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Simultaneous Effects of Pressure Gradient and Transverse
Curvature on the Boundary Layer along
Slender Bodies of Revolution

By

Michiru YASUHARA*

Summary. Calculations of the effects of pressure gradient and transverse curvature on
the boundary layer along slender bodies of revolution are made for allowable body shapes
by the series expansion method. Two methods of calculation are presented: the first is the
perturbation expansion of flow quantities from the uniform state, and the second is that
from the stagnation state. In both cases, allowable body shapes are obtained for the given
outer pressure gradient. As an example of the first method, the boundary layer flow along
a slender paraboloid of revolution is calculated. The results show that, as already found,
the transverse curvature acts on the flow somewhat similarly as a favorable pressure gradi-
ent. Further the displacement and the longitudinal curvature effects on the viscous layer is
estimated. These effects are found to appear in the second-order terms of the series expan-
sion.

INTRODUCTION

A number of studies have been made on the solution of the two-dimensional
laminar compressible boundary layer, but the extension of the method to the
three-dimensional problem have been made with partial success. Especially for
the axially symmetric flow, it is well known that if the ratio of the thickness of
the boundary layer to body radius is very small and negligible compared with
unity, Mangler’s transformation can be applied so that the problem is reduced
formally to that of the two-dimensional flow. Concerning the boundary layer
flow along more slender bodies, Mark [/], and Probstein and Elliott [2] have
given a transformation of the equations of motion to that of almot two-dimen-
sional form, and calculated several compressible flows without pressure gradient.

The object of the present study is to extend the calculation to the more general
flows containing pressure gradient. However, it is difficult to solve the general
problem for all kinds of body shape accompanied by pressure gradient. Therefore,
the series expansion method is used for allowable body shapes. The result ob-
tained by this method can be referred to as an accurate one by which the accuracy
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of the approximate calculations such as momentum-integral method should be
checked.

The present study was carried out when the writer was engaged in the Institute
of Science and Technology, University of Tokyo. The writer wishes to express
his tanks to Professor R. Kawamura for his kindness in inspecting the paper and
communicating for publishing as the Report of the Aeronautical Research Institute.

1. EQUATIONS OF MOTION AND TRANSFORMATIONS

It is assumed that the specific heat at constant pressure ¢, and the Prandtl
number P, are constant, and that the gas obeys the perfect gas law:

p=RpT, (1)
where p is the static pressure, p the density, T the absolute temperature of the
gas, and R the gas constant per unit mass. Then, the equations of motion for { )
the axially symmetric boundary layer flow become Gty
(pur), +(pvr), =0, (2) :
1
PUU, + PVU, = —pz+7 (pry)y » (3)
ey(puTut pUT, ) =upt5 2 (ur Ty + gty (4)

r

where 2 is the distance measured along the body surface from its nose, ¥ is the
normal distance from the surface, 7 is the radial distance from the axis of sym-
metry, w and v are the velocity components in the x and y directions respectively,
as shown in Fig. 1, and u is the coefficient of viscosity. The subscripts  and ¥
denote partial differentiations with respect to each.
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FIGURE 1

The boundary conditions at the wall, y=0, are

u=v=0,
and T=T, (non-insulated case),
or T,=0 (insulated case),

where the subscript w is used to denote quantities at the wall. At the outer edge
of the boundary layer where y=3$, the values of « and T are specified as
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Boundary Layer with Pressure Gradient and Transverse Curvature 155
u=u, and T=T,,

where the subscript e is used to denote quantities outside the boundary layer.
It is well known that the above equations are reduced to almost two-dimen-
sional form by Mark’s transformation:

- — 7

where L is the reference length. Then, 7 is expressed in terms of the new co-
ordinates by

2 '.—.
%:1+2Lc:)say, (6)

where « is the angle the tangent to the meridian profile makes with the axis of
symmetry.

Mark [/], and Probstein and Elliott [2] have given several solutions of the
boundary layer equations for the compressible flow without pressure gradient
and for the incompressible flow with pressure gradient. Probstein and Elliott
have also attempted to extend their analysis to compressible flows with pressure
gradient, but it has been found that series expansions of the physical quantities
in integral powers of a suitably chosen parameter § (which characterizes the ratio
of body radius to boundary layer thickness, and whose coefficients are functions
of the similarity variable, 7) are only possible when the Mach number of the
external flow is zero and u,=const.

Now, it is assumed that the viscosity varies linearly with the temperature,

) (7)

where C denotes the Chapman-Rubesin’s parameter [3]. By the introduction of

a stream function ¥ and the variable 5 defined by

prufp,=ov/d(y/L), }
prvfp.=—0v¥/3(z/L),

and further by the transformation of ¥ and T/T. given by

(8)

—: C cuc_ 1/2 _3 ’
"I/‘ ( Y —CC) f(oc 7}) } (10)
TIT,=A2z,7),
equations of momentum and energy are transformed, respectively, into

I{E(Cu‘.u(.)’ “oJ"(ul,/Cyp)’} o |

TN I X od g "JaJ

20 Cyu, + u,/Cy, St ®lfafon=Ialn)

1 2(Crau) | » T, .o f '
3{1 +W f o= S — . U * A= 25 (f'ivx 2d’7‘> " (11)

This document is providqgﬁ

by JAXA.



156 M. Yasuhara

1 x C c“Ve ' — :—Ttﬁi
__‘2‘{1+ﬁ%:_m@£e>_}fzn+x(fnzg—f;z,,)+ﬁT_e £
_P} va"(')’—‘l)Mf{ "?n_*g-%e;;l} (12)
—qef 1 apage }
"’25{ P,(z'“f Zd”7>,,+('v DM f7, f 2dnt
where
Cv,x Lcosa ul u
E= e Mf::_c:___e____, 13
\/ U, s, @ yRT, (13)

and the prime is used to denote the differentiation with respect to x.

2. PERTURBATION EXPANSION

It is well known that when & is kept constant, the similar solution exists if
M, is a constant, or if M, is zero regardless of the pressure gradient. If the pres-
sure gradient is small and the flow quantities can be expressed by the power series
expansion from the uniform state, it is easily ascertained that the perturbation
calculation is possible under a suitably chosen condition.

Let %,, Cv,, and T, be expanded as

Ueftho=1+A,@/L)" - - -,
pc/ywzl_l_Bl(&;‘/L)m_i_ ..,

_ (14)
T|To=1+T(x/L)"+ -,
r/L=Ry@/L)"{1+ R,(x/L)"+- -},
then, £ can be expanded as
ey @l 1 cos RPH@IL) (1 E@IL) 4 ) (15)

From Egs. (11) and (12), referring to the power of & in the expression of &, itis
seen that the power m must be of the form

mq:—;——-Zn ) (16)

to make similar expansions of f and 4 possible, where ¢ represents an integer.
General discussion of the possibility of flow satisfying the condition (16) is not
discussed here except for pointing out that the subsonic boundary layer flow along
a slender paraboloid of revolution is a case.

Under the above conditions, f and A can be expanded as follows:

f=f0(77)+(§;/L)m 1("7)4‘ trc 1 (17)
2220(”7)‘}‘(5/11)7"]1(77) +eee J
In the zeroth order, if %= 1/4, the momentum equation (11) is given by
21V + Fofi'=0, (18)
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Boundary Layer with Pressure Gradient and Transverse Curvature 157

and the energy equation (12) becomes

V4= foz'+(v—-1)Mi =0 (19)

Pr
In the first order, if the integer q equals to unity, the corresponding equations for
f and 2 are, respectively, given by

2007+ Fufl = 2m L+ et DFL i om{ AL fo A f )

Cv.L Lcosa !
4 d 0 7”1 2.dn) =0, 20
+\/uw R04/2n+1(0f077> ( )
P 1+f02{_szolzl+f1%+m(A1+B1)fo%+2m%f1—'2’mT1f0,10
g Cv.L Lcosa 1 !
2y—1D)MEQ LY o 0o s~ {2 Ad

2y — 1M —maday/ Pl Lcosae [ (i [ aan)

F(y—1)ME J’”fzodn}_—_o. 1)

Egs. (18) and (19) are the same as those obtained by Probstein and Elliott [2].
Egs. (20) and (21) are linear ordinary differential equations, and their orders are
reduced by the transformation of f; and 4, into [, and k,, related by

Fin=14) [ L,
OSTOFEXOTS

Especially the homogeneous part of Eq. (20) is the same as the one appeared in
Howarth’s problem of a boundary layer flow with a linear velocity distribution.
All the higher order equations may be calculated in a similar way as above.

If the integration of above equations is made, the local skin friction coefficient
C, and the local heat-transfer rate @ at the wall are obtained as follows:

0= Mthlues— e (Mo ) TlL (2 S @iLyi2@], 03

(22)

Poctico Poo (x/L)** "=
_ —_ cpTePc ,rw/L Cycu'c Ve %o" nm 3 o)
= ()= e el (B2 ) S@LyAO). @9

3. STAGNATION FLOW EXPANSION

The perturbation method presented in the previous section is practically ap-
plicable for obtaining the down-stream solution. In the present section, an attempt
will be made to obtain the solution in the case where u, assumes the form

U/ Uhoo= AT/ LY" + A (/LY 4 -« - . (25)
It is then plausible to expand Cy, and T, as
ve/vee= B+ B,(&/Ly™"+ -, } (26)
T,)T.=T,+ T(x/L)*™+---
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Now, at the glance of the leading term of &, if n == 1/4, the power m must be
of the form ,
1 m

’-2m=<———2n——) , 27

q 5 5 (27)

where ¢’ is an integer. Under such conditions, f and 2 can be expanded, and the

equations for f, and 2, (n=0,1,-- -) can be obtained. In the zeroth order, the
momentum equation is given by

2"+ Q2m A1) fof +2m(4—F7%) =0, (28)
and the energy equation is given by
1 2 1
P, Wt mzjL Foki=0. (29)

In the first order, the corresponding equations are

211"+ (m+-1) f, " —8mfLfI+(Sm—+ 1) f'fi 4204

— (A, + B ot — Am A —f) =26 S [2dn) , (30)
L (mt 1) foll = 2m flts+ 5 (Sm+ i S,
= — A+ B) il 2m T f = (= DM 71— ma,
0
?Eo(loflodﬂ> > (31)

respectively, where it is assumed that
§=¢&,(/L)"+ & @/ L)™ - - - .

Eq. (28) coincides with the result obtained by Probstein and Elliott in the in-
compressible flow if 2,=1. Egs. (30) and (31) are linear differential equations,
and their orders are reduced by the similar transformations as given by Eq. (22).

The skin friction coefficient C, and the local heat-transfer rate Q at the wall
are given by Egs. (23) and (24).

4. BOUNDARY LAYER ON A SLENDER PARABOLOID OF REVOLUTION

4.1 Inviscid Flow outside the Viscous Layer

As a special example of the perturbation expansion, the solution of the boundary
layer flow on a slender paraboloid of revolution is obtained in this section. As
well known, the zeroth order solution f, of the boundary layer is obtained by
Mark [/] assuming the axial pressure gradient zero. This assumption corresponds
to limit the consideration to the flow far behind from the nose of the body. The
first order solution appreciating the effect of perturbation pressure can be calcu-
lated by applying the analysis discussed in Section 2.

To find the inviscid solution in the subsonic case, the Prandtl-Glauert’s ap-
proximation can be applied to the incompressible solution. The incompressible
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Boundary Layer with Pressure Gradient and Transverse Curvature 159 i b

flow past a paraboloid of revolution is well known. If the radial coordinate 7, ! :
of a paraboloid of revolution is expressed by il
r3,=4Ls, (32) i1
where s is the axial distances from the nose of the body and L the focal length l
of the paraboloid as shown in Fig. 2, the inviscid solution along the surface is ‘
given by [4]

du* _ ur¥—uo ___ Ls v* (L)' (33)

o te  1H(Lfs) e 1L/

where * and v* denote the velocity components in the s and » directions respec-
tively.

N vt g* fi
- == o P
Zz'u* ‘i'
I

-

Voo i
i

‘.il

:
FIGURE 2 o

For the subsonic flow, the application of the Prandtl-Glauert’s approximation

gives A
du* _ 1 LBs  _ _ L/s

U B 1+(IEYs)  1H(LAYS) (34) @

”_*—i (Lﬂz/s)uz _ (L/S)Vz ;

Ue B 1+(LBYs) 1+(LRYs)’ |

where i

B=+1—M%. |

For the flow far downstream from the nose where L/s is small compared with il

unity, the right-hand sides of the above equations can be expanded as follows: I

- (35)

2B )

It is interesting to note that the first order perturbation term is independent of
8 so that the effect of compressibility is seen only in the higher order terms.
The resultant velocity ¢* on the surface becomes 1

* *2 *2\1/2
Pt be o

U
Then, with the aid of the energy integral in the inviscid region, the flow quantities
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on the body surface are determined as follows:

U q* 1 L _ 1
Me 9 i =1t
Uoo  Uso 2 s+ 2 +
pe—pplaplo —iplmet
Poo 2 8 2
'pezl_*_lMi_'_L_-i-... —_—.l—i—lMit—l—...’
Poo 2 s 2
T "}""1 zL _ vy—1 2
—ec =1 M=+ =14+ Mit+---,
T + 5 S-i— + 5 +
e q_ 2=y L 20 s ‘
. 2 s 2 + (37)
cosa:l———l——Ii—}—- :1-——1-t+ s
8 2
i:t(l—it+ )
L b
7, s 1 )
v 45 —4t(1——=—t+---]),
peag=a(i-got
f= L& 11— @Mt |

where

t:<%>1/2, 50:(3%%)1/2'

and suffix e is used to denote quantities at the end of the inviscid layer, or those
on the body surface in the zeroth approximation.

4.2 Viscous Layer

Before going into the calculation, the range of validity of Egs. (2), (3) and (4),
denoted in the (z, %) coordinate system, must be checked. If the longitudinal
curvature «(x) of the body surface is taken into account, it is known that Egs. (2),
(3) and (4) are valid when the terms of order «3 are neglected, where & is the
thickness of the boundary layer, and the equation of y-momentum becomes, after
higher order terms are neglected,

kpu*=0p/dy ,
which can be replaced by dp/d(y/8)=0, if the term of order 8 is neglected. There-
fore, in the present calculation, the solution is obtained for the case where «8 is

negligible.

Now, it is known that the outer inviscid flow solution obtained in the preceding
section just corresponds to the case n=1/4, and m=—1/2 in Section 2. There-
fore, if f and 2 are expanded in power series of (2L/z)'* as

F=Fon)+ QLR )+ -+ - . } (38)
2= 2aln)+ QLIE) )+ -+

¢

o
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the equations which determine f, and 2, are, in the zeroth order, ii

21"+ 1 ()”———250( o"f*od’?) ’
2 :
A+ fods+2(y DME f*

r

— _250{—1% (zs f aodn)'+(v—1>Mi ;" f ﬂodv}’ 7 15

and in the first order,

R e A |

— 26 [(0 [ + (7 ) + 17T [aan)}, |

2l finck T LM S A O £y

r i 1

—1 . —1 4,4 2 i
+ 0L fia 2y - M2 (1475 ranes (40) o

=26 [ (% [adntt | iudn) += DM 12 [y |
2 pft [andn—(1+ 2 bz 10 udn} |
I el Gl )L {—Iﬂ—(zs |/ ) + o= DML [ dudn} ] i

4

The first order equations are the linear ordinary differential equations, whose
solutions are not difficult but laborious. Further, these solutions are partly in- i
valid as the longitudinal curvature effect is not taken into account, the effect of : i
which is discussed in Section 4-3. i
In a special case where the Prandtl number equals to unity and the surface is t
thermally insulated, the energy equation can be solved as a function of f as i

follows: :
T

— —_ (y=1) Y= 2_L_ e
= 1+ 5 M1 f:,)—zo+xl(9_c) +e, (41)

where il
e s (PR L N (R EPRE S y

LY

The numerical calculations of f, and f, are given in Appendices A and B re-
spectively. Especially mathematical details of calculating f,, are presented by
Mark in his paper [/]. If & has a small value compared with unity, the follow- i
ing results are obtained:

1(0)=0.332+{0.28840.117(y — NM2)28+- - -, }

F1(0)=0.679+{0.083+0.214(y— N} M+ O(&,) - 42)
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162 M. Yasuhara

4.3 Effects of Displacement Thickness and Longitudinal Curvature

In the above calculations, the effective deformation of the body shape due to
the boundary layer and the longitudinal curvature of the body surface are not
considered. In this section, their effects and orders of magnitude are evaluated.

The displacement thickness &* is calculated by

fa(l_ pU )—r—-dy:S*—l-S*z cosa
P/ Ty, 2r,

Hence the following relation is obtained:

T

where
2= e v

=2{(14+N,§,)"?—1}, &=— ,

8o=2{(1+Ne&) L& 5, T
00 , _ /2L 1/2
N:f (R*f)dﬁ—No'}'K?) Ni+---, ¢
0

No= [ (Go—=rfDdn, N= [ Qu=FfDdy.

[ ‘0/‘ 0 1 [

Therefore, the effective body shape is represented by

ry=7,+(8*/cos a),
or

r2=4L(14+ N&,)s(1+2dL/s+---).

(43)

(44)

(46)

Then, the inviscid flow quantities for the above effective body are obtained by

replacing ¢ by et in Egs. (37), that is,

Go)=mgts
(ﬁ)1=1+§Mit+- o

(L) =14 Szt

() =15 a=nazts
(—i)lzwg(v—z)mw--- ,
(sl):%so{wﬂ}?%sw . }

where
e=J14+NyE,.
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On the other hand, the geometrical quantities are kept unchanged, that is, ex-
pressions of cos a, s/L and 73,/L* keep the same form as in Eq. (37). Then, f and
A are to be expanded as follows:
f=fn)+etfiln)+-- -, } (48)
A= 2o(m)+eta () + - - -
If it is assumed that the surface is thermally insulated, and that the value of
the Prandtl number equals to unity, then, N, is given by

No= [T —fpant e

—fi")dn - (49)

Next, the order of magnitude of the term /c8 or x&* is estimated. It is known
from the simple calculation that the longitudinal curvature « of the body surface

is given by
=_L<£>“{1__i L }
g 2L\ s 2 s + '

Therefore, with the aid of Egs. (44) and (45), #8* is calculated as
s tofivo(2)
K 2 o—1 1+

— —(e—Dt{1+0@)} -

Further, if &, is small compared with unity, &, is expanded as

=152t (50)
where
No= [ =fiydn+ 2202 [T (1=fi)dn
0 2 0
=1.721+1.192(y—1)M% .
Hence

K% = —ﬂz@ H1+0(E )} =0()

As seen from the above relation, the effects of the longitudinal curvature should

be taken into account, if the term of order &gt is considered. Similarly, from

Egs. (48) and (50), the displacement effects are seen in term of order &t.
Therefore, if terms of order &t are neglected, the solutions are given by

F=FrotFor+ 260+ Fro s +o(so & )
Lo (s1)
A= g0+ 201 26, +zm_+o<so & )

Numerical calculations of fy,« - «f,, and Ay -+, can be found in Appendices A
and B. The resultant coefficient of skin friction can be calculated from Eq. (23).
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FIGURE 3

Fig. 3 show values of fi, fJ/, and f{] at =0 plotted against M... As easily
known, effects of the transverse curvature and the pressure gradient are specified
by terms multiplied by & and L/s in Eq. (51). Since all quantities f/(0),- - - f%/(0)
are positive, the transverse curvature and the favorable pressure gradient play a
similar role in the first approximation at least in the wall skin friction.

CONCLUSION

Simultaneous effects of the pressure gradient and the transverse curvature are
investigated by the perturbation expansion method. The present calculation
cannot be applicable to the general body shapes accompanied by pressure gradient.
Further, the perturbation equations become more and more complicated, if the
higher order solutions are required. As an example of the method, the boundary
layer flow on a paraboloid of revolution is calculated. From the numerical re-
sults, it is ascertained that the transverse curvature and the favorable pressure
gradient play a similar role in the first approximation.

The result obtained by the present method can be referred to as an accurate
one by which the accuracy of the approximate calculations such as momentum
integral method should be checked.

REFERENCES

(/] Mark, R. M.: Laminar Boundary Layers on Slender Bodies of Revolution in Axial Flow.
GALCIT, Hypersonic Wind Tunnel Memorandum, No. 21, July (1954).

{ 2] Probstein, R. F., and Elliott, D.: The Transverse Curvature Effect in Compressible Axially
Symmetric Laminar Boundary Layer Flow. Jour. Acro. Sci., Vol. 28, No. 3, March (1956),
pp. 208-224,

This document is provided by JAX&

O

®

o

3

}
q
x4



Boundary Layer with Pressure Gradient and Transverse Curvature 165

[3] Chapman, D., and Rubesin, M.: Temperature and Velocity Profiles in the Compressible
Laminar Boundary Layer with Arbitrary Distribution of Surface Temperature. Jour. Aero. o
Sci., Vol. 16, No. 9, Sept. (1949), pp. 547-565. ‘ ‘
[4] Milne-Thomson, L. M.: Theoretical Hydrodynamics. The MacMillan Company, New
York (1950), p. 426. i '
[5] Tani, I.: Revised Numerical Results for the Solution of the Flat Plate Boundary Layer y
Equations (in Japanese). Jour. Aero. Res. Inst., Tokyo Imp. Univ., No. 245 (1945), pp. 37-39. I
(6] Durand, W.F.: Aerodynamic Theory. Julius Springer, Berlin (1934), Vol. III, pp. 85-88. | 3

APPENDIX A
Numerical Integration of the Zeroth Order Momentum Equation for a Paraboloid

The zeroth order equation, as given by Eq. (39), is i
20" o= 26 S [aodn) .

where

|
|
zo_1+“’ ME(1—f1%) . It

If &, is small compared with unity, fo can be expanded as

fo=f00+fnx'250+"' . ,
Then, the equations which determine f,, and fm are k

21+ Ffll=
205+ Fuo b+ FiFu=— 14 [ {1+v M(1—f3) bn | =F.

The upper one is the Blasius’ equation and its solution is well known. The lower
one can be reduced its order by the following transformation:

"
Ju=JSo| hoadn.
/

The resultant equation becomes
2fwhii (655 [+ oo L) hin +2f"hyy=FY .

The solution of the above equation can be obtained in the same way as that of
Eq. (A-1) in “Appendix A” of reference [2]. The general solution is given by
Froy = A ko +hoys Where kg, is the complementary function, k. is a particular
integral, and A, is a constant to be determined from the boundary condition.
For small g, the expansion of the homogeneous equation was obtained as

.2

011 1‘|‘ 2380 '776+"’,

where
a=0.3320573.

This document is provided jIeﬁy JAXA.



166 M. Yasuhara

From this, Ay, and A{; can be evaluated at, say, n=0, 0.2, 0.4, and 0.6. The
integration can be carried out at intervals of 0.2 in the independent variable »
up to »=10.0, using numerical values of f, obtained in ref. [5]. The results are
presented in Fig. 4.

2.0 -

Vi
1.6 / \

/ ] \

0.8 7 > N

ot ®
©

o 1 2 3 4 5 & 7 8 . 9
7

FIGURE 4

Once the homogeneous solution is known, the particular integral is given by

m
how houf hg” m {(200—%'0/‘ 300d77>h011f0/02d”) }d’I-

The constant of integration A4, can be determined from the boundary condition
that h,, must vanish at the edge of the boundary layer, say, at #=10.0. Thus

Al = “hoxl’(lo)/hou( 1 0) s

and therefore

— J,(10) hou(??)“"Jl("?)"'(y M"{ J,(10) Frori () — J°("7)} ‘{\‘}

o ho1,(10) f01,(10)
—S(?7)+'y MZSy(n) ,

where

’ ()llﬂ)()

Toln)=ha, f [ f {1—pie— Lo f (=)o, Fisan |

h/ml 00

J(ﬁ) houf fn,({ {fn(l——'%2-"7:)71011.][({02(17]}(177 ’

Thus the zeroth order solution can be obtained in the following form:

So=FootSor 260+

where
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mn — 1 . 7
fm =folo S1(”7)d77 + Y Mifo’o Sz("?)d77 .
/ ;e

In particular,

2w —1
yo:zyAzy___er =1 p2a,010
FO)=2fi =2 L0+ ST (10}

—=0.2884-0.117(y— 1)M2 . |

In “Appendix A” of reference [2], the constant of integration A (A, in the
present paper) are calculated for both a cone and a cylinder. 1t is connected with
the perturbation friction from Mangler’s value by the relation

Cf/(Cf)Mangler_—'— 1+ Al * 280 ’

/4
17.5 // / A
&
Con 1 +2A, &, //
15.0 //
Cylinder —t ! ’ ;
12.5 / f—F
/ / :
Paraboloid — A ‘
10.0 'a
Y
A, /
Cone ——#/ |
7.5 _ —— |
/ a
SV
o [/
. A 7
/
%
25 g
. P y
_ —— //
% 2 4 6 8 I
Meo
FIGURE §

where &, denotes the slenderness parameter. This result is applicable to the
case of arbitrary Mach number only when the inviscid outer flow is uniform.
In Fig. 5, values of A, against M., when y=1.4 are given for a cone, a paraboloid
of revolution and a cylinder assuming P,=1 and (97/0y),,=0.
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APPENDIX B
Numerical Integration of the First Order Momentum Equation for a Paraboloid
The first order equation for f; as given by Eq. (40) is
2 fu A £ (14 0L i) iy
- —260[(ﬁ,” f zlda;>/+< % f zodn>’+%{1 --(2-—ry)Mi}( 4 f zodn)'] .
In the above equation, if the Prandtl number equals to unity and the surface is
thermally insulated, then ‘
=1 +_V_g.l M(1—f7%) ( a‘
®

== b (12 ) a—sy s
Transforming f; into G,=f/, and expanding G, in a power series of &, as

G1 = Gm + O(So) s

then, the equation to determine Gy, is given by

260+ fuGit fi Go=— A EZDMa g gy L0 9= L) —pgy=F

Integrating once, the above one is reduced to

2G1’v+fooG10=2A2+an2d"7 .
0

Integrating once more, the solution of Gy, is obtained, giving

Gm: ()’t)’{fn_zAz”{*anzd”’])'d—Z'}‘Bz}-
2 f 00

From the boundary condition that G;,(0)=0, it is deduced that B, must be vanish- {kwfg
ed. While from the condition G;(c0)=0, the value of A, cannot be determined

as the right-hand side tends to vanish regardless of the value of A,, due to the

asymptotic nature of fy. In the boundary layer theory, the method of steepest

descent is usually applied, as a plausible procedure, in such cases to determine

unknown constant. If such postulation is made in the present problem, A, can

be found to be

1 = 1+Q2—y) M3 1/ vy—1 n>
= — — LAy =T\ f) e el = e
A, 2[[41 n 7 (r+4(l—|— > Mo,

a=f10)=0332, o= f (U= f18dn=2.385 |
(U]

and therefore, f}, and f%/(0) are given by
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yl
. _ ro— S (11
fh= G =My L =Ly [ 20 0T g,

fi(0)=Gi(0)=4,=0.679+{0.08340.215(y— 1)} M .

Thus, Gy, is known numerically as a function of fy,.
Last, it is required to see the asymptotic nature of the term
n l
«ﬁ;’f 7 dn=Gp

0 00

appeared in the final expression of Gy, as fu/(7) tends to zero exponentially when
n—> oo, inversely the term in the integrand tends to increase infinitely. The solu-
tion of the Blasius’ equation as »—> oo is given by [6]

—_ U] U] -0
Fromn—B-+7 f f e~ kanPig,

where

vy=0.231, B=1.721,
therefore

- 7 .
Groi(~> “)ze_ém_wf ei?<'1—r1)~d7)

2 4
=_“° 4 _
n—~B  (n—B)
which diminishes by O (1/3) as 5 increases, and the convergency is ascertained.
In Fig. 4, G,y is also plotted against 5, showing the convergency of this term.

+ ...,
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