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Inlet Distortion and Blade Vibration in Turbomachines
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Abstract: Nonuniformity of inlet flows through a test compressor stage has been studied
based upon 3-D semi-actuator disk theory. The results show that the rotor blade vibration
greatly influences the attenuation rate of distortion. The effects of the rotor/stator sepa-
ration, the circumferential modal index and the tilting of the inlet distortion, are also
demonstrated.

1. INTRODUCTION

In the theoretical treatment of nonuniform inlet flows, the assumption of plane
type disturbances is commonly made, [/], so that the distortion or vorticity inter-
acting with cascades is always directed parallel to the blade span. When the spanwise
variation of the inlet nonuniformity is apparently present in flow, however, the ex-
tension of the theory for disturbances in three dimensions needs to be developed.
Yeh’s actuator disc analysis [2] and the comment on it by Dunham [3] were the first
among such attempts. In Yeh’s model the inertial effects of the fluid inside the blade
passages are not taken into account, nor the distortion-induced vibration of rotor
blades. These short-comings can be overcome by introducing the concept of the
semi-actuator disc model [4]. In what follows, the earlier two dimensional semi-
actuator model [5] is extended into the three dimensional disturbance model in uni-
form mean flow between parallel walls. The main restriction upon using it is that
the wavelength of disturbances in the cascade direction be large compared with the
blade spacing, which will be allowed for most of the circumstances appearing in the
interaction problems between inlet distortion and cascade blades.

2. THEORY

Under the assumption of small perturbations upon compressible, isentropic, uni-
form mean flow, the equations of continuity, momentum and the isentropic flow
relationship may be linearized. The coordinate system is taken as shown in Fig. 1,
x being the machine axis and y, z axes directing to the cascade line and blade span,
respectively. The fluid pressure, density and the flow velocity vector are expressed
as p,+ p, po+p and (V,+v,, V,+v,,v,) in which p,, o, and (V,, V,, 0) are the values
of the mean flow, while p, o, (v,, v,, U,) are the corresponding perturbations. The
sound speed C, is given by 'k p,/0,.

[93]
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FiG. 1. Coordinate system

Perturbations Outside the Cascade:

Imposing the boundary condition that v,=0 at z=0 and 4, the required solutions,
of propagating type in the cascade direction and with harmonic time dependence,
can be derived as follows;

v, 1 [—k.J/D, —k,/D, io|V, —av/h]
v, (io/V,)|D, (iw/V,)/D, k, 0
v, =|(zv/h)/D, (=y/W)/D, O k,
P/p:Co 1 1 0 0
Loloe | l1/G, 1/C, o o
B, ohs X cos [(wv/h)z]
X cos [(my/h)z]
B,-ef7| .
g geoe|’ et =v/Vo x sin [(zy/h)z] (1)
. et
’ X cos [(zy/h)z]
B,-efo®
X cos [(zy/h)z]
where, o is the angular frequency, V, is the phase velocity of propagation in y-direc-
tion, and v is the spanwise modal order (=0, 1, - - -). The last harmonic factor in-

dicates the spanwise modal dependence corresponding to each flow parameter. In
general the solution is given by the sum of contributions from all the spanwise modal
components. The wave numbers k,, k, and k, are given by ky= —i[w/V,—(0/V,)-
VI VD) ky=(— M2 ko+ v Dy)/ B, ko =(— M3 ky—+/Dy)/8; in which Dy= g2 [(w/V,)*
+ (my/h)*]+ M2- ki B, and B, are the amplitudes of k,- and k,-pressure waves, while
B, and B, are those of y- and z-components of velocity perturbation associated with
the vortex waves. A part of these coefficients can be fixed a priori from the physical
grounds, for instance, the outgoing wave condition requires that B,=0 or B,=0 at
far down-or up-stream field, while the irrotational flow finds that B,=B,=0. The
other symbols are defined as D,=M,-(k,—k,), D,=M,-(k,—k,), fz=1—M? and
M,=V,/C,.
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Cascade Field Perturbations:

In the semi-actuator disc model, the blade spacing s is assumed to be small com-
pared with the wavelength of the disturbances, therefore the incident flow is squeezed
to follow the interblade passage and the variation across its width will be neglected.
A care must be noted, in cases when the blades are vibrating, that the relative move-
ment between the neighbouring blades, however small the spacing is, should be taken
into account. It is convenient to introduce the cascade coordinate system (¢, , z)
attaching to the reference blade at a time in question and henceforth keeps its con-
stant speed relative to the machine coordinates (x, y, z). The relationship of the per-
turbation velocity components between the two systems is that v, =v, - cos@+v, - sing,
q= —U,-sinf+v,-cos @, in which g is the vibration velocity of blade surface and ¢
is the stagger angle of the cascade. The solution for the cascade field perturbations
is written as

v, —K{IDE —kFIDF —milh)
v. | _||@IhiDs imDF k| Be
ploGo| | [1 1 0 B o
010, 1/C, 1/C, 0
0
G/ D7 (@/V,)(g,/cos ) | - e (2)
(@/C))/D* o
(@/C)/D¥/C,

where, k= —iw/V, kf=(—M*kf++vDF)/F and kf=(—M?*. k¥ —+/D¥)/g* with
Df =pF - (av/hy+ M* k¥, Df=M- (k¥ —k§), DF=M-(kf—k§), ff=1—M*, M=
V/C, and D* = —(nv/h)*+(w/C,)*. The coefficients B, Bjf and B}fimply the pres-
sure and vortex waves as before, but under the restriction of plane flow perturbations.
The second term in the bracket represents the effect of the phase lag in the vibrating
motion between adjacent blades. In the expression, the spanwise modal factors,
corresponding to the cosine and sine multipliers of the equation (1), have been
omitted.

Matching Conditions:

The solutions in the upstream, cascade and downstream flow fields are matched
at the leading and trailing edges of the cascade by means of conservation laws of
mass, momentum and total enthalpy. The matching conditions are derived as fol-
lows; at the leading edge,

<p0vx+pVx>—<p0(Vy_Vp)>qSInﬁ/VpZO (3)
<p+2P0VzUz+PV;> w<p0Vx2+p0Vsz tan0+p0> - g COs G/Vp: _.f;v/s (4)

<pV, U+ 0 Vv, + 0V .V, >4+ <pV, - (V,tand—V,—V, tan @)

5
—po-tanf@>qcosf/V,=—f,/s (5)
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<L poVoU,> + < py-sin 6> (dgldz)|iw = — f,[s (6)
<p0V£vz+p0VxVyvy+szC02> -+ <P0Vg' (tanﬁ— V’y/Vm)> : qCOSﬁ:O (7)

while, at the trailing edge, assuming that the outlet flow leaves smoothly along the
blade chord;

<0, >=<0,>=<0,>=<p>=<p>=0 (8)

where, < x> denotes the jump in the value of the quantity * across the matching
plane and (f, f,,f,) is the singular unsteady forces at the leading edge. An addi-
tional condition is yet needed to match the number of unknowns and the equations
being satisfied. From the physical ground it is assumed that the force vector acting
upon the leading edge should be always normal to the instantaneous span inclination
at the leading edge. That gives

<(Po+po VD) sinb—p, V.V, cos > (dqldz)[iw= — f./s (9)

Bending Vibration of Blades:
The unsteady force L normal to the blade surface is derived from the momentum
law and written as

L/p,Vys=<p-sinf/p,V,+v,-sinf—v,-cos > —(v,+p/p, V)
X (sin @ —V,,- cos 8/ V,)+i(we/ V,)- (5o V) —[i(we/V,)- cos 6
+<V,/V,>sinf-cos§—(V,/V,)-(sind —V,-cosd/V,)
X (cos@+V,-sind/V,)]-q (10)

where, p is the unsteady pressure averaged over the interblade channel, and the
superscript © means the downstream quantities, otherwise the values are taken at
the upstream field. This will be conveniently split into two parts, that being pro-
portional to the vibration speed g and the remainder arising from the presence of
inlet distortion, e.g. L/p,V, 5= f,- 9+ f;- @ in which & is the inlet vorticity and g=
0e/ot. ¢ is the vibration displacement and generally expressed as the superposition
of normal bending modes, i.e.

oz )= 3 eu: ral2)- exp liwot] (11)
The shape function +, satisfies the equation
[@2/dz(ET- d*|dz) —m- 2] (2)=0  with (2/h)-J:«pi(z)-dz=1 (12)
where, EI is the rigidity for bending motion, m is the blade mass and w, is the
natural frequency corresponding to +, normal mode being determined from the

proper conditions at both ends along the span. Since the normal force L is obtained
in the expression of the Fourier series expansion, i.e.
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LipoVes =3 (fur 4+ foor @)- cos [(mu/h)2] (13)
it is convenient to write the displacement ¢ as
e(z; 1) = Z(Z ‘.- \;,m) . cos [(xv/h)z]- exp [iw?] (14)

h
where, 1!/',””:(8”/]1)‘[ V. (2)-cos [(my/h)z]-dz; e,=1 for yv=0, and 2 for v=#0. Sub-
0

stitution of these expressions into the equation of motion of blade vibration yields

2 (=o't o)’ +i-m-5lo—i-fi, (0 V)lewrn,
=[V/(wo)F- [ fa/(V2/0)] @, (15)

in which the mass ratio 7 is defined by m/p,cs and ¢ is the mechanical damping
coefficient. This shows that the v-modal component of the inlet distortion induces
all the coupled normal modes of vibration.

3. APPLICATION

Results from the theory are applied for a test compressor of rotor-stator stage
(Fig. 2) with the tip/hub diameters 300 mm/200 mm and blade chord length 28 mm,
operating at the inlet axial Mach number 0.10. These dimensions yield the wave-
length/chord ratio of 14 for 2 per revolution distortion (i.e. distortion index m=2).
The work factor £ is defined by {=4V,/V, in which V. and 4V, are the rotation
speed of the rotor and the change in the whirling speed of the flow through it, re-
spectively. The following calculations are for {=0.5 and the mean flow approach-
ing axially is considered. The outlet from the stage is assumed to become axially
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F1c. 2. Test compressor—rotor/stator stage
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again. The inlet distortion has been given in a stationary wave form of the axial
velocity perturbation; i.e.

v,=—y-exp[i-(2x/2)- (ztan @ —y)] (16)

where, 7 and 1 are the amplitude and wavelength of the distortion that is skewed in

INLET @ =0° INLET & =30° (e)
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FiG. 3. (a) Distortion induced total enthalpy fluctuation —O— @=0°, —A— 0=+%15°,
—[]— ®=-30° (b) Unsteady normal force distribution (#=0° and +30°), in
case of a rigid rotor. (¢) Distortion patterns corresponding to three typical values
of Vy/Vg.
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z-direction by the angle @. (@>0 towards the y direction) Fig. 3 shows (a) the
N

downstream total enthalpy fluctuation Pt associated with distortion with respect to

FiG. 4.
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(a) Distortion induced total enthalpy fluctuation —0— @=0°, —A— @=+415°,
—A— O0=—15°, —O— @?=+430°, —m— &®=-30° (b) Unsteady normal force
distribution (#=0° and +30°), when rotor blades are vibrating in resonance with
the first bending mode. (¢) Amplitude of vibration velocity at the blade tip.
(d) Distortion patterns corresponding to three typical values of Vx/Vpg.
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that of the inlet flow Pt through an isolated rigid rotor (b) the distribution of the
modulus of the normal unsteady force L along the blade span against the reciprocal
of various rotor speeds V,, and (c) the outlet distortion patterns at three typical
values of V,/V,. The unskewed distortion pattern remains to be similar through a
rigid rotor except for a lateral shift, since such interaction is of two dimensional
structure. On the other hand the skewed distortion emerges as a different pattern
according to the rotor operation, since its attenuation varies from hub to tip section.
The min-max of the distortion levels has been taken as the ordinate value in the
figures. The result according to the Yeh’s formula [2, Eq. 34] is also plotted in Fig.
3(a). The present theory predicts better attenuation than the Yeh’s. The inlet dis-

_ (b)

Pt
}Pt

Fi1c. 5. Modal decomposition of (a) total enthalpy fluctuation and (b) distortion patterns
corresponding to Vx/V z=0.8, 1n case of @®=0°.
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Fic. 6. Effect of rotor/stator separation upon stage attenuation (a) rigid rotor blades
(b) rotor blades at resomant vibration —O— 0=0°, —[— @=+430°, distortion
index m=4 and Vy/Vz=0.4.
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tortion skew makes that improvement poor as the rotor speed goes down. Backward
skew against the rotor revolution (@ >0) lowers the fluctuating force at the tip sec-

tion.

The corresponding results when the rotor blades are vibrating are shown in

Fig. 4. The resonant state of vibration with the n-th bending mode has been assumed
and for simplicity the contributions from the other normal modes in the equation

(15) are neglected.

In the absence of mechanical damping this leads to the balance

between the aerodynamic damping force and the exciting force due to inlet distor-
tion, whence the amplitude of vibration velocity ¢g(z, ¢) can be calculated,

q(z, t)=>_q,-cos [(wv/h)z]-exp (iwt)

where, g, = iwe i, = — Vg, 3 (foslfo)- @,/0rey) and 0, —w=(2x/2)- Vy. The result-
J

ing normal force becomes therefore,

FiG. 7.

Fic. 8.
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(b) rotor blades at resonant vibration, distortion index m=4, ®=0°.
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Effect of distortion index upon stage attenuation (a) rigid rotor blads (b) rotor
blades at resonant vibration —O— @=0, —]— @®=+430°, for d/c=1; —e—

@=0°, —m— @=+30°, for d/c=10; in case of Vy/Vr=04.
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LlooVos= =3 foslrms COS [(wv/h)z] ; (faslfa)@;/\rns) (17)

It can be seen from Fig. 4(a) that the vibration gets the distortion worse, distinctly so
in cases of forwardly skewed inlet distortion (¢ <0). The rotor speed being about
twice of the axial flow velocity, a backward skew seems to be favourable for attenua-
tion. There the fluctuating force at the tip gets almost the minimum value as shown
in Fig. 4(b) and the amplitude of vibration velocity at the blade tip section drops
correspondingly as shown in Fig. 4(c). In the absence of skew the blade section

IInlet distortion profile (a) Inlet distortion profile (b)

tip
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Rotor revolution Rotor revolution
Distortion at the stage outlet Distortion at the stage outlet

rigid rotor blades rigid rotor blades

tip ;.

Lo

P 43

R

rotor blades at resonant vibration

tip}: -

tip!

hub:

Fic. 9. Inlet and outlet distortion patterns in the cross flow plane viewed from the
downstream of the stage (a) ?=0° (b) ®=+30° for rotor/stator separation d/c=1,
distortion index m=4 and Vx/Vz=04.
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yielding the minimum normal force is located slightly beyond the mid-span, closer,
to the tip. According to the two dimensional semi-actuator disc analysis, this force
at the resonance is found to be always naught. Outlet distortion patterns for three
values of V_/V are also shown in Fig. 4(d), which are obtained by superposing the
spanwise modes of the lowest 7 orders. For the inlet distortion without skew the
distortion pattern can be approximated by adding the patterns corresponding to
the first 2 modes, since the present deflection of a blade can be well described by the
leading 2 terms of the spanwise Fourier series expansion and such distortion is hardly
likely to produce strong coupling with the higher order modes. An illustration of
this is shown in Fig. 5(b) for the case of V,/V,=0.8 and the corresponding results
of modal decomposition are plotted in Fig. 5(a). Fig. 6 shows the effects of rotor/
stator separation d/c upon attenuation for V,/V,=0.4. Without skew a peak value
appears at the separation being around 2 or 3 times of the blade chord length. The
results, as the rotor operation is varied, are shown in Fig. 7. The skew influences
largely upon the results for vibrating rotor blades as seen from Fig. 6(b). The better
attenuation is generally expected for the closer packed stage. Fig. 8 shows the effects
of circumferential distortion index m for d/c=1 and 10. Without skew the larger
index yields on the whole better attenuation, but the skew makes this tendency be
complex, for instance, the sharp rise of the curve at a blade chord length separation
is noticed as the index m increases. The results at large indices m, however, become
dubious, since the assumption that the wavelength of distortion be large compared
with the blade spacing will then be violated. Fig. 9 concludes the present calcula-
tions. It compares the distortion patterns between the inlet and outlet of the given
stage. The difference, depending upon whether the rotor blades are vibrating or not,
can be clearly observed.
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