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Summary. The present paper concerns with the strong interaction phenomenon over an
insulated semi-infinite flat plate with a sharp leading edge. In particular the main interest
is in the consistent treatment in which the boundary-layer solution may be joined conti-
nuously with the inviscid solution regarding flow variables including pressure, normal
velocity, temperature (or streamwise velocity) and density.

It is shown that the behavior of the inviscid solution may be consistent with that of the
boundary-layer solution to at least first-order approximation that is correct to the order of
(M/~/R_ )*-**", where M is the Mach number of undisturbed flow, R+ the Reynolds
number based on the distance from leading edge and y the ratio of specific heats. Then
3 the first-order boundary-layer problem is formulated under such an external circumstance
and an attempt is made for arriving at the solution.

; Actual calculations are carried out for both cases of air and helium. From the solution
it is found that the region in which the viscous effect plays a significant role is ranged over
from 0 to a certain finite value of 7, say s, in terms of the similarity coordinate 7 in the
corresponding incompressible boundary layer. The numerical results moreover indicate
that the induced pressure is considerably smaller than the estimate of Lees [7] obtained by
his approximate method in which the effect of the first-order induced pressure on the
boundary layer is ignored and no survey of the first-order boundary-layer equation is made.
The present results are also found to be in excellent agreement with experimental data
recently obtained in helium flow by Erickson [15].

1. INTRODUCTION

Consider the flow over a two-dimensional semi-infinite flat plate placed parallel
to the undisturbed oncoming flow of hypersonic speed. Then the strong shock waves
emanate from the leading edge of the plate because of the much more remarkable
viscous layer growth than at low speeds. Near the leading edge this shock wave is
so strong and highly curved that a large pressure change is induced; the growth of
the viscous layer itself is simultaneously influenced by this pressure change. Such an
interaction phenomenon between shock wave and viscous layer is called “strong” in
case when the shock wave exerts a remarkable effect on the viscous layer. If the
oncoming flow has a sufficiently high Mach number and a sufficiently low Reynolds
number, a strong interaction phenomenon is expected to occur over a region not only
near the leading edge but also far from it so that the boundary layer approximation
is valid for the viscous layer. Recently such a phenomenon has been investigated in
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2 H. Oguchi

detail by many authors [/]-[6]. In most of these investigations the matching of
the solution for the boundary layer to that for the inviscid region has been carried
out on the basis of the flow model as follows: the flow field downstream of the shock
wave may be separated distinctly into viscous and inviscid regions and the inviscid
flow may be identified with a flow over a fictitious body whose surface is the edge of
the boundary layer. Since, in fact, the amount of mass flow in the boundary layer
is sufficiently small because of the anomalously high temperature near the wall, the
analysis based on this flow model may be expected to provide the zeroth-order ap-
proximation to the problem. In these analyses, however, there inevitably exists a
discontinuity in stream function across the junction of the inviscid and boundary-
layer regions. Since, according to the analysis by Stewartson [5], the inviscid solu-
tion represents a singular behavior such that the density decreases to zero and the tem-
perature increases to infinity as the stream function tends to zero, the simple flow
model for the inviscid region is not appropriate in order to make the matching consis-
tent regarding the temperature and density. For a finite Mach number an anomalously
high temperature near the wall may cause a considerable deviation of the streamwise
velocity from the undisturbed velocity even at the outer edge of the boundary layer.
In view of the above fact, Lees [7] put forward the physical picture that the stream-
lines across the shock wave near the leading edge penetrate into the boudary layer
and obtained the expressions for the streamwise velocity and vorticity in the outer
region of the boundary layer, which region he called the vorticity layer. He then
showed that such a change of the ambient circumference of the boundary layer
leads to the correction for the zeroth-order boundary-layer solution to the order of
(MJYR_.)*"**", much greater than the usual “errors” made in the boundary-layer
approximation, where M is the Mach number of the undisturbed flow, R, . the
Reynolds number based on the distance from the leading edge and v the ratio of
specific heats for gas. In his paper, however, the effect of the pressuse induced by
the first-order change in boundary-layer thickness is ignored so that the result pro-
vides an estimate of the first-order change in boundary-layer thickness and induced
pressure. It is also evident that the joining of the boundary-layer solution with the
inviscid solution concerning the first-order pressure is not effected with success.
The present paper concerns with the strong interaction phenomenon over an in-
sulated semi-infinite flat plate with a sharp leading edge. The viscous region is
treated as usual within the framework of the boundary-layer theory, and the Prandtl
number of unity and the linear viscosity-temperature relation are assumed. The
main interest is in the consistent treatment in which the boundary-layer solution
may be joined continuously with the inviscid solution regarding flow variables in-
cluding pressure, normal velocity, temperature (or streamwise velocity) and density.
First, the behavior of the inviscid solution in the vicinity of the boundary layer is
derived from the inviscid solution in the form of series on the basis of the hypersonic
small-disturbance theory. Second, it is shown that the behavior of the inviscid
solution may in the first-order approximation be identified with that of the boundary-
layer solution in the region far from the wall so far as the most predominant terms
are concerned. Finally, the first-order boundary-layer problem is formulated under
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Strong Interaction Problem in a Hypersonic Flow 3

the above-imposed external circumstance. Then the solution is actually effected.
From the solution it is found that the region in which the viscous effect plays a
significant role is ranged, in terms of the similarity coordinate 7 in the correspond-
ing incompressible boundary layer, from 0 to a certain finite value of n, say #;.
Then beyond 7=1;, there exists the overlapping region both for the inviscid and
boundary-layer solutions. Thus, over this overlapping region, the smooth joining
between both solutions is ensured regarding flow variables including the pressure,
normal velocity, temperature (or streamwise velocity) and density. The value of 7,
is determined simultaneously with the first-order solution. According to the nu-
merical results for both cases of air (y=:7/5) and helium (y=5/3), the magnitude of
the correction needed for the zeroth-order theory is found to be considerably less
than the maximum estimate obtained by Lees [7].

' 2. THE MATHEMATICAL FORMULATION FOR THE INVISCID
N REGION BEHIND THE SHOCK WAVE

The shock wave induced by the boundary layer alone will in general be of non-
analytic form at the leading edge. Its aparture from the leading edge may be
assumed to be vanishingly small because of the high Mach number of the undisturb-
ed flow, although the shock wave must actually be slightly detached from the leading
edge. According to the above assumption, we may apply the hypersonic small-dis-
turbance theory to the present problem in a like fashion as that developed by Van
Dyke [8] for the case with the shock wave attached to the leading edge. In this
section, the ordinary differential equation governing the inviscid region behind the
power-shaped shock wave is derived on the basis of .the hypersonic small-disturbance
theory.

In a Cartesian coordinates, let the velocity components be denoted by u* and v*
paralle to the axes of z* and y*, respectively, and let the plate be defined by y*=0
and £*>0. Let the pressure and density be denoted by »* and p*, respectively.

' Then the full equations of motion governing the inviscid flow are

op*u* | dp*v*
ox* oy*

__a_'l_lfi_*‘v*i%i:___l_ ap* ,
ox* oy* p* ox*

ov* av* 1 op*
o T S T T
oz oy p* oy

=0, (2.1)

u* (2.2)

u* (2.3)

wr I@Y[P*T) | e 3@*/p*T)_ o (2.4)
dx* oy*

If the velocity, density and pressure at infinity are denoted by U, p* and p¥, re-
spectively, then the following barred independent and depedent variables are con-
veniently introduced on the basis of the hypersonic similitude;
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4 H. Oguchi

r*=2 ’ y* =Y,

w*=U[1+-%u(,9)], p*=piyM*~"DB(=.9), (2.5)

v¥= UT%(ZE’ Iy) > P* = P:e—fs(ﬁ’ y) s
where M= UJ(yp%/p¥)"/* is the Mach number of the undisturbed flow and - a small
parameter measuring the disturbed range. In the present paper T is taken equal to
the shock-wave height at the point x*=1. It is now assumed that the terms which
explicitly contain -* alone may be discarded when the transformation (2.5) is sub-
stituted into the full equations of motion. Its justification will be confirmed by ex-
amining the consistency of the results. Then the full equations of motion can be
simplified to the form

ps+(pv);=0, (2.6)
U+ 005+ 03/p=0, (2.7)
(®/p")s+0(P/p )5=0, (2.8)

where the subscripts  and ¥ denote the differentiation with respect to ¥ and ¥, re-
spectively. From these equations, P, p and v can be determined independently of
the streamwise velocity % which, if it is desired, can be determined from the energy
equation of the form

u+%52 +G_'7-_—pﬁf_)—=(;:%M—2—T—2—=const. (2.9)
Let us introduce the reduced stream function @ defined by
P,=p, P,=—pv, (2.10)
in order to satisfy Eq. (2.6). We introduce moreover the vorticity function
defined by
>=D[p . (2.11)

Then it is easily seen from Eq. (2.8) that @ is dependent only upon ¥, since, from
the definition (2.10) of Z,

P, +v%,=0.
Eq. (2.7) can be written in terms of ¥
B0 28,8, Dol =T (s + 97} ) (2.12)

The shock-wave conditions are also simplified by the same assumption as in the
reduction of the equations of motion. If the shock-wave shape is expressed in the
form

y*=rs(x*) or Y=s(T),
then the simplified shock-wave conditions are

2yt —(y—1) o — 1)e
_ 28 =(=1) gy, p= (ELE

y(y+ 1) 24 (y—1)e
2(/6‘2—- 1) 120~
A5 84(X) s

(y+ 1«

3

(2.13)

v

I}
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Strong Interaction Problem in q Hypersonic Flow S

where the prime attached to s denotes the differentiation with respect to z, and «
is a hypersonic similarity parameter based on the local shock-wave slope, namely,

K= M’TSI(%) . (2. 14)
Egs. (2.12) and (2.13) constitute the basis of the first-order hypersonic small-dis-
turbance theory developed by Van Dyke [8].

Now let us apply this theory to the flow in the neighborhood of the leading edge
when the shock wave is assumed to the expressed in the form

Y.=% or yr=qa*", (2.15)
where 7 is assumed to be a positive number less than nuity. Then the present
problem of interest is included as a special case n=3/4, as will be seen later.
Throughout this paper the subscript s denotes the quantities at or just behind the
shock wave. Since =0, p=1 in the undisturbed flow, Eq. (2.10) yields there

(@5)3:1 ’ (@5)3:0’
and then the integration along the shock wave yields

P.=y,=x". (2.16)
Let us introduce a modified conical coordinate defined by
o=y/x",
and let us assume the form of
T=%"1(6), (2.17)

then it is compatible with the condition at the shock, Eq. (2.16). If n is assumed
to be a positive number less than unity, the parameter « defined by Eq. (2.14)
becomes sufficiently large compared with unity in the neighborhood of the leading
edge. Thus, substituting %, from Eq. (2.16) into Eq. (2.13) and retaining only the
leading terms, we obtain

— 2n? D

s 'y+1
—~ 1
p=2t1
y—1
With these expressions Eq. (2.11) yields the vorticity function just behind the shock

~ 2n? ('y-l >T52(n—1)’
Tyl \ g1

b

(2.18)

or in terms of 7,
__ (7—1 )r@j—@;ﬁ
v+1\y+1
Since the vorticity function depends only on the stream function, its value down-
stream of the shock wave can be obtained by simply replacing &, by ¥ in the above

equation, namely,

2 _2(11—1)
=20 (L“_Iﬁl . (2.19)
y+1\y+1
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6 H. Oguchi

or using Eq. (2.17)

— 2nt ('y—l )T—-—mn—l) Xn—1
0= T " . 2.20
y+1\y+1 (220

Substituting ¥ from Eq. (2.17) and o from Eq. (2.19) into the f undamental equation
(2.12), we obtain the following ordinary differential equation for f;

. m [ y—1 e
Wl 1~ Of = (T T
(n—1)( ) o
[nof " +2(n—1)F*If ] (2.21)
Remembering =1 at the shock wave and combining Eq. (2.16) with Eq. (2.17),
we have the condition for f at the shock wave:

f:l at 0:: . (222)
Comparing p from Egs. (2.10) and (2.17) with p, from Eq. (2.18), we have the con-
dition for f':

fl=(y+D/(y—1) at 6=1. (2.23)

Consequently the function f can be determined by solving Eq. (2.21) under the

conditions (2.22) and (2.23). Here it should be noted that a singurality develops at

the point =06, where f vanishes, as we can immediately see from the construction

of Eq. (2.21). Hence, in order to obtain more complete knowledge of the solution,
its behavior at the limit 6—>6, must be examined.

3. THE BEHAVIOR OF THE SOLUTION FOR THE INVISCID
REGION NEAR THE BOUNDARY LAYER

In this section the solution of Eq. (2.21) is analytically found in the series form
near the point =6, so that the behaviors of flow variables there are examined. To
do this, let us assume from the physical point of view that the pressure takesa non-
sero bounded value even at the limit §—>6,. Substituting Z from Eq. (2.17) into the
expression for P obtained by using Egs. (2.10), (2.11) and (2.19), we have

_ P (W—1>T T p2(n-1/nm2n-1

P~ A fﬂ f n /nw (n ). (3‘1)
y+1\y+1

Thus the above assumption requires that ST frn-b/» tends to a non-zero finite value

as —6, Then f must be expressed in the form

f~A(0—0,)", (3.2)
and hence
f~AN(6->0,)" ", (3.3)
where
N=ny/[ny+2(n—1)] (34)

and A and 6, are constants to be determined. This expression is adequate only when
N is non-negative, because the vanishing of f is required at the limit §—>0,, or only
when :

n>2/(y+2), (3.5)
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Strong Interaction Problem in a Hypersonic Flow 7

where the lower bound may be replaced by 2/3 due to the fact that 5/3>y>1 for
all real gases. Thus

1>n>2/3. (3.6)

It can easily be confirmed by inserting Eq. (3.2) into Eq. (2.21) that, when n
fulfills the inequality (3.6), f given by Eq. (3.2) satisfies Eq. (2.21) asymptotically
of #-—>6,. Since, for such cases, the radius of curvature of the shock wave at the
leading edge becomes vanishingly small and its value provides a measure of the
shock-wave aparture, the previous assumption that the shock-wave aparture may be
ignored at the leading edge is valid unless the flow field under consideration is very
near the leading edge. Therefore it is concluded that if 1>n> 2/3, the main part
of the solution f near the point =6, is given by Eq. (3.2). Thus the constant A
and 6, can be determined from the asymytotic values of (f'IN)¥f*~¥ and 6 — Nf/f’,
respectively, as the value of f tends to zero. These are readily evaluated from
the solution of Eq. (2.21) obtained by step-by-step integration starting from the
shock wave.T The actual calculation has been carried out for n=3/4 and both
for air (y=7/5) and helium (y=5/3). The results are shown in the following table.

TABLE 1.
i
[ A b,
air i 4.40 0.591
helium i 2.44 | 0.479

On remembering that the series expression of f has the form of Eq. (3.2) as
the leading term, we find by the insertion into Eq. (2.21) that it has the following
form

f=A(0—6,)"{1+a(0—06,)"+b(0—6,)" ' +0[ (6 —6,)* ]}, (3.7)
where
a= N(l,*n>(1+rr)[ y+1 } % |
2 N(y—1)d 2nyQ2N—1)4+6N(N——1) °

b:<N%1)_<v+1>[ vt T [fk(omNjaeer
4N LNG=1J N+ D F (=1 (3N12)

It has been numerically confirmed for both cases of air and helium when n=3/4
that the values of f and f’ from the above expression with the values of 4 and 9,
shown in Table 1 are identified with those obtained by step-by-step integration over
a considerably wide range with ample accuracy. These values of S and f’ are
plotted against the value of 6 in Figs. 1 and 2, respectively, in which the step-by-
step solutions are shown by full lines while the series solutions broken lines.

Using the behavior (3.7) of f near the point §=6,, ¥ there is found from Eq.
(2.10) in the form

T A similar approach can also be applicable to the case of axially symmetric flow (see Appen-
dix A).
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8 H. Oguchi
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FIGURE 1. FIGURE 2.

v=n0,2" ‘[1+0(6—6,)]
and hence at the limit 6—>6,
p=n0,2"""
or, from Eg. (2.5),
v =nr0x*" " U. (3.8)
On the other hand, the location where F==0 (body surface) is given from the
definition of 8, by
y*=10,a*". (3.9)
The normal velocity v*, as naturally expected, is identical with the slop of the body
surface given by Eq. (3.9). From Eqgs. (3.1) and (3.7), the pressure p becomes near
the point §=6,
-=_2_7}2__ L)’:L)T 1/N\Tm2(n-1 Y
b= 2 (L) @AY E T 1400 —00")]
and hence we obtain

-p-_:‘ 2%2 ( fy— 1 )T(NAI/N)Tiz(n—D

y+1 y+1
= n¥
%%:0 or _g_l.y'i*_-_-o, (3.11)

at the limit 6—>6,.

In the application of the above solution to the strong interaction problem, the
body surface should be considered as a fictitious one, for the analysis in this section
cannot be valid right up to the limit 6—>6,, where the viscous effect actually plays
a significant role. However the analysis may be applicable to the inviscid region
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Strong Interaction Problem in a Hypersonic Flow 9

near the edge of the boundary layer, in which a stream function is sufficiently small
but still remains finite. It follows then from Egs. (3.8) and (3.10) that both % and
p take non-zero bounded values independent of 6 or 7 at a fixed value of % in the
inviscid region near the edge of the boundary layer, so far as the most predominant
terms are concerned. The value of density there is given from Egs. (2.11) and

(2.19) by
;:< 72_;21 )1/7( ,},—}-i ) P u)/nrp-l/’r, (3.12)

where ? should be taken from Eq. (3.10).
Here let us introduce the dimensionless quantities defined by

u=u*/U, v=v*U,
. oo (3.13)
b=p /pot’ P=p /Poo’
and further the usual stream function Z defined by
o oy
= — ’UU’ = 3 14
ey (3.14)
? being related to ¥ defined by Eq. (2.10) by
P~-U7. (3.15)

With these new variables, the behaviors of normal velocity v, pressure p and density
p in the inviscid region near the edge of the boundary layer are obtained from Egs.
(3.8), (3.10) and (3.12) as follows:

v=nrha* !, (3.16)

2ty (y—1 )*[ ny ] AT g (3.17)
T y+1 \y+1 ny+2(n—1)

_ ’Y"I_l 1/T(ry+1 ) Mz 2\1/7 y U 2(1-n)/ny 3.18

p=(%e) (L by mcpryypamm, (3.18)

so far as the most predominant terms are concerned.

4., THE ZEROTH-ORDER APPROXIMATION FOR THE BOUNDARY LAYER

The governing equations in the viscous region near the wall are expressed within
the framework of the boundary-layer theory in the form

*q0 % EPIE
a(gx?"b H+ a(gyv L=o, (4.1)
pr(wr 2 o g::):_ op- +az*(”* gz) (42)
*
%—5—:=0, (4.3)
ol e ) B (G o)

where 7'* is the temperature, ¢, the specific heat at constant pressure, u* the vis-
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10 H. Oguchi

cosity coeficient, 2* the heat-conductivity coeficient and other symbols have the
meaning already given in the preceding section. Let us assume a gas to obey the
perfect gas law:

p*/p*=RT*, (4.5)
where R is the gas constant per unit mass.

For the thermally insulated plate of main interest in this paper, the energy equa-
tion (4.4) can be replaced by a simple integral under the assumption of Prandtl
number of unity, namely,

* —
Ty =l prew),
T 2(yp%/px
or, in terms of dimensionless quantities refered to the values at infinity (for ex-
ample, T=T*|T¥)
T
M2
Thus, for this case we can determine the temperature from a knowledge of the
velocity. Moreover let us assume the linear viscosity-temperature relation in the
form

=l _l_N_'Z:_Ll__Z_ 4.6
2(u)Jer_z(u) (4.6)

T*

With these assumptions we introduce according to Stewartson [9] the following
transformations into Eq. (4.2):

=
g¥= | p ¥dz*, (4.8)

0
a=1 v
yF=p f pdy* . (4.9)
0

Then using ¥ defined by Eq. (3.14) as the dependent variable and replacing ap-
proximately (y—1)M?*/2+1 by (y—1)M?*2 in view of very large values of M, we
have (see Appendix B)

2 2 3
op oW 0¥ d¥ :WdW_I_V;aw , (4.10)
dyr oxroyr oxF oy dx’ oyi?
where v* is the kinetic viscosity at infinity and
W= Up*t ™. (4.11)

The equation is quite the same as that for an incompressible fluid. Then the
streamwise velocity u} for the corresponding incompressible boundary layer is
written from Egs. (3.14) and (4.9) as

o

*
i

In this section let us consider the zeroth-order approximation for the boundary-
layer solution. It will be seen from the result that the zeroth-order shock wave is
expressed in the form of Eq. (2.15) and n=3/4 is the only adequate selection that

* ==
F=

=y Upt ™ r=uW. (4.12)
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Strong Interaction Problem in a Hypersonic Flow 1

makes the matching between the inviscid and boundary-layer solution consistent.
So let us tentatively assume that the shock wave is given by Eq. (2.15) with n=23/4.
Then the analysis in the preceding section is applicable because its validity was
ensured when 1>n2>2/3. Thus, in the zeroth-order approximation, the pressure
along the edge of the boundary layer is given from Eq. (3.17) by

p°=Px*"'"?, (4.13)
where
9y v—1 T Ar-2sa gz 2
P= _ | AT, 4.14
8(7+1)[(1—2/3v)(7+1)] ’ (.19)

The superscript o denotes the value for the zeroth-order approximation. By the use
of Eq. (4.13), Eq. (4.11) becomes

W= P« -v/angrT-biir (4.15)

Thus, since the relation between x* and «} in the zeroth-order approximation is to
the zeroth order given from Egs. (4.8) and (4.13) by

g
o= (LEL) ™ Py, (4.16)
4
we have
—1
Wo=Qu¥rer, (4.17)
where
r—1
’ T+l _2y-D
Q:U(-')':'—I)THP 4.18)
v

It has already been well known that there exists a similar solution for Eq. (4.10)
when W is given by the power of x} as in Eq..(4.17). In fact, introducing the
transformation

r=uty T Lo, (419)
v=y T Qu™ ), (4.20)

where fi(5) is a function only of 7, we have the differential equation
b+ (1= f)=0, (4.21)

which is one of the family discussed by Falknar and Skan [10], [//].

To solve the above equation, we must settle the boundary conditions for Sfo
Substituting # from Eq. (4.20) into Eq. (4.12) and then using Eqgs. (4.19) and (4.17),
we obtain

0o U _pr 4.22
W= =Si(). (4.22)

From Egs. (4.20) and (4.22) we immediately find the condition at the wall,
fo=fi=0 at 2=0. (4.23)

If the term T/M?® may be assumed to negligibly small in Eq. (4.6) when applied
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12 H. Oguchi

at the edge of the boundary layer, then we have there condition
u'=1.
The justification for the above assumption will be provided in the subsequent sec-
tion. Thus we obtain the external condition from Eq. (4.22) in the form
fl—>1 as np>oo. (4.24)

Since T or P given by Eq. (4.14) is as yet retained as unknown, we must now
proceed into the determination of these quantities. This is done by requiring for
the normal velocity a smooth joining between the inviscid and boundary-layer
solutions at the edge of the boundary layer. As shown in Appendix C, the relation
of y* to 7 in the boundary layer at a fixed value of x* is given by

— 2
* '7_1 ')’+1 _V_::; (1—3T)/2Tx*l/<~r+1)f"< . ul )d . 4.25
yr=" NEE: p e [ ) (4.25)
By the use of the zeroth-order values of p and u¥/W, this equation becomes ‘ q
X 'Y'—l ry+1 yot Q(I—ST)/ZTx*I/(T+1)fn 1__f/2 d . 4.26
Yy - ‘2 '\/-——‘—2 Q p (] J ( 0 ) n ( )

When 7 is sufficiently large, the upper bound of the integral in the right-hand side
of Eq. (4.26) may be extended to infinity without any significant error, for f{ tends
exponentially to unity with increasing . This implies that, although the boundary
layer spreads over the wide range in n-coordinate, it is confined in the actual plane
to the region from the wall to the edge of the boundary layer whose zerothorder
y-coordinate, 8°, is given by

80: 'Y—l szou—sr)/zr\/ vy—{-l Kfixfl/(wl)f"(l_fo,z)dﬂ'
2 vy Q )

Substituting p° and Q from Eqs. (4.13) and (4.18), respectively, and using Eq. (4.16),
the above equation is rewritten as

/2
8=(y—1)M 2(—”%)' P VL (4.27)

with the abbreviation of~

I= "1, (4.28)

Therefore, in the actual plane, we may consider the boundary layer in the zeroth-
l order approximation as a fictitious body given by Eq. (4.27). Since, according to
the results in the previous section, v at a point on the body surface is identical with
the body slope there, we immediately obtain from Eq. (4.27) the zeroth-order
normal velocity on the body surface or edge of the boundary layer as follows:
o vE_ dd
Vy=—2-=

U dx*
=3 - 1)M2(%)"2P' Vg, (4.29)

where the subscript § denotes the value taken at the edge of the boundary layer.
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Strong Interaction Problem in a Hypersonic Flow 13

Thus, equating this value of v§ to that of v from Eq. (3.16), we find the unknown
T in the form

- (_ﬂ_y” 43
7 TO\ sz/—yi ’ ( * O)
where
So=D gl )
=(y—1 1/2[__ =l A 43
=S ey o @3
By the use of the above value of +, Eq. (4.14) yields
M3
P=py———, 4.32
pO “/U/y:; ( )
where
9y [ v—1 }T -2/3 39
Po=—| ol | AT (4.33)
U 8D LI =2/39)(y+1)
Consequently we have from Egs. (4.13), (4.27) and (4.29) with P given by Eq.
(4.32)
3 o M 172
p":po_;/_]g_, 'Ua:'vn( R )
= : (4.34)
80:8< M >1/2x*
\VR.. ’
where
3 (y—
v=2 ('):/ 1?1) -
| ’ (4.35)
So="""1,,
*/po ’ J
Also we have from Egs. (4.15) and (4.18)
J::—]' 2(r—~1 -1
wo=(LEL) T v ORn (4.36)
Y
T—1
L 2r—=0
Q=(ZEL) ™ v g, (4.37)
Y

respectively.

From the above results it is evident that the initially assumed selection n=3/4
is the only appropriate one for the present problem. Thus the zeroth-order match-
ing procedure concerning the pressure and normal velocity between the inviscid
and boundary-layer solutions has completely been carried out. Since A and 6, are
given as shown in Table 1 and the values of 1, are

air: I,=1.310, helium: I1,=1.186,

respectively, we can evaluate the values of =, Do, ¥o and §, from Eq. (4.31), (4.33)
and (4.35), respectively. These values are summarized in the following table:
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TABLE 2.
To Do Vo 60
air 1.19 0.555 0.528 0.704
helium 1.61 1.03 0.578 0.770

The above result are, of course, in good agreement with these in reference [51,
obtained by somewhat different but essentially same method.

5. THE FIRST-ORDER BEHAVIORS OF FLOW VARIABLES IN THE OUTER
REGION OF THE BOUNDARY LAYER

Here it should be noted that the zeroth-order analysis in the preceding section
has been settled so as to ensure the smooth joining at the edge of the boundary
layer concerning only the pressure and normal velocity and, hence, regardless of
the joining concerning the temperature and density. This is due to the assumption
that in the application of the energy equation (4.6) to the edge of the boundary
layer the term T/M?® is ignored compared with unity. To be sure this is the case
for the hypersonic inviscid region not very near the boundary layer. For the vicini-
ty of the edge of the boundary layer, however, this point must be examined more
carefully because the temperature develops a singurality there, as seen in section 3.

Representing @° from Eq. (4.20) in terms of «* by the use of Eq. (4.16) with the
form of P given by Eq. (4.32), we have

D=2/, EUp"c* fo(n); (5.1)
and substituting p° from Egs. (4.33) we have
P°=2 Upy*x*(MIVR )" *fon) - (5.2)

In view of the meaning of a stream function &, fo(z) must be bounded everywhere in
a boundary layer up to the edge. Therefore thevalueof #°isof the order of (M/YR_.)**
which is very small. Applying this form of #° to Eq. (3.18), we obtain the density
at the outer region of the boundary layer in the form

p=(0o/ D) f"(MIVR )" » (5.3)
where
D =2"237(9ey/B)T(oy— 1)y + 1)~ VT g 5 (5.4)
Hence the corresponding temperature is
T=Df MM R) " (5.5)

It is seen from Eq. (5.5) that T/M? is of the order of (M/YR_.)!"*?" at the outer
region of the boundary layer. This order is much larger than that of v3 or, from
Eqgs. (4.34), of M/JR_., because 5/3>y>1 for all real gases, but evidently much
smaller when compared with unity. Substituting further the above form of T into
Eq. (4.6) and discarding the term 1/M?, we find the streamwise velocity, us, at the
outer region of the boundary layer in the form
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D R M \!-28r
Us=1———1 “/3*(————) : 5.6
e VR.. (56)
Now let us assume the expansion of the form
P=/ XL s 0 wF L f )+ efi) -], (5.7)
Y
p=p'[1+ep+-..], (5.8)

where p° and @ are given by Egs. (4.34) and (4.37), respectively, p, is the unknown
constant to be determined and € is a small parameter depending only upon z*.
Then it is suggested from the form of Eq. (5.6) that the appropriate selection of ¢ is

¢ =( ‘/% )"2’37. (5.9)

In fact it will be seen later that this form of € is the only possible selection con-
sistent with both boundary-layer equation and boundary conditions. If ¢ is assum-
ed to be given by Eq. (5.9), the substitution of p from Eq. (5.8) into Eq. (4.8) leads
after some calculations to

T
1

4 2(1-37)
(L)Y ey
. —( + > (JU/IJ:; T*T 1[1+ep1?3 + ] (5.10)

With this result further substitution of p into Eq. (4.11) yields

T—1

W= U( v—1 >‘T*_( D M? )iét:l—])xf%[l _ epl,(?.,:,l)‘(;ﬁs_')’j_l%)_l_ .. J , (5.11)

4y VUE ¥(7—3)
or in accordance with Eq. (4.36)
=W 1— ('}’“‘1)(3')’“"2) _,,_]. 5.12
" [ =3y T (5.12)

Thus substituting Z, p and W from Egs. (5.7), (5.8) and (5.12), respectively, into
Eq. (4.10) and equating coefficients of € on the both sides of the equation, we
obtain after some calculations the differential equation

" 7 2 e _ 4 "ne 2('7—1)(‘3')’*‘2)

VISV 4 3y Je 1“‘(1 ;{)fo fi= 37T —37) D1 (5.13)
This is the first-order boundary-layer equation. Here it should be remembered that
P, is as yet unknown.

Next let us consider the boundary conditions to be imposed on f,. We have

from Eq. (4.12)

_urf _ 1 o7
W W ayr
and from Egs. (4.19) and (5.7)
o0P[oyr=WLfi+efl+---]. (5.14)
Therefore we find .
_ U 1y Ly=DGy+2)7 .,
u= W—fﬁ—e[f. + p, ) J+ . (5.15)

Applying this equation to the outer region of the boundary layer, we have
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~ o =DGy D T
u=l+el f, S JEREEE (5.16)

because f/~1 there. Comparing this equation to Eq. (5.6), we can see that the in-
itially assumed selection (5.9) for € is the only appropriate one for the present
problem. We obtain moreover

fl4p, (y=1)3y+2)___ D £ (5.17)
y(7—3v) y—1
As shown in Appendix D, the selection (5.9) for € is found to be consistent with
the condition concerning the vorticity occurring in the outer region of the bound-
ary layer. Then we have

e 2DFTTT (5.18)
3y(y—1)
As naturally expected, £/ given by Eq. (5.18) is directly obtained by differentiating
~ f! given by Eq. (5.17) with respect to 5, because fo(n) increases linearly with in- ‘
creasing n when it is large. Thus the conditions to be imposed on the function f; ‘
at the outer region of the boundary layer have been found to be given by Egs.
(5.17) and (5.18) in which the latter is a supplementary one. On the other hand
the conditions to be imposed on f, at the wall are readily found from Egs. (5.7)

and (5.15), respectively, as
fi=0, f1=—L=D0rED, 0 h—0. (5.19)
¥(7—3v)

Before we proceed into the solution of Eq. (5.13), let us examine the asymptotic
behavior of f, when 7 is large. In the region where 7 is large, Eq. (5.13) takes the
asymptotic form -

2 o 2y—1DBy+2)
" _ "y L fl—— , 5.20
"+ (n—B) 3y fi 3751 —37) Py ( )
because f!’~0, f{~1 and f,~5—pB where 3 is a constant known from the asymp-
totic behavior of f,. Then the general solution for the above equation is expressed

in the form
A=a=ByeHa I 1=, 25— |
a1l 11 1, ae)l (y=1By+2)
+a2(7] B) 1F1|:2 3'y’ 2, 2("7 B) :I} 7(7_37) Py (521)

where ,F, represents a confluent hypergeometric function, and a, and a, are certain
constants. By making use of the asymptotic expression of the confluent hyper-
geometric function

Fia,B;0)=T"'(B)/'(a)-€°0* ",
Eq. (5.21) can be reduced for large values of 7 to the form

]I: _ -2/37__ ('Y""l)(3'7+2) . 5.22

where @ is a certain constant, or, since fo~n—z,
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flzafyr - =DGy+2) (5.23)
¥(7—3)
On comparing this asymptotic solution with Eq. (5.17), we can certainly expect the
joining of the boundary-layer solution to inviscid solution provided the constant a
is selected as
o=———_ (5.24)
vy—1
Then, since f}’ from Eq. (5.23) is identical with Si’ given by Eq. (5.18), the re-
spective values of f{ and f}’ given by the inviscid and boundary-layer solutions are
found to be overlapped each other concerning their most predominant terms.
Therefore the condition to be imposed on J1 at the large values of 7 may be speci-
fied by Egs. (5.22) or (5.23) with a given by Eq. (5.24). Evidently the fulfillment
of this condition ensures the smooth joining between the inviscid and boundary-
layer solutions concerning the temperature (or streamwise velocity) as well as
vorticity.

6. THE APPROXIMATE APPROACH TO THE FIRST-ORDER
BOUNDARY-LALER SOLUTION

In the preceding section we have derived the first-order boundary-layer equation
(5.13) with the boundary conditions (5.19) and (5.23). However the constant P, in-
volved in the equation is as yet retained as unknown. This constant is to be deter-
mined so as to fulfill the requirement of the smooth joining between the inviscid
and boundary-layer solutions concerning the first-order induced pressure.

Before making the determination of p, the approximate approach to the first-
order boundary-layer solution is first considered. The substitution of f from Eq.
(5.23) into Eq. (5.20) leads to the argument that Ji”=0 at the overlapping region.
With the fact in mind that f7” represents the viscous effect, this means that the flow
in the overlapping region is substantially inviscid. Therefore the boundary layer
may be considered to be ranged from 0 to a certain large value of 7, say 7,, in 7=
coordinate and joined thereafter to the overlapping region. Then we may adopt
the following boundary conditions as the approximate conditions to be imposed on

Ji:

, D —2/3v _ ('Y”— 1)(3'}""2)
d v—1 4 ¥(7—3)
S{”=0 at N=9s, (6.1)
where 7; is as yet unknown. Suppose that we can determine the solution of Eq.
(5.13) satisfying the boundary conditions (5.19) and (6.1) in such a way that the
value of »; is large enough to be regarded as that of the edge of the boundary layer.
It is now convenient to introduce the function F(y) defined by

_ L)1 (v—1)(3y+2)
Fp=L ) e Ay . (6.2)

Then Eq. (5.13) and the boundary conditions (5.19) and (6.1) are expressed in terms

1
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18 H. Oguchi ,
p |
of F as '
2 4 2 3

i = ! /_( A \Nrrp=—__~2 [1_ ) _ 2V N :\, 6.3

L (1= ) P = =g L1 (1=30)fim), 63)

F=F'=0 at =0, (6.4)

el F™=0 atn=mns, (6.5)

y—1
with the abbreviation of
o (y=1)(3y4-2)
L= J:f o(176)] _('Y Y . 6.6
D 7(7_37) Dy ( )

Thus, if we know the relation of p; to s, then 7, will be the single unknown quantity
involved in the present problem. Then, since the four boundary conditions are
imposed on the solution of the third-order differential equation (6.3), it becomes
possible to determine the unknown 7, and the solution simultaneously. d
;

As shown in Appendix C, the relation of y* to 5 in the boundary layer at a fixed
value of x* is given by Eq. (4.25). Substituting p and u}/ W from Egs. (5.8) and
(5.15), respectively, into Eq. (4.25), we obtain in the first-order approximation

«_ (y=DMw* 1—3y 1,
= p (R [Hep - }

Of ”[(1— g*)—zef;{f{+‘—"—fy'—(-l7—)%%2)‘pl Hd”' 7

For sufficiently large values of #, since

[ a=foyin= ["A=Fyin=1,

this equation becomes

y*:!g;;;(}g‘)f{?f-z{l re(n+15 n)]. (68)
where
I=—7 0 ”f;[f{+£g%>§3g$;—2l-pl |an. |

Thus we obtain the value of y* corresponding to 7s

8‘:80[1 + € <I1l71=776 + 1;:7 Zh)] ’

where I, |7.7s denotes the value of I, at n=n,, namely,

2 (e oy (y—1DBy+2)
I1‘77=775— Ioo fo[f1+ (T —3v) p1]dﬂ

or, by the use of Eq. (6.2),

2 D s
| A S — Ry 4 3L B 6.9
rn="7, [fo(ﬂs)]‘”’*[ Jokn (©2)

Also, with the abbreviation of

i
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1—3y

8;=1,|y.
1 1|v-va+ 27

Py (6.10)
8! is given by

8'=8T1+€4,]. (6.11)
As seen from the meaning of previously mentioned, §' may be regarded as the
boundary-layer thickness in the first-order approximation. Hence, remembering

12
Ozt and € ~g* 275 ), we obtain from Eq. (6.11) the slope of the edge of
the boundary layer

ds' _ d&° ( ( 1 4 )
=% [yl 4 J . 6.12
do* darl 30y ) (6.12)
Now, in accordance with the usual hypersonic boundary-layer consideration, the
slope of the edge of the boundary layer may be assumed to be identical with the
flow inclination. Then the first-order change in pressure induced by the first-order
change in slope of the edge of the boundary layer can be found by means of the

tangent-wedge approximation [ /2], namely,

3 9y
or
1 4 1-3

=2(_ —~><I ) Y ) 6.13
D 3+9'Y 1] ovs + 2 D ( )

Hence, by the use of Eq. (6.10) and (6.9), we obtain

—__ 4y(3y+4) D f”" /g

pp=—-0r L SIF dy. 6.14
1 18')’2—!—9"}’—4 [fo(,"s)]z/eroo 0 ( )

The smooth joining of the first-order pressure at 7=1s is to be fulfilled only when
the above relation is valid and thus the condition must be imposed on the function
F' in order to settle the first-order problem completely. Then L defined by Eq.
(6.6) becomes

Uy=DBy+2)By+4) 1 (7 /0
L=— — SIF dy . (6.15)
(7=3y)(18y+9y—4) I,/ °°
Now 7; is the single unknown constant involved in the first-order boundary-layer

problem. Therefore it becomes possible to determine the solution and the unknown
constant »s on the basis of Egs. (6.3), (6.4), (6.5) and (6.15).

7. THE NUMERICAL RESULTS FOR THE FIRST-ORDER
BOUNDARY-LAYER PROBLEM

Before proceeding to the actual determination of the boundary-layer problem
described in the preceding section, we consider first the simplification made by
ignoring the effect of the first-order change in induced pressure on the boundary
layer. Then, since p,=0 and, from Eq. (6.6), L=0, Eq. (6.3) reduces simply to
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P fo B -2 fiF (1= ) P =0. (7.1)

3y 3y
If the value of F"”’ is prescribed at the wall, the solution of Eq. (7.1) can uniquely
be evaluated with the condition at the wall, Eq. (6.4). Thus we obtain a family of
solutions satisfying only the conditions (6.4), with F"(0) as a parameter. In this
way the equation (7.1) has numerically been integrated for both cases of air and
helium. The values of F', F”" and F'"’’ are shown in Figs. 3 and 4 for air and

air

-3.0

-2.0

~10

A: F10)=-21
l.OL B: -2.0
C: -1.9

FIGURE 3.

A: F7(0) =—1.20
B: -1.15
C: —-1.10

FIGURE 4.

helium, respectively. As seen from these results, the location in which F"” vanishes
is comparatively insensitive to the variation of F’(0) although the corresponding
value of F" is rather sensitive to it. These circumstances make the determination
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of 75, easy, thus considerably reducing the amount of labor in numerical calculation.
As a matter of fact, the final solution satisfying the boundary conditions (6.4) and
(6.5) can be determined by interpolating between the two integral curves, for the
one of which the value of F" is slightly smaller, and for the other of which the
value of F" is slightly larger than —1/(y—1) at the location where F’” vanishes.
The values of 5; and F”’(0) thus determined are

air: 7s=13.09, F"(0)=—2.04,

helium: 7s=13.20, F"(0)=—1.15.

Using the solution of Eq. (4.21) integrated by Hartree [//], the values of f, at
7=—mns are

air: f,=2.17, helium: f,=2.36.
Also using the zeroth-order values of 7, and p, shown in Table 2, the values of D
defined by Eq. (5.4) are

air: D=0.120, helium: D=0.330.
Thus all the numerical constants needed for the first-order approximation have been
evaluated for both cases of air and helium.

By the use of Eq. (6.9) with the above obtained values of F’ and numerical con-
stants, we obtain

air: I ]y.5;=0.673, helium: I |y.y,==1.32.
Under the present simplification, Eq. (6.13) becomes
1, 4
=2(_. ——-)I e
Dy 3 + 9y i-9s
By the use of this equation we obtain
air: p,=0.876, helium: p,=1.58.
Consequently the estimate for the pressure along the wall surface is given by
. M3 M 0.824
air: :O.555—~—[1 0.876(—-) ] ,
P VR TR
heli 1.03 2L [1+158( 2 )°’6°J o2
elium: p=1.03—— . .
= R VR

Now we proceed to the straightforward solution of the present boundary-layer
problem. The calculation may conveniently be carried out by the iterative scheme
and by starting with a suitably assumed value for the constants L on the right-hand
side of Eq. (6.3). The solution of Eq. (6.3) satisfying both conditions (6.4) and
(6.5) can be determined in quite the same fashion as for the previous simplified
case. It has been found also in the present case that the location F"/=0 is almost
insensitive to the variation of the initial value F"/(0). After the solution and the
value of 7 have heen determined, we can evaluate by Eq. (6.15) the value of L,
which, however, will in general be different from the initially assumed one. The
solution can be adopted as consistent only when the initially assumed and finally
calculated values of L are found in agreement.

Following the above mentioned scheme, the actual calculations were carried out
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for both cases of air (y=7/5) and helium (y=5/3). Starting with a value of L
guessed from the results of the above mentioned simplified case, we arrived at the
consistent value of L within the accuracy of 19 after three or four iterations.
The final values of numerical constants are summarized in the following table.

TABLE 3.
| L | 25 F(0)
air . 2.8 3.30 —1.14
helium 4.0 3.64 0.149
-3.0— air
(r=1/5)
~2.0—
FI
-0 F”
3.0 7, 4.0 5.0
. | 1 i,
1.0 2.0
F’U
1.0—
_ FIGURE 5.

F”

FIGURE 6.

The solution F’ and its derivatives are shown for the cases of air and helium in
Figs. 5 and 6, respectively. By the use of Eq. (6.6) with the values of L and 7,
above evaluated, we obtain

air: p,=0.35, helium: p,=0.63.
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Thus the pressure on the surface, given by Eq. (5.8), is
air:  p=0555-2L_ [1+o0. 35( U )““] ,

VR, VR, Ny
helium: p=1.03 jg [1+063<J1Ai* )0-60], (7.3)

correct to the first order.
Following Eqgs. D-1 and D-2 in Appendix D, we obtain the shear stress

,‘-LU\/ pXp* ‘

By the use of the linear viscosity-temperature relation, the above equation becomes
ou* U
* :(f,”-{—ef},”)” \/ Up )
oy* 2 yXa*

Hence we have the following expression for the local skin-friction coeficient

_ *au /__

}Z;I* ( fo” + € f{/) .

The substitution of p from Eq. (5.8) into the above expression yields

C,—-p”‘( ¢gﬁ )‘”Tf{/—l—( ,’/-I—%p, 0,,)(7%;‘)1_2/37

which is correct to the first order. The local skin-friction coeficient at the wall,
(C)).» has been evaluated as follows:

air: (C,)w=< ‘/g ) [o 5684-0. 0323( J]lf_ )WJ,
helium: (c,)wz( /g ) [o 867-4-0. 306(7.44:_> 6°].

As seen from Figs. 5 and 6, the magnitude of "’ is much smaller compared with
those of F" and F" in the region where >7;. This implies that in this region the
effect of deviation of streamwise velocity from the uniform value and the effect of
vorticity (which are due to the magnitudes of F’ and F”, respectively) play much
more significant role compared with the viscous effect (which is due to the magni-
tude of F'”). As a matter of fact, in the region >7,, F' can be confirmed to be
numerically in good agreement with its asymptotic solution derived from Egs.
(5.23) and (6.2), namely,

pram L Lo
S 0(77) -
Moreover, the evaluated value of 7, is found large enough to be regarded as the
edge of the boundary layer. This can also be confirmed from the comparison with
the value of 7, _,, the zeroth-order boundary-layer thickness in Karman-Pohlhausen
sense, which is easily obtained from the well known method as follows:
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air: s, _,=3.38, helium: #;,_,=3.20.
This argument seems to provxde a justification for the procedure applied in the
present analysis.

CONCLUDING REMARKS AND DIsCUSSION

To summarize, it is concluded that the boundary-layer solution may be joined
up to the inviscid solution, at least to the order of (M/yR_.)' *’", with respect to
flow variables including temperature (or streamwise velocity) and vorticity. Then
the region in which the viscous effect plays a significant role has been found to be
ranged over from O to #; in terms of the non-dimensional variable 7. In the region
for which 5>7,, the main part of the boundary-layer solution has been shown to
overlap on that of the inviscid solution, the solution being essentially subjected to
the inviscid one.

Here a note should be added concerning the viscosity-temperature relation. If
we assume, instead of the form of Eq. (4.7), the form proposed by Chapmann and
Rubesin [ /3]

C,ux, T
where C=(p¥/uX)/(TX/T%) and xf and T denote the values of the viscosity coefi-
cient and temperature at the wall, respectively, we should replace p* by u*/C
throughout the present analysis.

Numerical calculations have been carried out for both cases of air and helium,
first, under the simplification of ignoring the effect of the first-order pressure on
‘ the boundary layer. Such a simplification results in the maximum estimate concern- ®
1 ing the first-order change in pressure exerting a favorable effect on the boundary-
layer growth.
i An estimate for the induced pressure on the wall obtained by Lees [7] under
the same simplification is

p= 092‘/CM3[1+17(~"M)”} q

VR VR,
for the case of helium. In spite of his rough treatment without surveying for the
first-order boundary-layer equation, the value of p,=1.7 is surprisingly good when
{ compared to the present one, p,=1.58.

i The calculation has been effected without any simplification for both cases of air

f and helium. As seen from Eq. (7.3), the first-order change in induced pressure
‘ i along the wall is considerably smaller compared with the corresponding maximum

|

|

|

estimate. As regards the skin friction on the wall, the first-order change is found
to increase its magnitude as in the induced pressure. These first-order changes of
the order of (M/yR_.)~**" are appreciable at large value of M*/VR._..

Ji ; At present there are only a few experimental data available for the large value
il of M*/yR_.. The pressure distribution on the flat plate placed in helium flow was
'i* measured by Hammitt and Bodgonoff [ /4] up to Mach number 14.3 and, recently,
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by Erickson [/5] up to 18. Erickson also indicated from the measurements of tem-
perature recovery that essentially insulated conditions existed on the model during
the tests in helium tunnel. Such data may be compared with the present theore-
tical results. The induced pressure for helium calculated from Eq. (7.3) is shown
in Fig. 7 together with the experimental results obtained by Hammitt and Bogdonoff

12
p—1 ‘/ /
10 Hammitt and / 9 /
Bogdonoffs’ \\ /
Exper.(Ref. 14)
8 M=11.4-14.3
/
y [03% \
o First Order
EQ. (7.3y M=17
6 (Q (@)
VAP
P
® / Zeroth Order
/ @
4 // ."/
L/ /
/
Erickson’s Exper.
(Ref. 15)
0 1
O M=Il7.3
® M=16.1
—a I
0 2 4 6 8 10 12
JCM3//Rz*
FIGURE 7.

and by Erickson. The theoretical prediction is in fairy good agreement with
Erickson’s result so that the pertinent flow phenomenon can be seen to be account-
ed for by the present analysis without necessity of any complementary hypothesis.
Nevertheless there is a considerable difference between the results of the two ex-
perimants, no explanation being available at present. Further experimantal in-
vestigations are urgently needed.
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APPENDIX A

The inviscid solution for the case of axially symmetric flow

Similar treatment can be applied to the axially symmetric flow, in which the
shock wave is given by the power form, namely,

¥ n
r*¥=rx* ’

where the cylindrical coordinates (x*, r*) are used instead of the Cartesian coordi-
nates (z*, y*) for the case of plane flow. The barred quantities are introduced by
Eq. (2.5) in which the symbol r is used instead of the symbol . Let us introduce
the reduced stream function ¥ defined by
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Strong Interaction Problem in a Hypersonic Flow 27
0P/0r=7p, 0¥/0%=—7p,
then, according to reference [8], the basic equation is given by

=T+1

A A L A L
re! 7/ dp
where o is dependent only on ¥ and given by
o 202 (= 1\
m(w)z_-_(__) QP " .
v+1 \y41
With the nearly conical coordinate
0=r/x",
and the assumption
P=2"1(0), A-2

the form of @ is compatible with the shock-wave condition which is given by Eq.
(2.13). In the similar manner as the case of plane flow we can derive the following
form of
o= 2?—%1%2{7—1 )Tf it i A-3
v+1 \y+1
Substituting Eqs. A-2 and A-3 into Eq. A-1, we obtain the ordinary differential
equation ’

AR fef (1l —n)of* —2nff"*
__22;"";1” v—1 Tf”r+1 1-1/n n_ I _ £
g+l <v+1> e [”’”(f "b‘)“n D] At

In the neighborhood of the point §=6, in which #=0, the predominant part of
the solution f is readily found to be expressed in the form

f(6)=B(6—6,)",

where
N=__"™ |
ny+(n—1)
The requirement of vanishing of f at the point §=§, is fulfilled only when
144 2
which affords the criterion of 7 for the case of axially symmetric flow. For the
case of plane flow the criterion is given by Eq. (3.5). These criterions of n for

both cases of plane flow and axially symmetric flow have already been found by
Lees and Kubota [/6] with analogy to the blast wave theory.

APPENDIX B
The derivation of the corresponding incompressible boundary-layer equation

According to the transformations (4.8) and (4.9), we have
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u*Ei oy _____p-*z;‘ ov ,
p oyY* oy
N aw:_i(p*‘;;'- P , Y ay;“>’
p ox* P ox¥  oyF ox*
1 Az B-1
ou* :pﬁ; 0'P n y—1 % dp +pr—" 0*P  adyf ’ r
ox* oxFoy¥ 2yp  dx* oy¥t ox*
ou* =1 §*P.
= T .
a7 )
Then, since from Egs. (4.5) and (4.7)
pp*=pLvi,
the viscosity term in Eq. (4.2) is expressed in the form
7} (*6u*)_** 5_2;_233@ B-2
ay* \F‘ ay* P VD ay;ka : ’
Substituting Egs. B-1 and B-2 into Eq. (4.2), we obtain
o9 ¥ _ o ¥ _ _ ‘%ﬂ_[f§+7_—_l.yf~|+y;_aa_¢_. B-3
dyr dzroyr dxr Ay de*lp* " 2y pl Tayr

By the use of Eq. (4.6), we have
p Nl Ff:ﬂé.(lju.?__"l M2> at =1/ pE o
2 p 2  GRSVRet
Since (y—1)M?/2>1, we have
P y—l w? (y=DaZpp
ps 2y P 2yp
Hence the pressure term in Eq. B-3 becomes
5y—3 * — *2 _ _Ir-3
_p 5 4P [&+L¢LJ:_uUzp & _'zlp_*,
da* L p* 2y p 2y dx
Here let us introduce W defined by
W= Up(l—'r)/?rr s

then ‘

2y U P e dzF

so that Eq. B-3 becomes
2 2 3
o % 0¥ a;v:WdWer:a;p.
dy¥ oxroyr ox¥ oyX*  daf oyr®

APPENDIX C

The relation between y* and y in the boundary layer at a fixed value of x*

When 2* is held fixed, we obtain from Eq. (4.9)

y*:pl‘;'rl y%gyf , C-1
0 P
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where the integrand is written as

Vp=(1/p)[1+(y— (1 —u)M*/2] = (y— 1)(1 —u u’)M?/2p
in view of very large values of M. Hence Eq C-1 becomes

*x_ VY Mz
="

or, since u=u}¥/W from Eq. (4 12),

= - (5

By the use of Eq. (4.19), Eq. C-2 becomes
*:ry;]; WF—L:;—‘ (1_3T)/2Tx*1/(1'+1) f")[l _ /yi\ sz
y 2 '\/ 2 Q p ] \ W) 77 .

APPENDIX D
The expression for f! in the outer region of the boundary layer
The differentiation of Eq. (5.15) with respect to y* yields

a7y :
. , D-1
+ )ay*

where for a fixed value of z* or x¥

On/0y* =(0n/oy¥)(y¥/dy*).
Using dy/dy¥ and dy¥/dy obtained from the differentiations of Egs. (4.19) and (4.9),
respectively, we find

O 1 /Up 1 D-2
oy* 2V y¥Xx* T
Thus Eq. D-1 becomes

au* ’—"—(f:)”"}‘ Ef]ll )__

*x*

Applying this equation to the outer region of the boundary layer and remember-

ing f{’~0 there, we obtain
Up
sy e 1

Substituting the zeroth-order values of p and T given by Egs. (4.34) and (5.5), re-
spectively, we have
4Dy (;/31‘( M )—’/2 //( M >_’+2/3T(_: D-3
W 2¢* D \JR.. ‘\VE.. '
On the other hand the vorticity is related to the entropy gradient by the Crocco’s
theorem as

_— e
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at the outer region of the boundary layer, in which S* is the entropy per unit mass.
Since @ defined by Eq. (2.11) is also written as

= const. e5*/%

where ¢, is the specific heat at constant volume,

By means of Eq. (3.15), the above equation becomes at the outer region of the
boundary layer

as*_c, 1 da
d¥ U o d¥
Setting n=23/4 is Eq. (2.19), we see that  is proportional to 7, Eq. D-4 there-

fore becomes ‘
dS* 2, __2¢, ,
g~ 3xU® 3 ¥ ‘

v _ow _ 2 p* __ 2a¥p

dx*  dy*  3(y—1) ptU¥P (y— 1)y UP’

Substituting for p and ¥ the zeroth-order values from Egs. (4.34) and (5.2), respec-
tively, we obtain

D-4

Thus we obtain

v 0w A@_ﬂ_h_(ﬂ_ywx*-‘
az*  oy*  3y(y—1)fo \VR.s ’
in which, however, dv/dx* may be discarded compared with ou*/oy*. We have
therefore '

u A (MY b-s
dy* ~ 3y(y—1)fu \ VR,

Comparing Eq. D-5 with Eq. D-3 we can see as before that the initially assumed
selection (5.9) is also appropriate for the present problem. Then we get

—-1-2/3
n 2DfC

1 -

3y(y—1)
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