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Summary. An analysis, based on the total strain theory combined with octahedral shear
theory, for the deep-drawing of cylindrical shell is developed in this paper. For this purpose
the actual process is traced as exactly as possible, the local variations of thickness and strain
hardening being taken into consideration. The calculated values for strain distributions
and punch forces are compared with experimental results on quasi-isotoropic phosphor
bronze sheets drawn by plane die and conical die. Good agreements are obtained. Further-
more, calculated values thus obtained are compared with results by approximate formulas
which have been suggested already by other investigators. It is revealed that the strain
distributions over the flange region are nearly independent of sheet materials.

Furthermore, according to results of investigations related to formability testing, it has
been confirmed that the diameter of the flange at the point of fracture of blank having the
the diameter exceeding its drawing limit, formed with a conical die can properly be used in
comparing the formability qualities of materials.

INTRODUCTION

The deep-drawing process is a technical process in which a thin sheet of blank
material is usually drawn through a solid die by a solid punch and deformed into
a deep seamless cup.

The shape of the cup is determined by the form of the die and punch. This pro-
cess is very convenient for mass production of vessels from thin sheet and is ex-
tensively used in the mechanical, automotics and aeronautical industries.

Many investigators have dealt with problems associated with axially symmetrical
cylindrical cups or shells either theoretically or experimentally because these are
fundamental and the simplest. M. Sommer [/], G. Sachs [2] and others [3] have
calculated stress, strain distributions in these cups or shells and made comparisons
with experimental findings. Except for Sachs however, many of the investigators
neglected the factor of the components in the direction of the thickness who more-
over treated both stress and strain as if they were two dimentional distribution.
As the component of stress in the direction of thickness is small in comparison
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44 S. Fukui, H. Yuri and K. Yoshida

with other components, its neglection is considered permissable but not quite dis-
regardable because of the factors of non-uniformity in the change of thickness,
and substantial strains ranging from 20-40¢ according to many experiments.
Consequently, an analysis with respect to the treatment of strain as a three dimen-
sional distribution under plane stress is desirable to ascertain the actual phenomena
more precisely.

One investigator [4] has proposed the equation of equilibrium of stress by con-
sideration of the variation of thickness. A solution of the equation of equilibrium
in the strain-hardening range based on the total strain or deformation theory [5]
is dealt with in this paper. The relation between stress and strain in the plastic
range is assumed to be governed by the shearing strain energy theory and the
equivalent stress and strain correlated according to the power law. The distribu-
tion of stress and strain and the force acting on a punch are calculated and compar-
ed with experimental findings.

The finding of M.H. Lee Wu [6] evolved from studies on plane-plastic stress
problems dealing with axially symmetrical objects such as a circular membrane
under pressure, a rotating disk and an infinite plate with a circular hole and the
procedure of the aforementioned Sachs are very useful for reference but insofar
as treatise related to deep drawing is concerned, there is very little in the way of
bibliography except for R. Hills [7] brief work founded on the flow theory.

In actual production work, the selection of materials of proper properties be-
comes very important, in order to gain optimum results through full utilization of
the features offered by deep drawing work. Therefore, investigations were also
made in respect to simple and practical formability testing.

SYMBOLS

The following symbols are used in this paper.

&, s, & ; Principal logarithmic strains. and thickness for simple tension.
A1, A2, 23 ; Conventional strains in radi- n; Number of power, for power
al, thickness, and circumfer- law.
ential directions. K’ ; Coefficient for power law.
61,05,04; Mean principal true stresses. m, K ; Coefficients related to n, K'.
d10, 0395 04 and gy at outside periphery. r; Initial radial coordinate.
L ; Plastic coefficient, function of 7,; Initial outside radius.
stress state. R ; Radial coordinate for derformed
o ; Equivalent stress. {¢}+ o402 state.
—010y—0903—030,} ¢ R,; Outside radius for derformed
€; Equivalent logarithmic strain. state.
{—2—(€§+e§+e§)}i T; Th'i?knes§ of blank.
3 t,; Initial thickness of blank.
a,; True tensile stress. H; Holding force.
&,; Logarithmic tensile strain. u ; Radial displacement.
&, €5 Logarithmicstrains in breadth r,; Profile radius at shoulder of die.

e ™)
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Analysis for Deep-Drawing of Cylindrical Shell and Some Formability Tests 45

Ry; ro+T)2. 6; Angle between axis of punch and
d,; Diameter of punch. face of die.
r,; Profile radius at top corner of a; Angular coordinate.

punch. 8; Angular clearance.

d,; Diameter of hole in die.

PArT 1
ANALYSIS FOR STATE OF STRESS AND STRAIN

1. Stress-strain relation in plastic deformation

The following stress-strain relations are obtained from the so-called total strain
theory and shearing strain energy theory developed by Hencky, Nadai et al.

Lelz{al—%(ag—{-as)}
Le,= {ag——;j(as-f-cn)} , (1)

Ley= {03"'%(0'14'02)}

Le =5. 2)

In the above, L is not a constant but a variable coeflicient determined by the state
of stress. Also € and 7 are correlated by the power law as follows.

o= K'(e)". 3)

Since o and € correspond to o, and ¢, respectively in simple tension, K’, n are

determined from simple tensile tests on the material under study.
Combining (1), (2) and (3), we have:

€1=K(3)"‘{01—%(a'2+03)}=( :

Jorla—t et

K’
=Koy ot ol =4O e Lt} [ @
&= K(E)m{as “%(01 +02)} = (‘I’il,—,)(é)(l ) m{"a "%(‘71 + 0‘2)}
where
K= ( Kl’ : >% . m={=n)
n

2. Egquation of stress equilibrium and its solution in flange part A-B

Referring to Fig. 1, the object under study for stress analysis can be devided
into two parts i.e. the flange (A-B) which comes into contact with the face of
the die and the part (B-C) which touches the shoulder of the die hole. The
analysis for the general case of a conical die i.e., the generating line of die’s face
forming an angle 6 with the central axis of a punch will be treated with hereinafter.
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Ficure 1. Configuration of blank at a
certain stage of drawing process

by conical die.
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FIGURE 2. Manner of blank holding, and symbols FIGURE 3. Acting stresses in faces of
for tool and blank dimensions. a sector element in part AB.

Now, as the thickness of the blank at the outer periphery is the greatest at the
instant of deep drawing, the holding force H is assumed to act on the outer peri-
phery as illustrated in Fig. 2 in accordance with Sachs method. Accordingly, the
stress component in the direction of the thickness due to the holding force is small
in the part other than the periphery and may thus be neglected. However, a contact
stress o) in the direction of thickness appears in the surface of the blank in
contact with the die’s face due to the circumferential compressive stress g5. De-

. .
This document is provided by JAXA. g



Anayysis for Deep-Drawing of Cylindrical Shell and Some Formability Tests 47

signating the radial, thickness and circumferential directions of the principal stress
and strain by the numerals 1, 2 and 3 respectively, we have the equation for g4 as

, T

03=ay COS 9<E> , (5)
wherein T is the thickness and R is the radial coordinate measured from the axis
of the punch to a predetermined point. The mean stress in the direction of thick-
ness g, due to o; will be smaller than of given by (5) because, as noted before, no
contact stress exists in the upper surface of the blank. Furthermore, the ratio (7/R)
will be small when R is sufficiently large for a thin blank which makes g, smaller
than g, ¢; and o, may be neglected.

The equation for equilibrium of stress in the flange part Fig. 3 is given as

ﬂ‘%ﬂz(wﬁcow)gs-:ﬂ (6)

in which the tensile stress is taken as positive.

7y

pee—e—ooo—  r-dr

O\ Rl)

/ R+dR

FIGURE 4. Displacement of an element in part AB.

The displacement of material in a blank is next considered. A part between r
and r+-dr before deformation is assumed to displace to a position between R and
R+dR by working. Taking the amount of radial displacement of r as u, the dis-
placement of »+dr then becomes u+du. The conventional radial strain 4, and con-
ventional circumferential strain 4, are than determined by the following equations
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wherein % is taken as positive in the direction of increasing . ;’
dr+du ”
sin 6 1 du ( 1 )
A= = —-1),
' dr " sind dr ir sin 0
=2,
r
d _ L(dh %) fsin 614+2) = (1+4). (7)
dr dr r T
Equation (7) may also be written as
eesie—s— :L(sin fef1—e%), (8)
dr r
according to the relations (1+44,)=e", (144;)=e" between logarithmic and con-
ventional strains
Now, the following equation for strain (9)
dey _ 1 (1_ .1 _ess_gl> )
dR R sin 6

is obtained by using the following relations obtained by transforming the inde-
pendent variabler 7 (initial radius before deformation) to R (radius after defore-
mation)
=r+u,
d _dR d (du )

d d
a du N4 (g 9% —¢rsing %
i = dr a8 Ny T g =(IHA)sinbp=¢sinéop

The distribution of stresses o, o3 and strains ¢, &, and & are found by solving
equations (6) and (9) simultaneously by utilizing the relations in (4). Equation (6)
is first transformed as

R 1 dT

+ Ro, TR ——+o,=(14+ucotf)a,, (6)

and de,/dR=(1/ T)(dT/dR) from e,=In(TYt,), t, in the above represents the initial '
thickness of a blank before deformation. ’
Equatlon (6’) then becomes

dol d82
= —_ 10

Differentiating ¢, in (4) by R, we obtain

da‘l

R

d _
da Lol L KmGG)" o, +o)on—20)—5 K@)}
+ 3L L Gy (o +o)or—20)— L KG)"}
in which ¢,=0. Substituting the above in (10), we have
dﬂ' dO'
AZZL+ B=2=C. 11
dR + dR =C (1)
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In the above equations:
A=R+Ral{-§-Km<a>m'2<al+as><a3—zal)—g—Kw)m} :
Bsz{}Kma)mﬂ(m+as>(al——zos)~§K(a>m} :

C=(14+pucotb)oy—a, .

Furthermore, the equation:

g% - % {%Km(a)ﬂz— 2(201 - 03)(20‘3 - ‘71) — %K(E)"“}
A s N —
+E%{7Km(”)m 2(2"3““’1)2—17(0)"‘} ;
is obtained by differentiating ¢, in (4). Combining this relations and (9), we obtain
do do
AL LB (Y 1
dr"" R (12)

in which
A'=—j—Km(a)m-2(2ol~a3><zas——al>—%K<a>m ,

B'= < Km(@)" (20 —0f + KG)",

C/___l_{ _ 1 e%x(o‘)""(os-op}

The equations

do, _ BC—BC'
dR AB' —A'B ‘
’ / ’ (13)
doy _ AC'—A'C
dR AB'—A'B

are obtained by solving simultaneous equations (11) and (12). As the right hand
side in the equations (13) are functions of 4,, g, and R, (13) may be integrated
numerically when the initial values of stresses gy, o5, at the outer periphery are
known. The values of initial stresses are considered in two cases in this presenta-
tion.

a) Case for flat die under the action of a holding force H

In this case, we will assume that the outside diameter 2R,, and holding force H
is assumed to act as a concentrated force on R,. o, due to the force H is neglected
but the radial frictional resistance due to the force H is taken as o, for R=R, in
accordance with Sachs’ consideration (1). We will then obtain the following
equations:

&=1In Ez:K(;)m(a,,o-E&) , (14)
7o 2

2uH  _ uH ez«aﬂ"(ﬂ”’;ﬂ) .

15
2nR,Ty, wR, (13)

]
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The initial values of ay,, o3, are found by solving the simultaneous equations
(14), (15) graphically as shown in Fig. 5.

equation 14

equation 15

L4

FIGURE 5. Graphical solutions of gy, o3 for numerical integration.

A holding force is unnecessary for deep-drawing with a conical die when the
ratio of 7,/t, is smaller than 25-35. Therefore, if ¢,,=0 for R=F, is assumed in
the case and the circumferential compression on the periphery is considered uni-
axial, g, =1n (R,/7,) would be found from the following equation.

s00=K"(1n _f_.) . (16)
0

b) Case for conical die with no holding force !
§

3. Equation of stress equilibrium and its solution in part B-C in contact with the die
shoulder

The equation of equilibrium in this part as derived by one investigaton [4] is

given as follows:

i(%?ﬂ:—as-T{sin (0—a)+pcos (—a)} Ryt poy-R-T,  (17)
where R,=r,+ T/2 and the angle 6, present the included angle between the axis of
a punch and the slope of the flange. « represent the angle between a point B and
preconsidered point on the die shoulder part, as illustrated in Fig. 6.

The equation of strain is given as '
glg,,__l{__ 1__H} ‘
dR~ Rl sin (0—a) ’

because the part between R and R+dR is considered to be in contact with the
conical die at an angle of (§—«) as in Fig. 7. The independent variable K in the
equation R=R;+R,— R, cos (¢ —a) is transformed as a function of a as followes:
d_ded_ -1 d
dR dR da R,sin(0—a) da

wherefrom, we have

% — =L (sin (9—a) e}, s)

wherein R, is taken as a constant for simplicity.
Then the following simultaneous equations:
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o

rHdr ———— ]

O\

TR /7 J——

daB

FIGURE 6. Acting stresses in faces of FIGURE 7. Displacement of an element
a sector element in part BC. in part BC.

ds, _ B'C—BC'
da AB'—A'B’
(19)
do, _ AC'—A'C
da AB —A'B’

are obtained from (18), (17) and (4) as before where
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A:R—}—Ral{i—Km(E)""z(al+a3)(as-20,)——%K(&)"‘} ,

B=Rm{}KmGw*@dmowﬁa%»~§Kﬁw},
C=—ay{sin (0—a)+ucos (0—a)} R;+a, {uR+ R, sin (6 —a)},
‘W=%Kmﬁwﬂﬂm~wxhrw0—%KGW,

B’:%Km(&)""z(Zas—m)z'f‘K(E)m ’

R ¥ 3 k@™ o3—ap)
CI: . tYa 0 e 3—01 ,
% ¢ {sin (0—a)— }

R=R,+R,{l—cos (0—a)}.

The equations in (19) can be integrated numerically by using the initial values
o, and o3 found for the point B according to (13) in the preceding paragraph 2.
The force P acting on the punch then can be calculated in accordance with the R 1]
following equation

p:()(fl * to(l +012) ¢ 27T.R4 COS 8 ’ (20)
wherein (o, is stress and (4, is strain of thickness at the point C and § is a clearance
angle between the axis of the punch and a part below the point C as shown in Fig. 7.

4. Solution when é=a-+bas

The stress-strain relations in the plastic range are given by the following equa-

tions.

a+bs | . ~

&= —*: d {01“—'(172"‘”3)}: 52-—9—+—ba‘{02 _(01+03)}a ‘

o 2 o (4') :

b
&= a—t ud {03*‘1—(01‘f'02)} .
o 2

The solutions related to the flange part can be evolved similarly as noted in .
paragraph 2 from the simultaneous equations (13) and solving the equations (4'), .

(6) and (9). In these equations:

A:R—{—Ral{ (01 +05)(20, 03)-——1—(—‘;—+b>} :

4(o)*
4(5)° (’71+0'3)(2¢73“‘01)_—<; +b>} s
C=(14pcot 8)o3—o, ,

e a2~ (L +b)},

B:Rol{

B= {4( oo +(Z+3)},

C/____l_{l_ 1 e%(—g——w)(cs—ol)} .
R sin 6
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Also, the solutions for the part B-C can be obtained from the simultaneous equa-
tions (19), solved by means of (4'), (17) and (18) similarly as in paragraph 3. Here,
A, B,C, A, B, C' are given by the equations:

A:R-{—Ra,{ ()3(01-{—03)(201 03)~——2-< +b)}

a
4Gy (01+U3)(203“01)“7<%‘+b>} >
C=—o3{sin(0—a)+pucos (§ —a)} R,+o, {pR+ R, sin (0 —a)},
1/a '
(20,— 03)(01—203)_—5<E+b)}’

B:Ra,{

=y

B'= {4( ¥ (203—ay)’ +( +b>}:
C’=;RR—{sm 6— a)—eZ(“*b)rc mon } .

The initial values for numerical integrations can be determined as before from
(14) and (15) in paragraph 2.

5. Approximate solution taking o as constant throughout part but with consideration
of the factor of change in thickness

The general case of conical die having an angle @ is taken for illustrating the
derivation of a solution according to an approximate method.

The variation of € in the flange part is actually nominal when the deep drawing
process proceeds moderately. For the purpose of illustration, the distribution of
€ in the flange part is exemplified in Fig. 17, and the variation of o for these € may
be small. ’

The solution given herein will provide fairly good results for the case involved
wherein the stress component a, in the direction of thickness is neglected.

Now, the equation for the stress component is given as

s=(oi+as—005)t =k . (21)
Which is assumed to be constant throughout the flange part for the stage of draw-
ing involved.

The stress-strain relations in the plastic range are given by the following equa-
tion:

51=ch”‘(al—-a21> : 52=Kkm(—-£1.3§.‘1i> , eS:Kk”"(as—‘—’zi) : (22)

Wherefore
de, _1dT_ _ Kk™ (dq +d03 )
dR TdR 2 \dR dR
Also from (21), we have the equations stress components as

oy=2— LA 3
2 2
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d0'3 1 d0'1+‘J3 0'1 ddl .
dR 2 dR 22 dR
A
Combining the foregoing equations with the equation of equilibrium (6”), we derive
the following equations.

1 1 V3o dR
1——Kk™ L) |dey=—=22. 23
Ag,+BJC?— &} I: 4 < 1—{—1/02——0 >~‘ % R (23)

In the above:
4= (1+pcot6) B:(l+p00t6)‘/—3—’ C:/@.
2 2 3
The second term in the bracket in equation (23) is introduced by taking the change
in thickness into consideration. We can now find a solution for plane strain by
neglecting this term whereby the comparison between plane strain and plane stress
will be made easy.
Integrating equation (23), we have

2

A { -1 0 JC?—D? a-ry}
— 2  In(D*— 9 1
@By B P )= Bz s et "
_}_Kk,n[:sA—«/sBal_ 3A—V3B 5, d+a «/3A+3B¢Cz 2
4 A4 B 2(4°+B%  d—e, A+B?
1[+3AD*—3B(C*—D? } By '
— 2o — 4 1] =—In R+C’, 24
+ 2{ @+BWC—DF J a-S] nht (24)
wherein:
_/ BC*
A*+ B’

a=+(C*—D*)(C*—o?) +(D+C)C+ya,),
B=—A(C*—D)(C*~d}) +(D+C)(C+a),
v=A(C*—D*)(C*~di) +(D—C)(C+a)),
8 =V(C*—D*)(C*—d}) —(D—C)(C+a)),

and C’ is an integration constant determined by boundary conditions.

The first and second terms in equation (24) are the solutions for plane strain and
the third term in square brackets is a correction term introduced by the factor of
change in thickness. The question now arises as to the determination of a mode-
rate value for &k for evaluation of equation (24). It is of course desirable to have
a mean value of o over the flange part but is difficult of estimation wherefore %
can only be taken as the value of & at the outside periphery. Therefore, if the
circumferential compression at the periphery is considered as pure compression
for the conical die with no holding force, ¢,=0 wherefrom we will have k—
K'|(In Ry/ry)"|.

Similarly as in the preceding approach, the equations representing the relation
in part B-C is evolved as follows:
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. I |
p o {uR+ Rysin(@—a)} — {sin (0 —a)+ pucos (8 —a)} Rd{le—-;-«/4kz—3a‘§ }
do, _

da R 1-2 oKk —3 e L __|
4 4 V4k?*— 347

(25)

6. Approximate solution according to maximum shearing stress theory assuming thick-
ness and maximum shearing stress as being constant
The approximate solution in this section is given for comparison with the fore-
going solution.
The equation of equilibrium is simplified as
d(o,-E)
dR

Putting o, — o, =2r=FK, Equation (26) is transformed to read as

do, _dR
pcot o —(1+pcot )k R

Integration the above, we will have

=(1+p cot O)ay . (26)

o =C,Reonoq 1T pcotd ;. @7
pcoté

in which C, is an integration constant determined by boundary conditions and as
in the preceding case, k taken as pure compressive stress o, at the outside periphery
for the conical die with no holding force i.e.,

<1n %)n l

It is permissable to derive a solution for the part B-C by integrating to R and multi-
plying by e*®~* to correct for frictional effect similarly as in accordance with Sachs’
method.

k=lo)| =K’

PART 11
EXPERIMENTAL AND CALCULATED RESULTS

Experiments on a flat die and conical die were undertaken in order to confirm
the analysis stated in Part I. Measurements of strain distributions and drawing
forces were compared against calculated values and the difference by calculation
of the strain distributions in a variety of materials was checked, and values derived
from approximate solutions related to drawing force were compared also.

1. Experiment apparatus and materials

The dimensional specifications of the flat die and conical die used in the ex-
periments are given in Table 1. A blank holder was not employed with the coni-
cal die whereas a blank holding force of 300 kg was applied in drawing with a
flat die. :
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TABLE 1. PUNCH AND DIE FOR EXPERIMENT
Punch Die
d, mm r, Mmm d; mm rq Mm
Flat die 30.0 6.0 31.5 3.0
Conical die 12.7 3.0 14.7 3.0

TABLE 2. MECHANICAL PROPERTIES OF PHOSPHOR BRONZE (Sn 7.525, P 0.22

Ultimate | 0.225 yield ’ Percentage Hardness l Drawing ! Degree of
strength stress i elongation V.H.N i limit directionality
o, kg/mm? | g, kg/mm? | % R f (d1/do)tim *hm/(do—ds)
39.1 ’ 10.8 ; 79.0 81.2 ; 0.397 0.02
* hm; Mean hight of ears.
€
rolling ultimate percentage / /
direction strength elongation /
-0.25 Vi 4
I 39.4 kg/mm? 79%
% 39.2 kg/mm?* 80%
L 38.7 kg/mm? 78%
%
-0.20 [ 8
L
X -1
mean
-0.15 - : #
-0.10
it ; 0° to rolling direction
x 3 45 to rolling direction
L g0°c to rolling  direction
-0.05
-0.05 -0.10 —0.15 —-0.20 -0.25

&
FIGURE 8. Relation between strains in width and thickness dimension of phosphor

bronze testpiece under tension, and differences of ultimate strengths and per-
centage elongations are shown.
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As for material for testing, extreme care was taken in selecting from among
the materials available to the laboratory, rolled phosphor bronze sheet metals with
the least directional deficienty. Plates about 0.52mm in thickness and containing
7.59% Snand 0.29 P were cut out into circular blanks of 60mm diameter and 31mm
diameter for the flat die and conical die respectively and each annealed for 1 hour
at 550°C. The mechanical properties of the annealed metal are given in Table 2.
Among the properties (mechanical) given, the value of directionality for the select-
ed material, though subject to question, was estimated according to the degree of
directionality which could be attained through the measurement of the height of
the ears on a drawn shell. This value was found to be 0.02 for the material con-
cerned which is actually considered small.

The physical properties of the material i.e., tensile strength and percentage
elongation as will as the difference in strains relative to the direction of width and
thickness under tensile loading are also given for reference.

Tensile tests were also made on test pieces prepared by taking pieces paralled to,
at 45 and 90 to the direction of rolling of the material and heat treated similarly
as the blank material.

Fig. 8 shows the relations of strains in width and thickness. It will be noted in
the figure that the strains in both cases are about equal within the limits of ex-
perimental error. The ultimate strength and percentage elongation in three direc-
tions are likewise found to be almost equal. Accordingly, the phosphor bronze
material used in this experiment actually possessed very little directionality.

6p,=0¢ kg/mm?

60
X, Il direction /
O: x direction
50 - o L direction
. /
[C /

B

- [

>

/
-

A: Eg=(04/91.0)}#-52 or o,=91.0 &, kg/mm?

o
A
20 L
»* B: €= -0.266+0.0118 7,
10 { C:  &=-0.165+0.00904 o,
0 0.1 0.2 0.3 0.4 0.5

Ep=¢
FIGURE 9. Plastic curve of phosphor bronze in tensile test. (g,=0, ¢;=)
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Fig. 9 indicates the relation between stress o, and strain ¢, i.e., o versus & obtain-
ed from tensile tests on three different directional pieces which when approximated
according to the power low yields:

5=91.0(6)"* kg/mm?®.
This is depicted by the solid line in the figure. When the strain is greater than 0.1,
the experimental points fall on the curve very satisfactorily. Since the range of
strains considered in this study are greater than 0.1, the approximate formula is
deemed quite accurate.

Strain distributions in the flange portion was determined as follows. The top
and bottom sides of an unworked blank was marked off accurately in Imm intervals
on the diameter drawn parallel to, at 45 and 90 to the direction of the material
rolling.

After drawing the blank to a predetermined depth, the drawn piece was removed
and measurements taken to determine the circumferential strain according to the
undergiven equation through the change in diameter of the corresponding marks
as shown in Fig. 10. '

v

U

|
|

)
U)

_
2

FIGURE 10. Measuring method of circumferential strain.

R—r
r
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Measurements were next taken of the thickness at the midpoint between marks
with an optimeter and the average of every other two measurements taken as the
thickness at the point measured. If the thickness is denoted by T, the equation

for strain is
—t
12:_11.__0 .

Ly
in which ¢, refers to the thickness in the unworked material or blank. Strain along
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the radius was calculated with the assumption of constancy in volume or in accord-
ance with the following equation.

1
M= ]
(1+2)(1+4)

2. Experiment and calculation related to flat die

A blank 60mm in diameter and 0.52mm in thickness was drawn with a flat die
and as shown in Table 1. The stroke to produce the maximum drawing force was
found to be about 17mm. The drawing forces and corresponding strokes up to this
maximum drawing force was investigated. The experimental findings related to
drawing forces and strokes are shown tabulated in the following table.

Strokes of draw | Drawing forces

mm kg 7y Mm t, mm Ro mm €30
17.0 1,700 29.95 0.515 23.13 —0.258
11.0 1,480 29.95 0.515 26.63 —0.115

In the calculation for stress, the coefficient of friction between the blank and die-
face is taken as x=0.14 according to experience. The initial values of stresses as
determined from Eq. 14 and 15 are tabulated below.

Strokes of draw

mm g1 kg/mm? g3 kg/mm?
17.0 0.99 —44.5
11.0 0.92 . —29.5

The stress distribution shown plotted in Fig. 11 was found in accordance by nu-
merical integration and by the use of the aforenoted initial values of stresses.
Since a flat die is used, §=a/2.

The strain distribution can now be determined by employing the stress distribu-
tion values as determined above and by Eq. 4. The notations o, , e in Fig. 12
denote the reference points ¢, ¢,, &, respectively: calculated values are shown by
the solid line. Moreover, the values corresponding to the strokes shown good
agreement. At this point, it should be pointed out that the actual thickness adja-
cent to the flange center and the portion in contact with the die shoulder is less
than the calculated value because of the assumption of the blank holding force
acting only around the periphery of the flange portion and zero stress (6,=0) over
the remaining body and for the neglection of the effect of bending in the part in
contact with the radius of the die shoulder.

Thus the radius R, and the radial stress (61)r- g, and the thickness (T)g- g, at the
point R, can be found through the values of stress and strain distributions.

If the angle between the drawn part and the axis of the punch is deduced gra-
phically, the drawing force may then be calculated in accordance with Eq. 20,
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oK, oK' & & &
0.4 |
\ O &
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FIGURE. 11. Stress distributions over flange FIGURE 12. Strain distributions over flange 1
part AC, when drawn by flat die. part AC, when drawn by flat die.

Strokes of Drawing forces T R Drawing forces
draw  |(experimental values) (@)r=ry | (T)r=ry 0° ‘ (calculated values)
mm kg kg/mm mm mm k
17.0 1,700 32.45 0.525 0 15.46 1,655 !
11.0 1,480 30.36 0.505 7 15.49 1,482

Drawing forces are also found to agree roughly within the limits of allowable er-
rors.

Now, and according to comparison of values strain distributions and drawing
forces derived through experiments and calculations respectively, the conclusion
is reached that the assumptions made in this analysis are fairly correct.

3. Calculations and experiments related conical die

In the experiments for deep drawing with a conical die, the maximum drawing
force was reached when the punch was introduced 23 mm. Similarly as in the case
with a flat die, the strain distributions corresponding to the stroke of the punch re-
quiring the maximum drawing force and at a depth just immediate to the stroke of
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maximum drawing force was measured. The tabulation below shows the drawing
ing forces and other incidental values obtained through the experiment.

Strokes of draw Drawing forces

mm kg ro mm to, mm R, mm ’ €30
23 855 15.5 0.515 |  9.97 | _o.q42
19 689 15.5 0.515 11.23 | —0.323

A friction coefficient u=0.14 was used in the calculations similarly as with the
case of the flat die. The initial values corresponding to the two strokes concerned
are shown in the following table.

Strokes of draw

mm o, kg/mm g3 kg/mm
23 0 —59.52
19 0 —50.48
o /K', oy/K, o\/K'
&, &, &
0.3 \\ ]
] 04
{ /K’ (stroke 19 mm) N
0.2}—0 /K" (stroke o & (stroke 23 mm)
' 23mm) \\f
0.3
o
0.1 \ &, (stroke 19 mm)
X = o ‘>\
\\\ " DI P- N
0 AN ,
/K stroke 23 mm) ay/K' (stroke I‘Jm.ml o £, (stroke 23 mm)|
| " & (stroke 19 mm)
-0.1 I
0
04 0.6 07 08
Rir
~0.2 o & (]
A g } experimental results
-0.1 & _
0.3 ——— calculated results
- -—— corfected by oy
. l 02 -
- ay/K’ (stroke 19 mm) l \\\ N
-0.4 N\ & (stroke 19 mm)
\ Y
\ —03 \\ //
7
-0.5 \ 7
\ ay/K' (stroke 23mnk\ ,
-0.4 hd !
0.6 o&; (stroke 23 muy
v B et el e’}
0.4 0.5 0.6 0.7 0.8 * !
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FIGURE 13. Stress distributions over flange FiGURE 14. Strain distributions over flange
part AC, when drawn by conical die. part AC, when drawn by conical die,
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Using the above noted initial values, the stress distributions found in accordance
with the method of numerical integration are shown in Fig. 13. o, in Fig. 13 is
described subsequently.

The strain distributions as calculated from the aforenoted stress distributions and
Eq. 4 are shown by the solid line in Fig. 14 in which, the marks o, », e refer to
points ¢,, &, & respectively found by experiments.

Now, by employing the results found from calculations, R,, (¢,)z- &, and (T)x_r,
are determined. If the value of & is decided as in the case for the flat die, the draw-
ing force may then be calculated in accordance with Eq. 20.

The clearance angle between the punch and die corresponding to a stroke of
19mm is found to be rather large for the reason that the punch is introduced in
to die hole only slightly. Accordingly, the angle of inclination between a point
on the punch nose and the shoulder of the die is large but the effect of the shear
forces becomes a problem.

Therefore, and in view of the meaninglessness of calculating the punch force
for purpose of comparison, calculations were made for the case involving a stroke
of 23mm.

Stroke of ’ Drawing force T ] | R ‘ Drawing force
draw ‘(experimental value)! (0:)r-rs | (Tr=rs | 5o ¢ (calculated value)
mm kg ‘ kg/mm? ‘ mm ‘t ‘ mm ' kg
23 } 855 29.4 1 0.561 ( ( ‘ 757

The difference in strain distributions as compared to that in the flat die is rela-
tively great. Moreover, the drawing force is found to be lower than the experi-
mental values by about 1295. The causes for these differences are considered to
be due to the following factors.

First, in establishing the initial values to be used in calculations, the blank in
the course of working was removed from the conical die and measurements taken
on its periphery. In the case of a conical die however, the effect of spring back is
great. Consequently, the &, adopted in establishing the initial value may differ
from that under actual working conditions. Consequently, the strain distribution at
the point R nearest the shoulder of the die should not be subject to comparison.

Furthermore, the blank places in a horizontal plane before it touches the wall
of the conical die does not assume its conical shape by the circumferential strain
alone but also simultaneously by the bending work. Consequently, the work
hardening may actually be greater than as taken.

The above are considered as the principal causes and whereof, we find such a
considerable difference between calculated and experimental values as compared
that to for a flat die.

Now, insofar as the strain distribution is concerned, it is found that the value of
g, according to calculation is smaller than found by experiments whereas on the
other hand, ¢, by calculation is found to be greater. The difference in either case

it
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is practically equal. Now, the cause for this difference is deemed to be due to the
neglection of o, previously noted and will therefore attempt to make a correction
as a function of o,. Then, we will assume simply that applied from the die surface
to the blank will be expressed by the following equation.

azzz—r‘% cosf-g; kg/mm?®.

By substituting the values of 7' for various strains on the basis of ¢, heretofore
determined, the values of ¢, found therefore are shown plotted in Fig. 13. The
strain distribution as corrected by placing the aforesaid distributions ¢, and ¢, and
a; by calculation in Eq. 5 is shown by the chain line in Fig. 14. From an overall
viewpoint, it will be seen that a correction made with ¢, will make the calculated
values match the experimental values.

4. Calculation for e=a+ba (Chapter 1-4)

It is well and fine if the relation o~¢ found from tests can be sufficiently ap-
proximated to a given straight line. In this case however, it will be necessary to

a, kg/mm®, oy kg/mm?

o, kg/mm?, o, kg/mme o

g
/,;/

AN

10 0
\ 70 €0 9.0 100 110mm
I |
0 \ ——— (n-power)y, ¢ local variation are taken
6 p -10——1— } into consideration 1
16 18 2 22 mm "7 (linear)
l ! —ee—dy; constant
¢ local variation is taken into consideration|
= (n-power) . R . A
-10 p—o ay. ¢ local variation are taken .} _ . ]
~-— (linear) , ’ into consideration 2) === @, ¢; constant
—-=-— oy constant max. principal shearing stress theory

¢ ; local variation is taken into consideration
k=0,—ay

-20p—— --=- o, t; constant ~30}-
——— max. principal shearing stress theory
k=o,—0oy
AN
=30 40| \

I »

1 ~ o
\\\ \\\ \\\g
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FIGURE 15. Stress distributions calculated by FIGURE 16. Stress distributions calculated by
various method over flange part AC, various method over flange part AC,
when drawn to a stroke of 17mm by when drawn to a stroke of 19mm by
flat die. (g,=0). conical die. (o,=0).
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change the values of the constants @ and b depending on the degree of strain in
the range in which calculations are to be made, if accuracy in calculated values
are to be expected. If the s~ is approximated by the power law, it will be found
that the relation will approach a straight line for large values of € while at the
same time, the difference between ¢=K'(€)* and E=a-+bs will diminish.

Taking for example the material subjected to experiments, the equation e=
—0.165+0.00904 5 will hold for € within a range of values between 0.1~0.2. Above
this strain range however, it was possible to make a sufficient approximation with
£=—0.2664+0.0118 (Refer to Fig. 9). The stress distribution determined by uti-
lization of the aforesaid relation in the case of deep drawing with a stroke of 17
mm with a flat die is shown by the single chain line in Fig. 15.

The above stress distribution when approximated according to the power law as
shown by the solid line revealed practical coincidence except for a slight devia-
tion below the decimal place. Strain distribution calculations were also made but
both calculations were found to match at least to the extent that differences could
not be distinguished graphically.

The single chain line shown in Fig. 16 indicates the calculated stress distribution
for the case of deep drawing by means of a conical die employing a stroke of 19 mm.
The differential in this case was also found to be extremely small.

The drawing force as indicated in the following was found in accordance with
the method of calculation as described in Chapter 3. The deviation of this draw-
ing force as determined by the power law was found to be within a few percent.

Strokes of Drawing forces kg
Drawing tools dr;?r‘lv Experimental Calculated values | Calculated values
- values : (liner) (n power)
Flat die 17.0 1,700 ‘ 1,566 1,655
11.0 1,480 1,497 1,482
Conical die 23.0 855 770 757

5. Comparison of various approximate solutions

a) Case involving thickness variation with assumption of non-variance of  depend-

ing on location :

The selection of the 7 to take as noted before poses a problem in proceeding with
calculations. It would be desirable to use an average value between the extreme
periphery and R, but unfortunately, s at R, is unknown. For convenience there-
fore we assume that the 7 at the peripheral edge is uniformly distributed the entire
flange area so that in the case of flat die, it will permit calculation of oy, a3, from
Eq. 14 and Eq. 15 and derivation of . In the case of a conical die, s may be de-
termined directly from a given circumferential strain.

For the purpose of illustration, an example is taken of employing a flat die in-
volving a stroke of 17mm. In this case, ¢ will be 45.01kg/mm?® and the stress dis-
tribution as determined from Egs. 24, 25 will be depicted as shown by the double
chain line in Fig. 15. The distribution of ¢, with due consideration to the o,
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resulting from the degree of work hardening in locations as found in Chapter
2 will vary greatly. However, the degree of deviation of o, is only about
109 . On the other hand, the distribution of strain as shown by the fine line in
Fig. 12 will involve a great variation. Consequently, and as both of the above
differences will combine when solving for the drawing force, the force when
compared to that determined by a strict solution will differ substantially from
the experimental values. The drawing force determined by this approximate cal-
culation is 1,391kg which is lower than the experimental value by approximately
189.

The double chain line in Fig. 16 represents the calculation example for a conical
die involving a stroke of 19mm. In this case, however, € and & were assumed as
straight line functions. Similarly, as in the case for the flat die, the change in a,
as compared to the difference in o4 is small. However, ¢, and o, determined in ac-
cordance with the method of approximate calculation as compared to o, and o, found
by strict solution will be found to be small in a flat die and large in a conical die.
This phenomenon as indicated in Fig. 17 and for the stroke concerned in the cal-
culation example is caused by the fact that whereas & in the case of flat die will
tend to increase with a decrease in R, it will became smaller in the case of a coni-
cal die involving the stroke of 19 mm.

€

—0— flat die

0.5 —&— conical die

M

I'\ ™~ stroke 23mm
0.4 -

stroke 17 mm \

<
\

(stroke 11 mm\

[
0.4 0.6 0.8 1.0
Rirs
FIGURE 17. Distributions of (g) over flange part AC,
when drawn by flat die and conical die.

stroke 19 mm

b) Case for neglection of both thickness variation and & variation regardless of
location (Chapter 1-5)

The calculation examples covered herein apply to the case of a flat die with a
stroke of 17mm and a conical die involving a stroke of 19 mm.

In the calculation respect to the flat die, 7 at the extreme pheriphery was solved
by assuming two dimentional deformation of the blank and o,, determined in ac-
cordance with the following equation. The assumption is also made that 7 is even-
ly distributed over the range covered by the calculation.
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— F«H k 2
Oi0= mm- .
10 R, g/

The stress distribution as determined from Egs. 24, 25 with the preclusion of the
corrective factor related to thickness variation is shown by the chain line in Fig. 15.
It will be noted also in this case that the variation of o, is substantial whereas, the
the difference in ¢, is small and moreover shown very little difference from the
results in (a). The drawing force of 1,389kg by calculation differs from that in (a)
by only 2kgs and is approximatery 189 lower than the experimental value.

The calculation related to the conical die is shown by the chain line in Fig. 16.
Likewise as in case (a), the relation of s~ was assumed as a straight line. . More-
over, ¢ was solved with the assumption of pure compression at the extreme peri-
phery.

When |g,| is determined in accordance with this method of calculation, it will
- show optimum values whereas, according to the approximate solution method for
a flat die under the assumption of an initial value idential to that in (a), oy| will
show up very small. This phenomenon is caused similarly as noted in (a) to the
difference in actual distribution of & (refer to Fig. 17). ¢, coincides more closely
with the value found by strict calculation as compared to the value derived by the
method in (a). '

¢) Case according to theory of maximum shear stress (Chapter 1-6)

The strokes considered in this calculation example are identically the same as
in (a) and (b). The assumption is made moreover that the shear stress at the ex-
treme periphery in the case for the flat die as well as the conical die is evenly dis-
tributed in the flange. However, it is assumed that the strain in the extreme peri-
phery in the case of the flat die takes place two dimensionally as in (b) whereas,
the extreme periphery in the case of the conical die is assumed to be under pure
compression.

The calculated solutions respective to the flat die and conical die are indicated
by the fine lines in Fig. 15, 16. In the calculation case for the flat die, it will be
noted that two fine branches develope from the point of contact to the die shoulder.

The lower fine line is the result of calculation with the assumption of flatness of -

the flange with disregard of the roundness of the die shoulder. The upper line in-
cludes the effect of friction at the die shoulder and represents a multiplication of the
value given by the lower line by ¢*°~® by following the procedure used by Sachs.

According to the above treatment of stresses, the drawing force when calculated
will be approximately 1,300kg or about 23.59 lower than the experimental value.

The strain at the point R, may be determined from geometrical relations since
the factor of thickness variation is neglected. Therefore, if the principal shear
stresses found for R, and R, are averaged and applied on the deformation resistance
k, the difference between calculated and experimental values may be further de-
creased.

If the stress distribution calculated according to a strict solution and the stress
distribution determinable by an approximate solution as described above are com-
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pared, it will be found that ¢, will vary widely depending on the method of cal-
culation while the variation of ¢, would be small.

The above may be interpreted simply as being attributed to the fact that the
radial stress component ¢, is the value of the circumferential stress o, integrated
with respect to B. This will moreover mean that there will be no large discre-
pancy in calculating the drawing force by either of the methods.

For comparative reference, Table 3 gives the comparison of drawing forces cal-
culated in accordance with various methods for the case for deep drawing with a
flat die involving a stroke of 17 mm (stroke at maximum drawing force).

TABLE 3. COMPARISON OF PUNCH FORCES CALCULATED BY VARIOUS METHOD AND

OBTAINED EXPERIMENTALILY, WHEN STROKE OF DRAWING ON FLAT
DIES IS 17 MM (CORRESPONDIG TO MAX. PUNCH FORCE)

Punch forces

- _ Differences
Methods of numerical calculation Experimental Calculated B
values kg values kg 72
Local variation of thickness and strain
hardening are taken into consideration 1700 1655 — 3

(11-2).

Local variation of thickness is taken into
consideration, while strain hardening are 1700 1391 —18
assumed to be constant over flange (I1I-4).

Strain hardening is assumed to be con-
stant over flange, and thickness is assumed

to remain to initial thickness of blank (II- 1700 1389 —18
4).
Max. principal shearing stress theory (II-
5).
k=(a,—03) 1700 1300 —23.5
k=1.10(c,—05) 1700 1430 —16
Experimental formula [8]. ’
Puax=3(0p+05)do—d—1a)ts kg 1700 1958 +15

It is found that the drawing force calculated according to the maximum shear
stress theory is the smallest. However, if the average deformation resistance is
taken as k=1.1(s,—0;) as did Sachs, the value of the drawing force will approach
experimental values to a degree within practical application.

The “experimental formula” noted in the aforenoted table refers to the equation:

Prox=3(oy+0,)(dy—d,—74)t, kg,
heretofore introduced by the authors [8]in which, g, is tensile strength, o, as 0.2%
residual strain yield stress, d,, d, and r, are initial blank diameter, die hole dia-
meter and die shoulder radius respectively and ¢, is the original thickness of the
blank.

Referring to the above table, it can be said that precluding the case of calcula-
tions by faithful consideration of all factors or by experimental formulae, the
drawing force determined by any approximate method of solution would not only
be substantially small but also be absent of any marked mutual differences. Al-
though the drawing force determined by experimental formulae is greater, it is
from a practical standpoint with permissible limit.
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Insofar as the determination of the strain distribution is concerned, it is desirable
to calculate this distribution by setting up a true formula as it has been found that
a direct relation cannot be tied-in with the most simple shear stress theory and the
reason of excessive divergence from actual condition when other approximate cal-
culation methods are employed.

6. The effects of mechanical properties o~ of materials on stress and strain dis-
tribution

When the plastic curve of a material is approximated in accordance with the
power law o=K'(g)", the characteristic of work hardening of the material can be
judged by the magnitude of the power n. For instance, the power n for material
such as duraluminium, aluminium which are comparatively free of work harden-
ing, ranges between 0.1-0.2 and generally between 0.4-0.5 for brass, stainless steel
and other. The » for materials commonly used for drawing ranges between 0.1-0.5.

Now an investigation was made as to the effect of different materials on stress
distribution and strain distribution by taking three types of materials (n=0.1, 0.52
for phosphor bronze subject to test, and 1.0) and by solving in accordance with a
strict method of solution (Refer to Fig. 18).

a/K’

1.0

08 _ ] n=01 /

. Lo
/ o
0.6 ]
/ A9
0.4 /
0.2

0.2 0.4 0.6 0.8 1.0

[
FIGURE 18. Plastic curves with parameter n.

For the purpose of illustration, a stroke of 17mm for the case of the flat die in
(2) will be selected for calculation. In other words, a blank with a radius 7, ap-
proximately twice the diameter 7, of the punch will be shrunk or drawn until the
ratio of the extreme outer circumference R, to 7, reaches about 0.77.

Fig. 19 indicates the stress distribution according to calculations. Although o,
displays a tendency to change along the radial direction depending on the magni-
tude of 7, ¢, on the other hand indicates a steady tendency for reasons as previous-
ly denoted.

The strain distributions as determined from the aforesaid stress distribution is
shown in Fig. 20 wherein it will be noted that although different materials may
be used, the strain distribution in the flange portion as in the portion correspond-
¥ ing to the portion of the die shoulder are practically the same. This can be readily
understood if we consider that deep drawing work of a cylinder is controlled by
the axis and since the shape is determined by the die, the freedom to affect the
state of deformation becomes limited.
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FIGURE 19. Comparison of stress distribution FIGURE 20. Comparison of strain distributions
with parameters »n over flange part AC, with parameters n over flange part AC,
when drawn to a stroke of 17 mm by flat when drawn to a stroke of 19 mm by flat
die. die.
Part 1II

FORMABILITY TESTS [9]

Testing methods presently employed in judging the formability of materials may
be divided into indirect testing comprising such as tensile testing and hardness
testing, and direct testing involving actual deep drawing work. Generally, the in-
dividual test values obtained from indirect testing have practically incomplete
relation to formability and as the method based on direct testing is preferred,
several investigations were made in this respect.

1. The relation of work hardening constant m to formability

If 0, and ¢, determinable from tensile tests on a material as described heretofor
and their relation approximate according to the equation o,=K'ej, the tensile
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strength would be expressed as o,=K'(n/e)*. Moreover, and according to the ap-
proximate solution applicable to deep drawing with a conical die as indicated in
I-6, the maximum drawing stress (4,),, for R=R, would be solved by the follow-
ing equation.

(ol)m=e“"( 1 +—}§){ 1 —(—C—>B}K’(ln ) (28)

N
Now, if we assume that the drawing limit is reached when the maximum drawing
stress equals the tensile strength, the drawing limit would be given by following
equation.

(e)n=K (i:—) . (29)

In the preceding equations, B=y cot 8, {=R,/r, and 7, represents the ratio of
R, to 7, i.e., (Ry/r,). Since 7, as noted hereafter, is a function of %, the drawing
limit would be established by given values to n. Therefore, the work hardening
constant » can be used as an element in judging the formability of a material.

C. Arbel [ /0] investigated the relation of » to formability experimentally with
respect to aluminum, copper, brass and stainless steel and deduced the conclusion
that good formability would be obtained as the bigger #» becomes.

0.40
B
ST(0.11) Q/A;%(':’
qjsra2 |8
ST(0.05)
gP:)
Q
?\ 0.42 ﬁ
E Al
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&
A
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0.4 ST(0.11) /4Br
ST(0.12)
§ 31(0.05)/
A
/ Cdi)
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1
3
S.D.C.O i
V4 5
/
048
Q 0.1 0.2 0.3 0.4 05
n

FIGURE 21. Relation of work hardening constant to
drawing limit (Experimental result).

Fig. 21 indicates the experimental findings of the authors with the exception of
mild steel (S.T.) which indicates a different characteristic, the results respective to
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other materials coincide with those obtained by C. Arbel. Consequently, it would
be illogical and false to compare the formability of all materials principally on the
basis of the magnitude of n. In other words, a cause for this departure may be
attributed to the fact that the fracture strength of the blank coming into contact
with the corner of the punch head is not equal to the tensile strength and that the
formability is not a simple function only of n. Put in other words, the point of
fracture is subjected to bending in the initial stage of deep drawing followed by
a deformation under multiaxial stresses and is affected by the friction between the
blank and punch surface. A simple factor to investigate the influence of these
various factors is taken as the ratio of ¢,/s, i.e., the maximum punch force P, in
forming a blank with a drawing limit divided by the cross sectional area of drawn
shell (o, = P, /m(d;+1t,)t,) to o, (See Table 4). In view of the differences in magni-
tude in the ratio of apparent fracture strength o, to o, and the extremeness with
respect to mild steel, we can consider this as good reason to support our viewpoint
that the formability of a material cannot be and should not be compared pricipally
on the basis of .

TABLE 4.

Material Thickness| Hardness lthlrtéglgatg, (cgzs/eagf n I&Ir':xfgg I(ilrr:\:llrl:g
flat die) coefficient iatlo

mm V.H.N. lg, kg/mm? D,/d, Li=Dy/d,
Al 1.0 26.0 9.6 0.98 0.246 0.403 2.188
S.D.C.O. 1.0 53.0 18.3 0.92 0.110 0.415 2.124
Cu 1.0 43.2 23.5 1.07 0.341 0.389 2.269
7/3 Brass 1.0 66.4 34.2 1.07 0.439 0.386 2.299
6/4 Brass 1.0 94.7 38.7 — . 0.386 0.385 2.290
ST. (0.05) 1.0 94.7 34.3 1.22 0.246 0.392 2.252
ST. (0.11) 1.0 93.6 33.4 1.07 0.194 0.390 2.264
ST. (0.12) 1.0 166.0 37.2 1.12 0.240 0.391 2.256

2. Formability test with a conical die

When the ratio of 7,/t, ranges approximately between 25-35 in deep drawing
work involving a conical die (Fig. 22), a blank holder would not be necessary
and the work would be made easy. Moreover, it provides the added feature that
the difference in forming limit due to differences in the dimention and shape of
the die would not be as pronounced as in the case for a flat die. According, an in-
vestigation was made as to the simplication of the direct testing method by de-
ploying these features.

a. Maximum punch force method

Although the limit of deep drawing can be found accurately by determining the
maximum diameter of a blank drawable from circular blank of various dimensions,
this method is time consuming, tedious and impractical.

Now, the relation between the diametrical dimension of a blank and the maxi-
mum punch force within a reasonable range will be of linear nature, Moreover, a
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FIGURE 22. Deep-drawing by conical die.
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linear relation also exist within a certain range between the fracture force and
blank diameter in treating with blanks beyond their drawing limitations. Now, if
these relations are plotted as shown in Fig. 23 and deep drawing limit established
from the intersection of the straight lines, it may make it possible to reduce the

number of necessary blank or from the standpoint of time, derive the limit more
quickly.

Pm kg, P:kg

1000

D,

FIGURE 23. Determining the drawing limit by max. punch force method.
a,m, o; Fracture forces at bottom of shell.
4,0,0; Max. punch forces of deep-drawing.
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b. Diametrical ratio method

If the friction constant is assumed to remain constant in the course of deep
drawing work, the maximum punch force would be reached when the differential
equation for o, at R=R, satisfies

d(”l)k:m
B
Consequently, we have ,
4 f1-(L }__
d,,[(ln"){l (,,) ]_0’
B
P g, 30
n—Blnnm ( )

Wherefrom, we can determine 7, in the case of drawing a blank of {.
If the fracture strength equals the tensile strength, we will then have

C"—n:(l—mf_;‘hw):o, 31)

RO ST
e 1+B/ e*”
Wherefrom the relation of 7, to { would be established.

Now, the relation of the diametrical ratio %,, found accordingly to the formability
is identically the same as the relation of n to formability. As noted previously,
the effect of the fracture strength must be accounted for in the test values which
can be taken care of by working with a plate larger than its drawing limit and by

employing the diametrical ratio R,/r,=D,/d, corresponding to the instant of
fracture (Fig. 24).

when
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FIGURE 24. Test piece at the instant of fracture
at the shell bottom,
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Fig. 25 shows the results found experimentally on the relation of the diametrical
ratio 7_, ,, corresponding to the instant of fracture at the shell bottom to the
deep drawing limit respective to a blank 1.4 times the punch diameter. According
to this method, the maldistribution as was found to be associated with mild steels
in Fig. 21 now coincides with the lines of other metals wherefrom it can be seen

Do
bt
130
7/3Br
6/4 Br
STOILAL
ST(0.12)
15— ST(005)
SD.CO
110
0.80 0.75 0.70
N(E=1¢)

FIGURE 25. Relation of diametrical ratio to drawing
limit (Experimental results).

that the comparison of formability can be accurately on the basis of the diametrical
ratio. According to this method moreover, it would only be necessary to employ
blanks of one diameter, introduce great savings in testing time and incidental ex-
penses and serve sufficiently for practical testing applications in the plant.

In conjunction with the employment of this diametrical ratio method for material
selection purposes, it has the shortcomings of insufficient contribution of the frac-
ture strength to the test values due to the occurence of fractures at a shallow draw-
ing depth and in producing wrinkless if the diameter of the blank used is too large.
Consequently, it is preferable to use blank of a diameter just as small as is allow-
able and when established according to the formula dy=(2.6~3.0)d,, it would prove
satisfactory.

In actual working conditions, combinations of deep drawing and bulging or
stretching are oftentimes encountered, under these circumstances, the use of a
spherical punch head is believed to be suitable in selecting materials properly. It
is understood of course that it is preferable to employ a flat nosed punch for pure
deep drawing work,
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SUMMARY

This analysis for deep drawing of cylindrical shells was made on the basis of
the total strain theory and octagonal shear-strain relation with due consideration
of the differences in local work hardening, thickness variation and by thorough
analyses of actual drawing phenomena. The analysis also undertook to approxi-
mate the equivalent stress ¢ and equivalent strain & according to the power law.

Actual experiments were also performed by using a flat die and a conical die
for deep drawing of phosphor bronze plates with the least directional deficiencies
in verifying the results of calculations.

It was found that the drawing force as well as the strain distribution according
to calculations coincided very closely with experimental findings. Furthermore,
the results of this experiment was checked compared against those derived from
miscellaneous approximation methods heretofore published. Moreover, it was
verified that there is practically no difference in the strain distribution in the flange
and the portion in contact with the die shoulder during the course of drawing ir-
respective of the material used.

Furthermore and according to results of investigations related to formability
testing, it has been confirmed than the magnitude of the flange diameter produced
at the point of fracture of a blank greater than its drawing limit and formed with
a conical die, can properly used in comparing the formability qualities of materials.

In closing, the authors wish to express his deep appreciation to Messrs H. Kudo,
S. Fukuda, T. Hojo, H. Okawa, K. Abe for the assistance and help lent in carrying
out and conducting calculations and experiments. The authors moreover wishes
to note that a subsidy was received in the early stage of this research program for
scientific research funds from the Ministry of Education.

Department of Materials
Aeronautical Research Institute
University of Tokyo, Tokyo
May 21, 1958
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