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Summary. The flow in two-dimensional incompressible laminar boundary layer is discussed
when the velocity U outside the boundary layer is given by the form U=V—-a/(T-t),
where ¢ is the time, T a constant time, V a constant velocity, and « the distance parallel
to the wall. A solution is obtained in the form of a power series in & =8x/V(T—t) whose

coeflicients are functions of n:(y/Z)(V/vw)é, v being the kinematic viscosity and y the
distance normal to the wall. Six of the coefficients have been obtained by integrating the
differential equations. Unfortunately the series converges so slowly that the coefficients
obtained are not sufficient and an approximate method of continuation is required to carry
out the solution to the point of separation. The method of continuation leads to the result
that the separation occurs when §=1.20. The solution of the problem may be interpreted
to provide some informations for the unsteady flow associated with a diffusor or an airfoil
in which the angle of divergence or angle of attack varies with time.

INTRODUCTION

Most of the existing analyses of unsteady laminar boundary-layer flows are con-
cerned with the earliest phase of the motion starting from rest. It is assumed in
these analyses that there is initially a boundary layer of zero thickness. Unsteady
flow in boundary layer having initial thickness seems to deserve consideration, al-
though very little has been done on this type of the problem. Shibuya [/] first at-
tempted to calculate the response of the incompressible laminar boundary layer to
an impulsive change in outer flow. In order to apply Laplace transformation, it was
required to assume a certain linearization of boundary-layer equations, because of
which, however, the accuracy of the analysis has been questioned. Moore [2] con-
sidered the compressible laminar boundary layer over a heat-insulated flat plate
with a time-dependent outer flow. The main object of the study seems to be in the
search for the parameters, which govern the nature of the unsteady flow. As a matter
of fact, the analysis is confined to the case in which the magnitude of the parameters
is sufficiently small.

In the present paper, the flow in two-dimensional incompressible laminar boundary
layer with a time-dependent pressure gradient is analysed ; the pressure gradient is
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32 I Tani

considered to vary with time, not arbitrarily, but in a specified manner so that the
three independent variables, time and space coordinates, are grouped together into
two. The solution to this problem may be interpreted to provide some informations
for the unsteady flow associated with a diftusor or an airfoil in which the angle of
divergence or angle of attack varies with time. The investigation was accomplished
in 1955, when the writer was with the Institute of Science and Technology, University
of Tokyo. The writer wishes to express his thanks to Mr. Shiro Fukui and Mrs.
Chiyoko Asano for carrying out the numerical calculation.

ProBLEM To BE SOLVED

We consider the solution of two-dimensional incompressible laminar boundary
layer, when the velocity U outside the boundary layer is given by the form

U=V—axd(t), (1)
where z is the distance measured parallel to the wall, V a constant velocity, and
@(t) an undetermined function of the time ¢. The case when @ is constant is reduced
to the steady decelerating flow, for which Howarth [37] has found the solution in
a series of powers of *=x®@/V. On the other hand, the case when U depends
only on t is that considered by Moore, who has shown that the governing parameters
are {,=(x"* Y/ U*)(d"* ' U/dt"**"), n=0, 1, 2,- - - . Tsuji [4] then demonstrated that,
under certain circumstances which are usually met, {,, {,,- - can be expressed in
terms of {,. Since in the present problem

go:___ﬂiz__odﬁz_x—“oioi@., (2)
(V—z®)* dt (1—a*)* @* dt

it is required to restrict ourselves to the case when d@/dt=@?*, or
O(t) = ——-, 3
® = = (3)

where T is a constant, in order that the three independent variables, «, ¥ and ¢, are
grouped together into two variables. We therefore consider the solution for the

velocity distribution

U=Vv- Tm—t ::V(l"%’ (4)

where

_ 8x
e_V_(T_t). (5)

METHOD OF SOLUTION

The method of solution is similar to that put forward by Howarth for the steady
decelerating flow. We assume an expansion of the form

Y=vvx V [fo(n)—Efi(n)+E fa(n)— - - -] (6)
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An Example of Unsteady Laminar Boundary Layer Flow 33

for the stream function ¥, where
=L /v, (7)
2V vx

and v is the kinematic viscosity, ¥ is the distance measured normal to the wall, and

Sfo f1 fos -+ - are the functions of # to be determined. Substituting this form in the
momentum equation of unsteady boundary layer

ou ou aU oU o*u
ou  ,0u 0w , 8
at +u8'c+ oy +U 0x tv oy* (3)

where u and v are the velocity components in the directions ¢ and y, respectively,
and equating coefficients of the various powers of & on the two sides of the equation,
we obtain a series of differential equations

)+ S0 =0, (9)
1SS ‘2f 1+3f,f1:— (10)
f"’+fof”—4fo’ 1+ 500 fo=— 51+ 2013 ST, (11)
’”+fo 6fo, 3’+7f0”f3=“f2,+6f1/ ;{—3f1f2/l“"5f1”f2a (12)

S SV = 8F I+ fi= — 3 S H8Ff = 3A S =T S
+45 =510, (13)

5 Sl —10f0f5 + 111 fs=—2F{ + 10f{f] = 3f.F' = 9f1'f,
+10ff =510 =1/ 1, (14)

--------------------------

where dashes denote differentiations with respect to 5. The boundary conditions are
(since u=v=0 at y=0)

f(0)=£/(0)=0 for all values of », (15)
and (since u= U at y =)
Fl(0)=2, f{(@:%, fl(0)=0 for r=2. (16)

The solutions of the first two equations, (9) and (10), are available. Indeed f is
the Blasius function for steady uniform flow over a flat plate, and f, is the second-
order function of Howarth series solution for steady decelerating flow; both of them
are tabulated by Howarth in [3]. Equations (11) to (14) subject to boundary con-
ditions (15) and (16) have been solved by numerical integration to obtain the func-
tions f, to f;. The method used is described in appendix. The second derivatives of
the functions at =0 are found as follows:

fU(0)=1.328242, fI(0)= 1.02054, f{'(0)=—0.04140,
fI(0)=0.01512,  f//(0)=—0.00501, f//(0)= 0.00187.

The velocity distribution being given by
' |4
u=—Lft) —EA ) +EF )~ -1, (17)

values of the functions f7 to f7 are presented in table 1. The condition for separa-
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34 1. Tani

tion (0u/dy),_,=0 leads to
Si(0)—Ef"(0)+£°£7(0)— - - - =0. (18)

METHOD OF CONTINUATION

Unfortunately, however, the series converges so slowly that the functions so far
evaluated are not sufficient to give a reasonably accurate representation unless £ is
small. Probably at least four more functions would be required in order to determine
the value of £ for separation. But we can obtain an approximate answer in the fol-
lowing way. First we plot log,,|f,/’(0)| as a function of » for r=2, 3, 4 and 5 and
extrapolate the curve to larger values of » as shown dotted in figure 1. Assuming

I+
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FIGURE 1

the values of f(0) continue to alternate in sign as 7 increases, we may estimate
Ji’(0)=—0.00080, f//(0)= 0.00036, f{/(0)=—0.00017,
f(0)=0.00010, f1/(0)=—0.00007.

With these values we find from (18) that separation*occurs when §=1.20.

An alternative and more reliable estimate is obtained by applying an approximate
method of procedure, which is originally due to Howarth, and based on the assump-
tion that the functions f; for » > 6 are expressible in the form K,G(5) where K, are
constants. A fairly good estimate for the function G() may be obtained as shown
in figure 2 from the knowledge of |f/|/|f!|max plotted as functions of » for r=2, 3,

4 and 5. The numerical values of G(») are presented in table 1. The velocity dis-
tribution may then be written

u=Y LA €A+ - —E R )= F@E)], (19)

where F'(§) is a function to be determined.
Substituting the expression (19) in the momentum integral of unsteady boundary
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: (20)

which is obtained by integrating the momentum equation (8) with respect to ¥
through the boundary layer, we have the differential equation

where

1.0

0-5

dF _ A+BF+g,F*
d§ C—49.F ~

Q= lim (2n—fo)+¢ li
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3 2 dQ dR
A=2(1-= 46— _p % g
( 8>Q+( ) gz SETS
)
B= —go+2<l —g)gl—P—ZEZ—é—,

C=—(45—&%g,+2PE,

1w

P=230(=8y [ f/Gdn,
0

(Fim7) = (=77 (e0),

n->c00 nN>r00

(21)

(22)

(23)
(24)

(25)

(26)

R= [Ta—flyin+e [TQAf =8 [T —pr 250 )iy

- -3

16

m=0

. 5 5 o
1/1 r/—-mdn_ szﬂ(_s)SH:Z f?(fﬁ,-i-s—ndna
] 0
S= 33 (~&7710),

7=G(0), g,= f Gdy, g,= wazdn.
0 0

(27)

(28)

(29)

' Starting from the value of F'(§)=0 at £=0.4 for which u is given by (V/2)(f!—
Ef! +; -« —&°f/) with sufficient accuracy, the equation (21) may be integrated graph-
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ically for F'(§). The condition for separation is
9 F(£)=8(¢). (30)
The integral curve together with the curve given by (30) is shown in figure 3. It
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FIGURE 3

will be noticed that theitwo curves intersect at £=1.197.
We thus arrive at the result that separation occurs when §=1.20.

RESULTS OF CALCULATION
We now calculate the displacement thickness §* = f (1—u/U)dy, the momentum
0

thickness 6= f “(1—w/ U)(w/ U))dy and the wall velocity gradient (9/y),_, by the
(]

following formulas :

G . (31)
@(5)5'/5 0 _R+PF—gF* Q+gF (32)
& Vu(T—t £V £
IO 1-5) g
H() Ew/ﬂ’Jv(T—_t)_-I—lf-<—g—Z—>y=o=S— 0F. (33)

In table 2 the values of F'(§), D(§), ©(§) and H(€) are tabulated against & over the
entire range of the solution.

APPLICATION

The solution so far obtained may be interpreted to provide some informations for
the unsteady flow associated with a diffusor or an airfoil in which the angle of diver- :
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gence or angle of attack varies with time. Strictly speaking, however, the solution
of the problem can only be realized in the following way.
Consider a two-dimensional flow through a channel as shown in figure 4. The

NI
M g)/
/
———
T
N gﬁ\
N
FIGURE 4

upstream walls MO and M'O’ are fixed and nearly parallel, while the downstream
walls ON and O'N’ are moving outward in such a way that the velocity outside the
boundary layer is given by the form (4), where x is the distance measured down-
stream from O along the wall ON and V is the value of U at x=0. It is further
required that the suction is applied to the upstream. boundary layer so that a new
boundary layer is developed along the wall ON with zero initial thickness at x=0.
The preceding solution can immediately be adapted to this unsteady channel flow,
in which the separation is predicted to occur when 8x/ V(7T —t)=1.20.

Next, consider the case when the boundary layer has a nonzero momentum thick-
ness 6(0, t) at the commencement of the region for which the solution is applied. The
distance X is measured downstream from this point, and related with z by x = X+ X,
where X, is a constant length; 6(0, t) denotes the value of 6(X,t) at X=0. Knowing
the initial momentum thickness 6(0, 0) the corresponding value of £(0, 0) is deter-
mined from (32), namely from

6L£(0, 0)14E(0,0)=)/ IT 6(0,0). (34)

With this value for §(0, 0) we obtain from (5)

_ 8X _ 8(X+X,)
§(X,0)=¢£(0,0 = , 35
(X,0)=¢(0,0)+ VT T (35)
which leads to
X(,:_‘QT £00,0). (36)
We therefore find
T 8X
§(X, t)=£(0,0) , 37
(X,9=40,0) 7+ s (37)
_ £0,00 T X
UXH=V|1-— — . 3
( ) [ 8 T—t} T—t (38)

Thus, the outside velocity distribution should be of the form (38) in order that

< the preceding solution can be adapted. The curves of velocity distribution are shown
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graphically in figure 5. The velocity distribution for the region of negative X is to
some extent arbitrary, provided that the momentum thickness at X=0 satisfies the

condition

d
\ t=0
| t>0
= =
FIGURE §
6(0, £)=6(0, 0) O L(0: )] (9)

6[£(0,0)]

The separation is found when §(X, ¢) attains the value 1.20.

Department of Aerodynamics
Aeronautical Research Institute
University of Tokyo, Tokyo
May 21, 1958
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APPENDIX
NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS

The differential equations (11) to (14) can be written in the form

FI - fof =20 L e D) £, = P (Al)

where r=2, 3,4 and 5, P, is the function of f,, f,, - -+, f,_,, and dashes denote dif-
ferentiations with respect to . The boundary condmons satisfied are |
fr=fI=0 at »=0, (A2)
fl=0 at p=oo, (A3)

Since the equations are linear and the boundary conditions are given at two points,
the most obvious method of integration is to write the solution in the form

f,=iC+I, (A4)
where C is a complementary function satisfying the boundary conditions
C=C'=0, C"=1, atn=0, (AS)
and I is a particular integral satisfying the boundary conditions
I=I'=0, I"=1, aty=0. (A6)

After numerical integrations have been carried out for C and I, the constant A is
determined by applying the condition at infinity (A3). Thus, for each of the equa-
tions (A1), at least two numerical integrations to infinity are required.

Practically speaking, however, there is a possibility that C'(co) and I'(c0) become
so large in numerical values that the solution f, can only be found very roughly.
Additional integrations to infinity then have to be made for I with different values
of I"(0). Several repetitions are necessary in most cases in order to determine the
solution to fifth decimal places.

Another method of integration was therefore tried for determining the functions
f2 to f5. The method is the iterative one and consists in writing the equation in the
form

P o f =20 flf !~ Qr+ 1) £f 4+ P, (A7)

in which f, and f/ on the right side are assumed known Then the formal intergra-
tion gives

7
r=afififor f JJ:;, fidn—@r+1) [ fdn+ [ f”dﬂ (A8)
0 0

where « is an arbitrary constant. The solution is then assumed in the form f!=Ry,
where 3 is another arbitrary constant and g is a function of 7 to be suitably assumed
which vanishes at »=0 and 5= oco. Substituting this form in (A8) and integrating
with respect to », we have

Bg=af{+Bh+k, (A9)
where

£
4
"
¥
kS
;

1
;
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h=2r f [ JJ: gd;;]dr;——(27"+l) f [ f "( f ngdy}dq]dn, (A10)
o= f [ o ﬁ;day]dn. (Al1)

The constants « and 3 are determined by satisfying (A9) at two points, =n, and
n=oo. The choice of 5, is arbitrary, but it seems convenient to take 5, somewhere
near the position of maximum g. In the present problem »,=1.8 has been used ir-
respective of the value of . With these constants a and 3, the left and right sides
of (A9) are made equal at =, and 5= co, but not at other values of . Interpolat-
ing between both sides we revise the function g to be used for the next iteration.

This method of iteration has the advantage that all the boundary conditions are
satisfied in each stage of iteration. Three or four iterations have usually been required
to determine the solution to fifth decimal places, but the numerical procedure has
been found rather easier and quicker than the usual numerical integration mentioned
before.
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TABLE 1
!
7 £ | 1 s 1 G
o S o
0.0 | —0.00000 0.00000 | —0.00000 |  0.00000 0.000
0.1 —0.00422 0.00152 —0.00050 0.00019 0.029
0.2 —0.00887 0.00307 —0.00102 0.00039 0.060
0.3 —0.01424 0.00469 —0.00158 0.00061 0.094
0.4 —0.02050 0.00641 —0.00219 0.00085 0.131
0.5 —0.02767 0.00826 —0.00284 0.00111 0.171
0.6 —0.03567 0.01027 —0.00355 0.00139 0.215
0.7 —0.04429 0.01248 —0.00432 0.00169 0.261
0.8 —0.05323 0.01486 —0.00516 0.00202 0.312
0 0.9 —~0.06212 0.01740 —0.00606 0.00238 0.368
% ) 1.0 —0.07053 0.02006 —0.00701 0.00276 0.426
? 1.1 —0.07801 0.02279 —0.00799 0.00317 0.490
1.2 —0.08414 0.02550 —0.00900 0.00360 0.558
, 1.3 —0.08855 0.02806 —0.01002 0.00403 0.627
1.4 —0.09096 0.03032 ~0.01101 0.00444 0.696
1.5 —0.09121 0.03213 —0.01192 0.00484 0.763
1.6 —0.08929 0.03334 —0.01270 0.00522 0.827
1.7 —0.08537 0.03385 —0.01330 0.00555 0.885
1.8 —0.07973 0.03362 —0.01368 0.00580 0.934
1.9 —0.07272 0.03264 —0.01380 0.00596 0.972
2.0 | —0.06476 0.03094 —0.01362 0.00602 0.994
2.1 | —0.05634 0.02863 —~0.01313 0.00597 1.000
2.2 —0.04790 0.02586 —0.01238 0.00579 0.987
2.3 —0.03980 0.02281 —0.01142 0.00549 0.958
2.4 ~0.03232 |  0.01964 —0.01029 0.00509 0.906
2.5 —0.02565 ' 0.01650 —0.00904 0.00462 0.840
2.6 —0.0198 | 0.01353 —0.00775 0.00410 0.763
2.7 —0.01508 |  0.01084 —0.00650 0.00355 0.678
2.8 —~0.01118 |  0.00849 —0.00532 0.00301 0.586
2.9 —~0.00811 | 0.00651 —0.00425 0.00250 0.498
3.0 —0.00576 | 0.00487 —0.00332 0.00202 0.413
., 3.1 —0.00400 | 0.00355 —0.00254 0.00159 0.335
) 3.2 —0.00271 | 0.00252 —0.00190 0.00122 0.264
v 3.3 —0.00180 |  0.00175 —0.00138 0.00092 0.203
3.4 —0.00117 .  0.00119 —0.00098 0.00068 0.154
3.5 —0.00074 0.00080 —0.00068 0.00049 0.114
3.6 —0.00046 0.00053 —0.00046 0.00035 0.082
3.7 —0.00029 0.00034 —0.00031 0.00024 0.057
3.8 —0.00018 0.00021 —0.00020 0.00016 0.040
3.9 —0.00011 0.00013 —0.00013 0.00010 0.026
4.0 —0.00006 0.00008 —0.00008 0.00006 0.015
4.1 —0.00003 0.00004 —0.00005 0.00003 0.008
g 4.2 | —0.00001 0.00002 —0.00003 0.00002 0.004
4.3 | —0.00000 0.00001 —0.00001 0.00001 0.002
£ 4.4 | —0.00000 0.00000 —0.00000 0.00000 0.001
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TABLE 2

& F D e H
0.0 0.0000 1.721 0.664 1.328
0.1 0.0000 1.779 0.678 1.226
0.2 0.0000 1.842 0.693 1.122
0.3 0.0000 1.910 0.708 1.018
0.4 0.0000 1.985 0.723 0.912
0.5 0.0001 2.067 0.738 0.805
0.6 0.0002 2.158 0.754 0.697
0.7 0.0005 2.258 0.769 0.587
0.8 0.0013 2.371 0.783 0.475
0.9 0.0028 2.498 0.797 0.360
1.0 0.0059 2.643 0.810 0.243
1.1 0.0119 2.812 0.820 0.122
1.2 0.0230 3.013 0.825 0.000
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