.

The power spectrum in this case is then given by

o

Sy(x,0)=B* > [E{F.(0 —mBQ)F}(w—mBR2)P") s(x, ®)P2)%(x, w)

(correlated) m=—oo
+ E{F (0 —mBQ)F (0o —mBR)P") o(x, w)PiL)E(x, w)
+ E{F (0 —mBQ)F} (o —mBQ)P ") 5(x, 0) P2 ¥ (x, w)
+ E{F(0 —mBQF (0 —mB2)P;7) y(x, 0)Pi 35 (x, )] (34

The power spectral density for circumferentially non-correlated turbulence has
harmonics of the rotating frequency of rotor, m2. In the case of correlated turbulence
onto equally-spaced blades, these harmonics between blade-pass frequencies are to be
canceled out each other, remaining only harmonics of blade-pass frequences.

3. FAR-FIELD AcousTtic RADIATION BY RANDOM ROTOR-BLADE
LoADING IN FREE SPACE

To examine the features of the acoustic radiation caused by inlet-turbulence/rotor
interaction in ducted space, it is convenient to deal with the same problem of fans
operating in free space in the same way as used in the ducted case. With the model
of rotating point dipole, the frequency spectrum of sound pressure by B-bladed rotor
sources is given by Eq. (16) with the Green’s function for an infinite medium Eq. (25),

P(x, 0)= j F(ry ,0)VoG(x; 1o, w)dr, (35)
where
-1kSo
G(x;r, w)= €
(wsr )= o

The distance between points x and #, is in the cylindrical ccordinates
So={(x— x4 r*+ri—2rr,cos (O —0,)}'>.

The frequency spectrum of dipole strength can be given by Eq. (21)

F(r,, 0))4—‘ Z {£:.(2),0 Jao ()} 5{"0 a,(t)}te”rodt,

—oo p=1

where

5{ro—ay(1)} = 6(x0)d(ry— R,)3(0 — Q1 —0,) L.

ry
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14 S. Kotake

The frequency spectrum of far-field acoustic radiation from a B-bladed rotor in free-
space is then given by

P( ) 1 o B-1 'k 1 e—ikS
. e 1l _—
o 27 J - uZ::O ( + S) 4z S

X r F —iwto
-{gfr,(mEsm(@—ﬂro—avm,(to)}e dt, (36)

where

S={x*4r*++ R2—2rR, cos (9 — 2t,—0,)}
={x*—2]|x| R, sin @ cos (6 — 2t,—6,)+ R}/

By taking the far-field approximation
ik+ i ~ik
S

e k8 p-tklxl
—~ plkResin @ cos (6—-02t—06y)
~ e ,

S | x|

Eq. (36) can be rewritten as

B-1

P(x, w)= Z il 1% 1% gik Be sin 0 cos (§- 0t—0y)

87r|x|

. Jw {f2.(8,) cos D +f,,(t,) sin @ sin (O — 21, —0,)} e~ *“"°dlt,. 36y
Further, by using the relations

eiacosﬁ — i Jm(a)eim(ﬁ+7r/2)

m=— oo

Sinﬁeiacosﬂz Z“:' —m J, (c)eim 3=/,
(44

m=—oo

Eq. (36) is reduced to

e tixl = R —im(—6y—x/2)
P(x, w)= an x| Z Zz)zke v

J, (kR, sin @){cos 0-Fo(w—mQ)+- " Foo —mQ)}, (37)

€

where F, (0 —mQQ) and F, (0 —mQ) are defined by Eq. (23). The similar expression
of Eq. (37) as that of Eq. (30) is then

P(x,0)= 3, Z{va(w mQAPL(x, 0)+ Fp (0 —mQ)P(x, w)},  (38)

m=-—oo v=0

where
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Pg(x, @)=cos @ P D (x, »)

P (x, w)= klR - PE(x, w)

gmy
e

-tk |x|
PE(x,0)="C ke *©-0-2 . J (KR, sin D).
4z |x|

The power spectral density of the sound pressure is thus given by

S )= 3 53 [E{F.(0—mQ)F o —mQ)} PE(x, 0)PEH(x, o)

m=—co v=0 /=0

+ E{F.(0 —mQ)FF (0 —mO)} P (x, )PS5 (x, o)

+ E{F, (0 —mQ)FE (0 —mQ} P (x, 0)PF (x, »)

+ E{F, (0 —mQ)F 0 —mQ)} Py (x, )Py (x, w)]. (39

Since the §,-dependence of P{5) and PJ%) is also in the form of exp (—im@)), the

xrmy

power spectram can be expressed for circumferentially non-correlated and correlated
turbulent blade-loadings of equally-spaced blades, respectively,

Sy(x, ) =B 3] [E{F.(0—mQF(0—m)}PL(x, 0)PLE*x, 0)

(non-corrclated) m=—
+ E{F (0 —mQ)Ff (0 —mQ)} P (x, 0)Pi0*(x, )
+ E{F)(0 —mDF (0 —m}P7)(x, o) P *(x, 0)
+ E{Fy(0 —mQ)Ff (@ —mD} P (x, 0)P;7)*(x, )] (40)

S,(x, 0)=B* 3 [E{F.(0—mBQ)F¥*w—mB2)}PE (x, w)PEIi(x, w)

(correlated) m=—co

+ E{F.(0 —mBF (0 —mBD} P 5(x, 0) P H(x, 0)
+ E{F (0 —mBQ)F (0 —mBQ} P 5(x, 0) P75(x, )
+ E{Fy(w —mBQF (0 —mB} P, o(x, o) Pi5(x, 0)] (41)

where

P (x, w)=cos P (x, w)

xrm

PE(x, 0)= "1 PO(x, 0
om )kR (x, )

€

1
4z |x

PP (x,w)= kJ,(kR, sin @).
1

The axial fluctuation component has the factor, cos @ (cf. «,,,, for the ducted-space),
whereas the circumferential component has the same factor as for the ducted-space.
The latter causes the directivity pattern consisting of m-lobes which is zero at @ =0.
The former has the directivity of cos @- Jy(kR, sin @), which means more radiation
toward the axial direction. The additive and subtractive effect of these features leads
to a flat, slightly asymmetric, overall directivity pattern.
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16 S. Kotake

4. INLET-TURBULENCE AND RANDOM ROTOR-BLADE LOADING

The inlet-turbulence is assumed to be statistically uniform over the entire rotor
and convected in the axial direction by a uniform speed U. One of the most simple
and useful models of atmospheric turbulence is the von Kidrman model (Ref. 7).
For axial and vertical components of turbulence, this model here applied results in
the following spectral densities (Ref. 7)

E(Vu(k)V, (k)= ﬁifx{l (P k)

E{V,(k)V (k)} = ‘7—3"—%-{ 1+ %(cogku)Q}{l (e, L k)1
E{V,(k,)V (k,)}=0

where c,=8.41, U} and ¥, are the axial and vertical turbulence intensities, respectively,
%, the axial integral scale of turbulence, and k, the axial wave number component.
Since the turbulence is assumed to be convected in statistically frozen state at U, the
axial wave number component k, is related to the frequency w by k,=w/U. The
power spectral density of inlet-turbulence in w can then be given by

E(V,(0)V ()} = %&{1 + % (ﬁ%_w)z}{l + ("°—°gf—w>2}_ Y@

E{V.(0)V, ()} =0.

The blade row is represented by a two-dimensional cascade of thin airfoils at a
radius R,. The blade deflection through the airfoil is assumed small, and the effects
of compressibility of flow, the finite span of blade and all interference from neibour-
ing blades are neglected. In such a case, the theory of Kemp and Sears (Ref. 8)
gives the fluctuating response of the airfoil to the turbulent upwash component v,,.
By this theory, the frequency spectrum of the random lift is

L(w)=zpchV-S(@)- V. (@), 43)

where ¢ is the blade chord, b the span, S(@) the Sears’ function, @ the reduced fre-
quency

cw
= . 44
B=>r (44)

V the steady relative flow velocity for a standing blade,
V={U*+(R.2)}", (45)

and V,(@) the frequency spectrum of turbulence velocity normal to ¥ (Fig. 2).

This document is provided by JAXA.



Acoustic Radiation of Turbulence/Rotor Interaction 17

Ux

ZERO LIFT LINE

V={U2+ (QR.— Vy)*}/?

Un=70zcosa — Uysina

(Fr, Fy) = —L=(Lcosa. —Lsina)

Fi1G. 2. Two dimensional airfoil in a uniform turbulent flow.

The lift response function S(@) is given by
S(@)=[ia{K(i®)+ K (i®)}]"! (46)

where K is the modified Bessel function of the second kind. This particular form
for S(@) was given by Kemp (Ref. 9), and can be applied to the rotor blading pro-
vided there is a reasonable circumferential separation (Ref. 8). By the relation of
Bessel functions

Kio)= — _’?f_ i{lJ(@)—iY (@)}
K (im)=— %{Jl(@) —iY,(@)},
the response function is written as
S@=("%2) Vi@~ Y@ —i{ Y@+ @} @)
of which the power spectral density is then
S.(@) = E{S@)S*@)} — (”T‘T’> “H@) — Y@+ (Y@ + L@ (48)

When the axial and azimuthal components of turbulence velocity are denoted by
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18 S. Kotake

v, and v,, respectively, V, () is then written as
Vi(w)=V (w)cosa—V, ()sina, (49)
where « is the angle of zero lift line from the rotating plane (Fig. 2) and
VI(Q)):LJ‘OO vI(I)e—iwtdt
27 J-=

{ (= (50)
V(o) :—2;1_00 v, (e *dt.

By neglecting drag force component, the force acting onto the medium is
(— L cosa, 0, L sin«) and hence the frequency spectra of random blade loading are

F (w)= —L(w)cosa

F(0)=L(w)sina, (51)

which give

E{F (0)F}(0)} = E{L(w)L*(®)} cos’
E{F (0)F}(0)}=E{F)(0)F}(0)} = — E{L(0)L*(»)} sina cos & (52)
E{F)(o)F}(0)} =E{L(w)L*(w)} sin’ .

The power spectral density of random lift force is obtainable from Egs. (43) and (49)

E{L(0)L*()} = (mpch VY [E{V (0)V*(w)} cos’ a
_[E{VA0)Vw)} + E{V,(0)VFw)}] sin & cos o
+E{V (0)VFw)} sin® a]S,(@). (53)

Substituting Eq. (42) into (53) yields
S (w)=E{L(0)L*(w)}

"(npcbV)Se(w)[ 02 {1 +< 0L w)z}_m cos®
@

U U
Q{ 8( &,
1 0
+ +

JJos( ) ]

5. FREQUENCY SPECTRA OF ACOUSTIC RADIATION

With the random blade loading given by Eqs. (52) and (54), the frequency spectra
of acoustic radiation associated with inlet-turbulence/rotor interaction are expressed
with Egs. (33), (34), (40) and (41) as follows;

Ducted space

SP(x,w)=B 3 S, (w—mQ)

(non-correlated) m= —oco

= m
>l kpn COS— R

= e

sin oz) P2 (x, w) ‘ : (55),
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SP(x, w)= B* f_‘, SL(w—inBQ)1i<xmB,n cosa — ’ZB
n=0

(correlated) m=—co

2
sin a) P (x, cu)\ (55),

e

Free space

SP(x,0)=B 3 Sy(w— mQﬂ(cos@cosa—

(non correlated) m=—

2
sin 0() PP (x, w) ‘ (56),
oR,

S{(x, )= B* i SL(w—mBQ)(cos(Dcosa— mB

(correlated) M= — o0 (URe

sine) PGi(x.0) (56,
I

If the length scale is nondimensionalized by the duct radius R and the frequency
spectra as

& o Sp(x, (!))
Sl @)= (rpch VY (0LL . [x UY(1/RH(1/4x | x| oD

S, (w), P{P(x, w) and PP (x, w) are written as

S (w)= Se(a)){ S, (w)cos*a+ S, y(w) _sin? a} (58)

.l‘

S(w)=(c,0)’[{J(c,0) = Yi(c,o)}* + {/i(c,0) + Yi(c,w)}] (59)
va(w) - {1 + (th)Z} e

8 2 21 —11/6 (60)
Sw(w)z{l 5 (ew) }{1 ()}
¢ a _ a %2,
Ci=—r —— ¢ =Co——
2R V U R

Filemnl y
PP(x, @)= Prnn e Sk nRe)J'r‘n(kmn)
O+ kM Ay Smn kf,m w®sin* @

Jwsin®-J, (osin®) —{m—i8 o+, MM (osin®)]  (61)

P (x, w)=wJ,(0R, sin ) (62)
where w, 2 and R, mean

R

oR 2R
—w
a a

kR= —0

€ —>Re.

In the expression of Eqs. (55), the term of | [ has the contribution from both
inlet and outlet open ends, hence it can be written in the form

te
M in oz) PiD(x, w)
i

[4

(Icmn cosa—

oo 2
- {(x;nP;nHumn) cos a— 2P+ Py sina}} = AP (0)

4

where
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20 S. Kotake

’C;mz(’cmn).t=+l ’C;mz(’cmn)z=—l

Pr={P2Yicis  Pr,={P7

mn Jr=-1"

Further, the spectra can be expressed in one-side frequency (» >0) as

gp(x, 0)=BS (0)A(w)+ A,(— 0))}

(non-correlated)

+B 3 [Sy(0+mD){An @)+ A4-p(—0))

+ S (w0 —m){A_,(0)+A,.(—o)}] (63)

S—p(x’ Ct)) - BZSL((D){AO((D) + Ao( - Cl))}

(correlated)

4+ B "_; [S.(0+mBR) A, () + A _ o — )}

+ S0 —mBA_, 5(0)+ 4, 5(—0)}] (64)

where A,,(w) means the term | * in Egs. (55) and (56).

6. NUMERICAL RESULTS AND DISCUSSIONS

To show the features of the far-field acoustic radiation caused by inlet-turbulence/
rotor interaction, Eqs. (63) and (64) are numerically computed for a fan with para-
meters shown in Table 2. The associated spectra consist of complicated modal
contributions so that sufficiently fine mesh size of frequency is required for the com-
putation of spectral density. For the purpose of computational economy, the aero-
dynamic response function, Eq. (48), is approximated by a following simple function
(Appendix B), of which the degree of approximation is illustrated in Fig. 3.

TABLE 2. Parameters

Parameters

Effective radius R,/R
Blade span R/c
Blade angle «° 30
Wall admittance S,
Turbulence intensity 742/7,2

Turbulence scale #,/R 0.1

Duct length I/R 0.1
Roter speed 2R,./a 0.3

Flow velocity U/a (Voo
Blade number B 4

0.8

45%

1%

1%
0. 5*
0.3

60

10
10
0.7
0.5

* Standard values which are used otherwise not stated.

**  For cases of U/a=0 and free space, U/a in Eq. (45) for V/a is 0.5.
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1.0
/Se={R2+Iz}'1
o R=14+Z@—+(I'~ 1+ ha)w?
/ I= (I'+ @) o+ (5~ L@ Inw)w?
0.6/ Se=[5® {Jy(@)—Y,(@)"+{J,(@)+ ¥, (@)}"]
u Y
0.4 Liepmann
1
L Se=T1Fira
0.2}
0 | | S T N N N OO OO O A
0.01 0.1 1 10

@ (=wc/2V)

F1G6. 3. Sears function and its approximation.
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Fi1c. 4. Power spectral density of fluctuating lift, Sz(®).
S(@)= [{1+—w—i(l“—i+ln a)@z}z
‘ 2 2 2
27 -1
+{(F+1n @)o+ (%—%Eln @)@2}] (@<0.9)

= (@>0.9)
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(a) Non-correlated turbulence.
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(b) Correlated turbulence, B=4.
F16. 5. Frequency spectra of free-space fan noise.
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dB

S} /B
o

-100
0.2

(¢) Correlated turbulence, B=8.
Fi1c. 5. Frequency spectra of free-space fan noise.

Examples of lift response to von Karman turbulence with this aerodynamic response
function, Eq. (54), are shown in Fig. 4.

Free-space case

Figures 5 to 8 shows the frequency spectra for the free-space case. As seen in
Fig. 5(a), the spectrum for non-correlated turbulence has peaks at harmonic fre-

quencies of the rotor-speed. Correlated turbulence exicits harmonics of the blade-
pass frequency, mB£.

In the plane of rotor-rotating (®=90°), the thrust component of random lift
fluctuation makes no contribution to the acoustic radiation, which is solely dominated
by the torque component;

SE@=90°, w)~ 3 SL<wim9){Rﬂsina-Jm(wRe)}2

€

At the neighborhood of the peak frequency (w ~m®), since S, ~w**~®, the spectral
density behaves like

w**Ji(wR,) w<ms2

SP(@=90°, 0o=mQ)~{
o *¥J:(wR)) w>ms

The peak values of harmonics are

SE(@=90°, w =mR)~ {mJ,,(mOAR,)}>.
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(a) Non-correlated turbulence.
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Correlated turbulence, B=4.
Fic. 6. Effect of turbulence scale in free space; @=45°.
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(a) Non-correlated, turbulence.
0
r’ Q
0.7
0.5
50l 0.3
-100 TR N N B N N A O | | | R TS DU TR PO NN N U I A !
0.2 1 10 20

w

(b) Correlated turbulence, B=4.
Fic. 7. Effect of rotor speed in free space; @=45°.
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(b) 0=90°.
Fic. 8. Effect of turbulence correlation in free space; B=4.
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At @ =45°, the thrust component comes into contribution mainly through the term
of J(wR, sin @) which increases lower frequency components of spectrum. At lower
frequencies, since S, ~w~** and J,~1, S{ becomes proportional to «’'. The
dips at w=4.25 in Figs. 5(b) and (c) correspond to the first zero of J(wR, sin @).
The peak values of harmonics are given by

SIND=45°, o =m0) ~{(\n}§r cos a——}—?— sin a)Jm (21\70121_2(3>}2

which is always smaller than the corresponding peak value for @ =90°.
In the axial direction, only the J, term determines the acoustic radiation. The
spectral density is then roughly proportional to »*~~%, since S, ~w~*~* and J,(0)=1.
As shown in Fig. 6, the axial scale of turbulence has an effect to make the spectrum
less wavy, by broadening the band width of peaked spectral density. Although the
nondimensional S, is shifted upward with smaller scale of turbulence due to the
behavior of lift response (see Fig. 4), the absolute value of the dimensional S,(~.#S,)

100

180— @

dB

(w) /B dw

(87

60 | | | I l l
0 30 60 90

¢o

Fi6. 9. Directivity of sound pressure in free space;
— non-correlated turbulence, ——— correlated turbulence.
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may be less affected by the axial scale of turbulence. As shown in Fig. 6, the blade
angle has little effect on the spectrum.

The effect of rotational speed of the rotor is shown in Fig. 7, which has more
peaks at w =mf or w =mBS2 with increasing £2. Figure 8 shows the comparison of
effects of non-correlated and correlated turbulence. As mentioned before, for the
correlated turbulence, the harmonics of the rotor-speed between blade-pass har-
monics, w =(mB+ 1)Q2, (mB+2)2,---,(mB+B—1)2 are correlated to be canceled
out.

Figure 9 shows the directivity of the far-field acoustic radiation, which is integrated
the spectral density with respect to frequency. The sound pressure radiated close
to the axial direction (@ =0) is controlled by the thrust component of fluctuating lift
through the J, term. The radiation toward the rotor plane (©® =90°) is much con-
tributed from the torque component characterized by the J,, term (m>1). The
additive effect of these two components makes the directivity almost flatten, although
the difference of the effects at forward and downward directions results in slightly
asymmetric directivity pattern. In the case of non-correlated turbulence, the con-
tribution from large number of harmonics increases the radial radiation.
Ducted-space case

The frequency spectra for the ducted-space case are shown in Figs. 10 to 14 are
for the case without mean flow in duct (M =0), and Figs. 15 to 19 for the case with
mean flow (M+£0). In the ducted-space case, the most remarkable features of fre-
quency spectrum come from the characteristics of duct cut-off modes. In these
figures, decaying modes are also taken into account for the source distribution at

dB

S¥/B

IS S N S NN N N I O I l
0.1 1 10 20

-100 I IS N S S N S U A I

(a) Non-correlated turbulence.
Fic. 10. Frequency spectra of ducted-space fan noise without mean flow; M=0.
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(b) Correlated turbulence, B=4.
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(¢) Correlated turbulence, B=8§.
Fi1G. 10. Frequency spectra of ducted-space fan noise without mean flow; M=0.

the open ends of duct, in order to examine their effect on the spectral density. The
lowest cut-off frequency is denoted by a dot-dush line, below which the spectral

density is dominated by decaying modes and above which it is attributed almost to
propagating modes (see Fig. 10).
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In the ducted-space case, even at @ =90°, the thrust component of fluctuating lift
has a considerable effect upon the acoustic radiation through the J, term. The
mechanism of noise generation hardly differs at the observation points in the far-
field, so that spectra at @=90° and ®=45° are almost same as shown in Fig. 10

0
i L
m
~
=
A
-100 IS I TR N N SN SR BN A O AN 8 N N N T N N O A O
0.1 1 10 20
w
(a) Non-correlated turbulence.
0
jaa)
=
L
82
19
-100 L N I :Ixtu‘lllllll u
0.1 1 10 20

(b) Correlated turbulence, B=4.
Fi1c. 11. Effect of turbulence scale in ducted space; M =0, ®=45°.
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(cf. Fig. 5). (The spectral density at @ =0, which is attributed only to the plane
wave, is identical to that in the free-space case.) Above the cut-off frequency, the
spectra are affected by complicated modal contributions. The peaks of spectra, cor-
responding to the frequency at which k%, —?sin®* @ =0 have a finite value, since

dB

S”/B

-100 ‘ T SO S S B B B L A N G SO N N N O O z
0.1 1 10 20
@
(a) Non-correlated turbulence.
0

dB

SP/B?

(b) Correlated turbulence, B=4.
Fic. 12. Effect of rotor speed in ducted space; M =0, ®?=45°.
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In Fig. 10, the mode cross-section wave numbers, k,,,, are shown. It is easily seen
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(b) @=90°.
Fi1G. 13. Effect of turbulence correlation in ducted space; M=0, B=4.
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that the spectrum mainly consists of ““‘cut-on’ modes of (m,0). For non-correlated
turbulence (Fig. 10(a)), the lowest cut-off frequency of the J, term (k,=3.83) is
higher than those of the J, and J, terms (k,,=1.84, k,,=3.05) so that the contribu-
tion of the J; term is shaded behind those of higher order terms. On the contrary,

0
a)
~
S

-100 RS NS TS SN N DU S N U A | 1 AN N WO S N M N O A ]
0.1 1 10 20
w
(a) Non-correlated turbulence.

0
2a)
~3
5-\
1%

(b) Correlated turbulence, B=4.
Fic. 14. Effect of duct length in ducted space; M =0, §=45°.
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in the case of correlated turbulence (Figs. 10 (b) and (c)), the spectra are considerably
characterized by the J, term.

The effect of axial turbulence scale on the spectrum above the cut-off frequency,
as shown in Fig. 11, is only to shift it upward. It comes from the fact that the
spectrum above the cut-off frequency is characterized almost by P2’ rather than S,
which acts only as a constant factor. This features are also shown in Fig. 12 which
represents the effect of rotor-speed.

Figure 13 shows the comparison of effects of non-correlated and correlated tur-
bulences. As noted above, the former is affected by many modal contributions,
especially by (m, 0) modes, whereas the latter is dominated by a few modes, J, and
J,. It should be noted that inlet-turbulence with smaller circumferential scale could
make the spectrum more flatten.

As shown in Fig. 14, the duct length larger than the duct radius has less influence
upon the spectrum above the cut-off frequency, although the spectrum below it is
much affected by decaying modes. In the case of non-correlated turbulence, for
decaying modes to be decayed away sufficiently, the duct length is required to be
1 >3 ~5 whereas in the case of correlated turbulence /> 1 is sufficient.

When the mean flow in the duct is taken into account, the features of decaying

-40
-
+x decaying +x propagating +ox propagating
—X cut-off —X cut-off
¢D
. 45
2 7 \____‘——r\\

g[pF)/B
5
l

90

Bks ks1
(0.5291) (0.5318)

-50 L | l I I
5.25 5.30 5.35

w
Fic. 15. Two cut-off modes with mean flow; M=0.1, L=1, #,=1, 2=0.5.
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and propagating modes are much different from those without mean flow. As shown
in Table 1, for w >k, ,, there are upward and downward propagating modes. For
Kpn>o>pk,.,, there are upward propagating waves of two types with different
propagating speeds and no waves exist in the downward direction. For o<pgk,,,,

0
@° M
M
~3
m
%
]
-100 N N N N T SO SN SO S I SN SN N N S NS SN B S A 1
0.1 1 10 20
w
(a) Non-correlated turbulence.
0
L o
2
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é\
%) N
-100 T T S
0.1 1 10 20

(b) Correlated turbulence, B=4.
Fi1Gc. 16. Frequency spectra of ducted-space fan noise with mean flow.
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there is only an upward decaying mode. A typical example of this features is de-
monstrated in Fig. 15. All spectra for the case of no mean flow are modified by
this features, although their main behavior remains almost same as that without
mean flow (Fig. 16). The two cut-off frequencies, k,,, and gk,,, are more separated

SY/B dB

-100 [ S S NN T A S N N TR N NS N S N NN N S A | ]
0.1 1 10 20

(a) Non-correlated turbulence.

0
M
q -
=
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=}
%) L
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0.1

(b) Correlated turbulence, B=4.
Fi1c. 17. Effect of mean flow in ducted space; @=45°.
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with the increase of flow-velocity, so that the modification of spectra is remarkable
at higher flow velocities (Fig. 17). The axial turbulence scale, the blade angle and
the rotor-speed act only as shifting the spectrum upward without any change in its
shape above the cut-off frequency (Fig. 18). The effect of the duct length is also
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(b) Correlated turbulence, B=4.
Fic. 18. Effect of turbulence scale in ducted space; M=0.3, §=45°.
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similar as that without mean flow (Fig. 19).

The directivity is shown in Fig. 20. In this case, the directivity pattern is entirely
symmetric, since the equivalent mass source distribution is assumed at the open ends
of duct. Since the term of P2’ in Eq. (61) can be rewritten as
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(b) Correlated turbulence, B=4.
Fig. 19. Effect of duct length in ducted space; M=0.3, ®=45°.
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osin®-J, _(wsin®@)—mJ, (o sin @)

— ;a) Sin O{J,, (o sin @) —J,, . ( sin O)}

the directivity behaves like (sin @), except for the axial direction @ =0 where only
plane wave can exist. The axial turbulence scale, the duct length and the mean flow
velocity have less effect on the directivity pattern, especially above the cut-off fre-
quencies, although their absolute values are affected by them. The acoustic power
for correlated turbulence is always smaller than that for non-correlated turbulence
due to less modal contribution, especially close to the axial direction. It is inter-
esting to note that correlated turbulence could emit more sound toward the rotor
plane in a ducted space than in a free space, although correlated turbulence radiates

absolutely more sound in a free space. It comes mainly from the difference of con-
tribution of the J, term.
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(a) Non-correlated turbulence.
F1G. 20. Directivity of sound pressure in ducted space.
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(b) Correlated turbulence, B=4.
Fi1G. 20. Directivity of sound pressure inducted space.

7. CONCLUDING REMARKS

By assuming incompressible two-dimensional aerodynamic response of point-con-
centrated life to homogeneous inlet-turbulence and neglecting the effect of duct ter-
mination, the far-field acoustic radiation caused by inlet-turbulence/rotor interaction
is theoretically investigated for cases of a rotor operating in free-space and in ducted-
space. Although, due to these considerable simplification, the obtained results might
have restricted validity, they show a number of interesting and significant aspects of
the sound fields.

The spectral density of the far-field sound power in free-space can be largely af-
fected by the nature of turbulence, especially, by the circumferential correlation scale.
With circumferentially non-correlated inlet-turbulence, the associated spectrum has
harmonics of the rotational frequency of the rotor, whereas well-correlated turbulence
makes harmonics of the bladepassing frequency. Decreasing axial turbulence scale
broadens the band width of these harmonic peaks due to less sharped aerodynamic
response spectrum. The additive effect of thrust-term radiation toward the axial
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direction and torque-term radiation close to the rotor-plane results in a rather flat
directivity pattern.

In the case of rotor operating in a ducted space, the power spectral densities of
associated sound are much different from those for the free-sapce case due to com-
plicated contributions of duct modes. Above the cut-off frequency, the spectrum is
characterized mainly by the (m,0) modes and hardly affected by axial turbulence
scale, rotor-speed and decaying modes (duct length), which have an effect only to
shift the spctrum. Increasing mean flow velocity in the duct results in spectrum
having two peaks for each (m, 0) mode corresponding to two types of cut-off mode.
The far-field radiation for the ducted-space case is more emitted close to the rotor-
plane, being not always less than that for the free-space case.

In the present analysis, the key step for the ducted-space case was to determine the
acoustic modes of the duct of infinite length, which means that any solution must
contain only modes travelling away from the sources. However, in general, there
exist modes reflected at the termination of duct, which imply that acoustic field inside
a duct must be determined not only by the inside solution, but by coupling it with
the outside solution. The duct termination has a considerable effect upon the acoustic
radiation of sound generated inside a duct, especially at frequencies below and close
to the cut-off.

In addition to this, the reflection at the duct termination provides its interaction
with the aerodynamic behavior of rotating blades, which requires consideration on
the compressibility effect. Since the excitation and transmission of sound in a duct
space should be controlled by the nature of the space-time pattern of the source dis-
tribution, its three-dimensionality must also be studied.

Further numerical works concerning these subjects are urgently required to obtain
the appreciable prediction and control of fan-noise problems associated with duct
systems.
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APPENDIX A. Green’s function for an infinite circular duct with flow.

The Green’s function is defined as a solution of Egs. (8) and (9),

2
Patr.tir 1) —— (-2 U2 Vet tm, )=~ —rdst—1) (A1)

subject to the boundary condition at r=R

ﬁw(a_[]a) ‘ tz_i tr,t A2
a at ax g(", era O) al’g(r’ aro, 0)' ( )

In the Fourier transform, these are

P2G(r; 1oy ) — (,-k_Mai)zG(,; Yo @) = — 3(F —Fy) (A3)
X
. o\ 9 .
[Bw(zk—M—#)G(r,ro,w):-—G(r,ro,cu) r=R. (A4)
ox or

Assuming a solution in the form
G(r; 1y, @)= X(x, 0)D(r)O(6), (A5)

one obtains the following equations.
(1 Mz) -{—2sza —(k*—K*x=0

d*® 1 do ( m2>

- K2— " )0=0
dr® * r dr + r?
d*e
dg*

+m*PO=0
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The solutions for @ and @ are Bessel and sinusoidal functions, respectively;
O(ry=J,(kr) O@) =e'"’.

The solution for X is given by

X(x)=e-r
L A6
k= kMK —FKY 8= 1—=M (A6)
/32
With X in this form, the boundary condition is
iB. e+ M (KR) = — P KD (A7)
r r=R

which gives the consecutive values of K for each m;
K:kmn (m:o’il, iz,...,oo’nzo’ 1,2,00)

When only waves travelling away from the sources are considered, x/k must be posi-

tive for x —x,>0 and negative for x —x,<{0. This leads to the «,,, value shown in
Table 1.

The Green’s function can then be expressed as

G(rsro @)= 31 3 Gk r)e e xmne (A8)
m=-—ocon=0
Substituting Eq. (A8) into (A3), multiplying by the complex conjugate of rJ(k,, ,r)e "?
and integrating with respect to r=0~ R, # =0~ 27 and x =(x, —¢) ~ (x, +¢) with e—0,
one obtains

1 1
" i2zRE AL,

Tl ri)en et
where

A mrun

(1= 7 T2k D+ Uk ROV
S = ’Ez;{(’cmn)x-xo>0 - (Icmn)x—x‘o<0}

The explicit expression of s,,,, is shown in Table 1.

APPENDIX B. Approximation of Sears function

The power spectral density of lift response of Sears function is given by Eq. (48),

S.(@) = (”7‘5)‘2[{10@)— Y@ + (Y@ + L@} (48)
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For o<1, J (@), J\(®), Y(®) and J (@) are expanded with respect to @ as

Jo(@):l—%cﬂ“r- ..

1 @_L@t;_ ce

Jl(@): 48

(CRNY

Y (@)==—Jy(@)(I" +1n @) I'=0.276186

q

Y(@)=2J,@ " +In )

These approximation leads to

S(@)={R*+ I} (B1)
—1—}—-— ———(F————Hnw)
I=("+In @)@4—(%—%@ In w)aﬂ

For > 1, J(w), J,(@), Y,(®) and Y, (») are approximated as

Jo(@) = «/ﬁ cos (a)—%) J(@) = chos< n’)
Yy(@)= \/*_.sm(a)_£> (@)= \/__sm( n')

which yield

1

Sd@)= 2rod

(B2)

The power spectral density of approximated Sears functions, (B1) and (B2) is shown
in Fig. 3, and compared with exact Sears function, Eq. (48), and with Liepmann’s
approximation (H.W. Liepmann, J. Aeronautical Sciences, vol. 19, 793-800, 1952).
From the figure, it is seen that S,(@) is well approximated by Eqgs. (B1) and (B2) for
#<0.9 anld @>0.9, respectively.
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