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Summary. The present investigation provides a basic theory concerning the concepts of
strain, strain increment and stress, which underlie mechanics of continua for small and
finite deformations.

All the deformations of all the matters from fluids to solids, viewed from their mecha-
nism, are classified into the two types, one is the elastic deformation due to the change in
the distances among constituent particles and the other the plastic deformation due to
the change in the mode of interconnection among particles. In order to construct a self-
consistent theory for the two kinds of deformation over the whole range of small and
finite deformations, the notion of strain and stress is needed to be introduced as being
specific to each of the two types, and the conclusions are as follows:

1. The elastic strain is specified by the change in the geometrical configuration from the
uniquely determinable undeformed state, and i$ defined by

1 0 'y 0s 0
‘E=21gi—gi)é'e’
and the elastic strain increment by
1 o 0
De¢E= EDgi j6é7

Where g;; and g;; represent the fundamental metric tensors before and after deforma-
tion respectively, and é' the vectors reciprocal to the basis é; in the undeformed state,
referring to the Lagrangian coordinate system.

The strain ¢E of a elastically deformed state does not depend on the deformation path

up to the state, i.e.
561) ¢E=0.

2. The quantity introduced primarily concerning the plastic deformation is the strain in-
crement, which is specified by the change in the metric during the current infinitesimal
deformation, as

DPE=(DPe); ,:eief =%Dg,~ setel

where et are the vectors reciprocal to the basis e; in the deformed current state.
The plastic strain PE="Pci/e’e’ is obtainable by integrating the plastic strain increment
D?E, hence the simultaneous differential equations

DPeij— g [Per iV (Du)s+PeirV (Du)s] =(D Pe)ij
[43]
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44 Y. Yoshimura

along a given path of deformation, where (Du); are the components of the incremental
displacement with regard to et. The plastic strain depends on the deformation path,
but not on the change in the geometrical configuration, and therefore, it is regarded as
a mechanical quantity nominated * strain history ”’. This means that

j;D”EﬂFO.

3. Between D¢E and D?E it holds the relation
D¢E=J.-D?E-J, J=#ée;.

4. The stress tensor T'=os%/e;e; which describes equilibrium condition is common to the
both deformations, and is so defined as to give the actual force per unit of sectional
area in the deformed state. This stress 7 is also the stress *T' for describing, together
with ?E and DPE, the plastic deformation.

5. The stress ¢T for describing the elastic deformation is defined by

eT=J-t.pT.J-!.

By means of these dualistic definitions of strain and stress for the two types of deforma-
tion, the theories of elasticity and plasticity are emancipated from essential self-incon-
sistencies ever lurked, and reorganized from beginning under harmonious contrast, over
the whole range of small and finite deformations.

1. INTRODUCTION

It will be needless to mention that various mechanics of continuum are essential-
ly distinguished from each other by the mechanical equations of state, that is,
hydrodynamics, theories of elasticity and plasticity, for example, by the com-
pressibility and viscosity laws, the Hooke’s law and the Lévy-Mises law. And
these laws are described generally in terms of the strain, strain increment and
stress, which are usually defined in common to all of the different kinds of de-
formation. That is, the strain has been.defined by the difference of the geo-
metrical configurations before and after deformation, and the strain increment
as the change in such strain, whether the deformation may, for example, be
elastic or plastic. Although this can be said rather natural in view of both the
logical process of deriving the strain as the only geometry of deformation and
the historical process of the development of the plasticity theory, which has suc-
ceeded to the theory of elasticity and inherited its methods and concepts without
any modification, I can give no consent to this idea of strain and strain increment
from the basic considerations on deformation as described below.

Deformations of real bodies can be classified into two groups in view of their
microscopic mechanisms; one involves all the elastic deformations, such as the
volume change of fluids, recoverable deformation of solids etc., due to the change
in the interatomic distances, the other the plastic deformations in a broader
meaning, such as the flow of fluids and metals etc., caused by the change in the
mode of interatomic connection. Thus we are led to make all the deformations
of all materials belong to either of the elastic and plastic deformations according
as the interatomic connection is maintained or not.

The essential differences between these two types of deformation are that the
former is the deformation with potential change specified by the change in the
geometrical configuration from the undeformed state uniquely defined, while the
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Meta-theory of Mechanics of Continua 45

latter, being an irrecoverable deformation accompanied by hysteresis phenome-
non, is not specified by the change in the geometrical shape, but by the deforma-
tion path, and any deformed state can be regarded at the same time as an unde-
formed state.

It must be concluded from the above reasoning that the strain for describing
plastic deformation should be something dependent on the previous strain history, so
that different from those for elastic deformation which are to be defined only from
the change in the geometrical configuration and are independent of the path of de-
Sformation. Though the differences between the values of these strain and strain
increment for two kinds of deformation geometrically identical are second order
small quantities for small deformations, they become finite for finite deforma-
tions. This implies that any erroneous idea, which has been allowed for practical
purposes for small deformations, can no more be permitted for finite ones. Both
the chaotic state of the coexistence of various theories of elasticity [/] and the
failure of all attempts of general theory of plasticity [2] for finite deformations
L AR can be considered to be attributable to the indeterminateness of and confusion
between the definitions of strain and stress for the two types of deformation. The
logarithmic strain for the extensional deformation will be the only case hitherto
introduced and correct as the strain for finite plastic deformation.

Another cause of the coexistence of the mutually inconsistent various theories
of elasticity for finite deformation seems to be attributable to the routine use of
the matrix method, which considers only the components of a vector or tensor
and is not adequate for considering the change in the basic vectors or tensors due
to deformation. What is correct in the basic idea among the legion of these elas-
ticity theories can be said to be that of F.D. Murnaghan [/], but it also, having
recourse to the matrix method, seems to involve some obscurities and mistakes
not to be admitted.

The above statements will be enough to show the necessity of developing the
mechanics of continuum, in particular elasticity and plasticity theories of solids,
valid for the whole range of small and finite deformations, innovating the exist-

ing concepts of strain and stress and basing on their dualistic definitions proper to

each kind of deformation. The theory of plasticity [3] based on the concept of
such strain, i.e. the strain history, and valid for the finite deformation, has already
been introduced by the present author, and lately the theory of elasticity [4]
corresponding to such theory of plasticity was known to be formulated in a quite
reasonable manner. In the present paper the author intends to focus his considera-
tions to the main differences of the definitions of strain, strain increment and
stress, on which the both theories are based. The systematic descriptions for the
theory of elasticity are expected to be published in the near future. Thus the
both theories will be seen to be reorganized from beginning under the charming
contrast and harmony.
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2. EsSENTIAL CHARACTERS OF EACH OF THE ELASTIC AND PLASTIC
DEFORMATIONS AND THE DIFFERENCES BETWEEN THEM

It was stated in the introduction that all the deformations can be classified into
two groups of elastic and plastic deformations, according to the microscopic mechani-
sm of deformation. That is, elastic deformation is that due to the change in the
mutual distances among particles constituting the material, the mode of their inter-
connection being unaltered. In such deformation the undeformed state with no
external load is uniquely determined. Consequently the deformed state, or the
strain representing it, can be specified by the change in the geometrical configuration
from the uniquely determined undeformed state, independently of the deformation
path. The strain increment can be given as the increment of such strain.

On the contrary, plastic deformation is that due to the change in the mode of in-
terconnection of particles—for example, slip in metals—, the interatomic distances ’
being maintained almost constant. Consequently, the microscopic structural & Q9
change such as the change in the group pattern of dislocations in metallic
crystals, being produced, even the deformed state which have the same geometri-
cal configuration are generally in different conditions, according to the path of
deformation up to the state. This means that the strain in plastic deformation,
which specifies the deformed state, cannot be the strain determined by the geometrical
configuration so that valid for elastic deformation, but other one dependent on the
deformation history, i.e. a strain, which we may legitimately designate as “the strain
history”. That the strain for plastic deformation should be none other than the
strain history is considered as the consequence of the fact that the strain can be
obtained as the result of integration of the strain increment along some prescrib-
ed deformation path, and therefore that the quantity which can be defined im-
primis concerning the deformation is the strain increment, but not the strain.

Another important character of plastic deformation is that any deformed state
can be regarded as an equilibrium state with null stress as well as it is with the
non-vanishing applied stress necessary for such deformation to be continued.
In fact, we cannont find in any way, from the mechanical considerations alone,
the strain of a given state of a given material or its annealed virgin state, so that
cannot but treat, in the mechanical theory, the given state as the origin of strain,
without having the complete knowledge about its previous history of deformation.
Thus we are led to consider that any plastically deformed state is regarded at the
same time as an undeformed state, i.e. as the origin of strain, and this may be said
to stand rather to reason in view of the microscopic mechanism of plastic de-
formation mentioned above. In consequence, plastic deformation is essentially a
sequence of successive infinitesimal deformations, each of their incipient points being
assumed as an undeformed state. Hence the strain increments corresponding to
the successive deformations should also be measured on the same principle. The
strain for plastic deformation dependent on its path will be obtained by intergrat-
ing such strain increment along some deformation path.

The above mentioned characteristics of elastic and plastic deformations can be
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reduced to the following table of contrasted form.

Elastic deformation

Plastic deformation

Change in the distances among parti-
cles

Change in the mode of interconnection
among particles

Change in the geometrical configura-
tion

Microspcopic structural change (in me-
tals, change in the group pattern of
dislocations)

Independent of deformation path

Hysteresis phenomenon dependent on

deformation path

Strain_increment is derived from the Strain is obtained by integration from
strain defined primarily the strain increment defined primari-
ly

Uniquely defined undeformed state Multiplicity of undeformed state (cur-
rent state of deformation is also an
undeformed state)

3. BAsiCc CONDITIONS TO BE SATISFIED BY THE STRAIN, STRAIN INCREMENT AND
STRESS FOR ELASTIC AND PLASTIC DEFORMATIONS RESPECTIVELY

It is believed to have become clear from the statements in the preceding sec-
tions that the definitions of strain, strain increment and stress should be quite dif-
ferent from each other according as the deformation is either elastic or plastic. Our
subject is now to clarify how to define these elementary quantities, on which the
mechanics of continua are based, and for this purpose it is needed to give some
considerations on the basic conditions, from which the definitions of strain, strain
increment and stress for each of the elastic and plastic deformations are to be
deduced.

Some of these conditions are common, and others are specific to each of the
elastic and plastic deformations. The former are as follows:

(I) That the strain, strain increment and stress as well as other quantities are
all tensors.

Both elasticity and plasticity laws as well as all other physical laws having
their meanings independent of the coordinate system to which their formulations
are referred, should reasonably be described by tensor equations, which have in-
variant forms. This requires such quantities as strain, strain increment and stress
involved in these laws to be tensors.

(IT) That the principle of virtual work holds in the usual form

5(work):fstress -+ (strain)d V, (3.1)
1 4

where J represents variation, dots.. double scalar product, or the trace (Spur)
of the tensor product, of the two tensors and V the volume of the body in the
initial or deformed state as the occasion may demand.

The validity of the virtual work principle in the form of (3.1) is necessary for
the existence of elastic and plastic potentials, which play an important role for
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the legitimate construction of mathematical theory.

On the other hand, the conditions specific to each deformation are summerized
as follows from the results given in the preceding section.

(III) Conditions for elastic strain® and strain increment: In elastic deforma-
tion, the strain, not the strain increment, is introduced straightway, and is speci-
fied by the change in the geometrical configuration from the undeformed state,
which can be defined uniquely. The strain increment is derived as the increment
of such strain. '

(IV) Conditions for plastic strain™ and strain increment: In plastic deforma-
tion, the strain increment, not the strain, is introduced primarily, and is specified
by the change in the geometrical shape from a deformed current state assumed
as an undeformed state to a succeeding one. The strain dependent on the deforma-
tion path can be obtained by integrating the strain increment along the path.

Specific conditions for the definition of stress are not explicitly given, but it
will be derived from the conditions (II), (III) and (IV) as some objects proper to
each of the elastic and plastic deformations.

Even the above conditions are not sufficient for defining strain and others, since
there still remains the freedom of selecting the quantity, which specifies the geo-
metrical configuration of the body. But this problem will be answered quite un-
artificially by employing as such quantity the metric of the space which deforms
in conformity with the body.

4. DEFINITION OF ELASTIC STRAIN

As was stated in the preceding section, elastic strain is a tensor derived from
the change in the metric of the Euclidian space corresponding to the material
body before and after deformation.

Representing the position vector of a material point in the initial and deformed
states by ¥ and r respectively, and the displacement vector by ,

r=r+u, (4.1)
so that, adverting to two adjacent material points,
dr=dr+du, , (4.2)

the operator “d”, indicating the differential with respect to the space fixed to the
material body, is expressed as

d=dzd, (4.3)
for the Lagrangian coordinates x°, where
0
pwr (4.4)
Introducing the gradient operator
| V =é%,, (4.5)

* The terminology * elastic (plastic) strain’’ is used hereafter to mean the strain valid for describ-
ing elastic (plastic) deformation, in addition to the existing implication of being the strain pro-
duced by elastic (plastic) deformation.
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where )
é,=0o,r, (4.6)
and
é,-¢' =}, (4.7)
d can be expressed by
d=d¢-7. (4.8)
Then (4.2) is written as
dr=dr-J, (4.9)
where .
J=1I1+Vu, (4.10)
I representing the unit tensor "
I=¢,. (4.11)
The metric of the Euclidian space corresponding to the deformed state of the

body is seen, from (4.9), to be specified by

ol @ (dr)=dp-J-J-dr, (4.12)
} where J represents the tensor conjugate to J. Hence
(dr?—(dP)2=dr-(J-J—1I)-d7F, (4.13)

and the elastic strain tensor is found reasonable to be defined by
‘B = -21-(.]-.7‘——1). (4.14)*

It is clear, as mentioned above, that this definition of the elastic strain satisfies
the conditions (I) and (III). Whether the condition (II) is fulfilled or not depends
on the definition of stress and it will be so introduced later as to satisfy the con-
dition (II).

By means of (4.10), the elastic strain (4. 14) can be written

E=—2—[Vu+ul7—l—(l7u)-(u7)] , (4.15)
so that setting
* u=uye, (4.16)
the analytical expression of (4.14) or (4.15) is given by
‘E=°,¢e¢,
) (4.17)
‘Ds,.,-z—i(V u,—l—V,u +Viu V,u ),

where
[;i%zai'%‘j_"a‘rf':j, (4.18)

] . e } (4.19)
Fij,lcz'i’(aigjk+ajgki_akguij) s

Al Skr 5
F,‘jz l

d.; and g¥ representing the fundamental metric tensors

* This definition is identical to that of Murnaghan (see [1]).
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go,;jzéi'éj, dij=éi'éj, (4.20)
for the space corresponding to the undeformed state of the body.
By means of

dr=é,-dx*, dr=e;-dz*, (4.21)
e,=ar, (4.22)

(4.9) can be written as
e, =é.-J, (4.23)

so that it follows that
J=ée,, J=eé'. (4.24)

By virtue of (4.24), (4.14) is expressed in the form

eE:%(gij-goij)éiéj > (4.25)

hence the components of °E as
egij:_%(g”_goij) . (4.26)

Where g,; is the fundamental metric tensor
g:;—¢€;-€;, (4.27)
for the deformed state. The components g,; of the elastic strain tensor are none

other than those obtained so far by many authors, but it must be noticed that the
basic tensors, to which they are referred, are é‘é’, but not e‘e’.

5. ELASTIC STRAIN INCREMENT

Since the elastic strain velocity is essentially the same with the increment, we
will now consider the latter ‘on behalf of both of them. Denoting the parameter
representing the time or the extent of deformation by £, and setting

a
D= dt—é—t— , (5.1)
the elastic strain increment can be given as the increment of the elastic strain
D "E:%(DJ-.?—I—J-D.T) . (5.2)
The operator V being time independent, Dy =0, so that we have
' DJ=VDu, DJ=Dul . (5.3)
Let be introduced the operator of gradient
. V=ea,, (54)
for the deformed state, then by virtue of
v=J-r, (5.5)
(5.3) can be written as
DJ=J-VDu, DJ=Dul-J. (5.6)

Consequently, from (5.2), we obtain the result
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D cE:J-_;-(VDquDuV)-f . (5.7)
By putting
Du = (Du).€’, (5.8)
the analytical expression of D“E is obtained as
D “E:% [V (Du),+V (Dw);] J-€'¢’-J, (5.9)
so that as
De E:_;_ [V (Du),+7 (Du),]6'é" . (5.10)
Where 7 (Du), indicating the covariant derivative of (Du),,
V (Du),=a(Du);—(Du),1"%;, (5.11)
’ N Ffj_g“'[‘ij,r3
1 5.12
S ‘ Fij,/cz—z"(aigjk+ajgki_akgi.i)' ( )

From (4.25), on the other hand, we obtain
D eE:%Dgijéiéf : (5.13)

These results (5.10) and (5.13) can be rewritten as
D E=(D%),6'¢,

(D) =1 [7Dw),+7 (Du)] = D0y 19
As we have, from (4.17) on the other hand, the relation
D °E =Drg, ¢, (5.15)
it follows that
(Dle);;= (5.16)
That is, the components of the elastic strain 1ncrement are cqual to the increment

’ of the elastic strain components, when referred to the basic tensors éé’.

6. DEFINITION OF THE PLASTIC STRAIN INCREMENT

It was mentioned already that in plastic deformation the strain increment, not
the strain, should be defined imprimis by assuming the current deformed state
from which the increment are measured as an undeformed state. The theory of
plasticity [3] base on such definition of strain increment and consequently valid
for finite deformation and strain history phenomena has already been developed
by the present author in a completely reasonable form. In the present paper, we
will now give an outline of its definition with the implication of setting it against
and making clear its distinction with that of the elastic strain increment.

Representmg the position vector of a material point for the states ¢ and t+dt
by r and r’ respectively, and the dlsplacement vector from the state ¢ to the state
t+dt by Du, we have
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r'=r+Dr=r+Du, (6.1)
so that

dr'=dr+dDr=dr+dDu, (6.2)
where d and D are given by (4.3) and (5.1) respectively. Since the deformed
state ¢ is regarded, by the condition (IV), as an undeformed state, the d should be
expressed by

d=dr-V, (6.3)
as against (4.8), V being the operator defined by (5.4). By means of (6.3), (6.2)
can be written '

dr'=dr-(I4VDu), (6.4)
where I indicates the unit tensor
I=ee' =g, e'e’=g"ee,. (6.5)

Since the displacement Du is infinitesimal, the plastic strain increment can be
defined by

D PE:-!Z—(VDu-{—DuV) , (6.6)

as the symmetric part of the tensor V' Du in (6.4) or as the first order infinitesimals
of the tensor D?E specified by (dr’)*—(dr)?*=dr-2D?E-dr. It is obvious that the
definition (6.6) satisfies the conditions (I) and (II), and will be proved that it

fulfills the condition (III), together with some reasonable definition of stress, which
will be introduced later on.

In plastic deformation, the current state ¢ being assumed as an undeformed
state, so that as a standard state, to which the displacement Du and others are
referred, we can put

Du = (Du),€e*, (6.7)
and therefore, obtain the analytical expréssion of the strain increment
D*E =(Dr¢),e'e’

D ”s)ij=—;— [7(Du);+7 (Du),] , (6.8)

where V(Du), are given by (5.11) and (5.12).
The definition (6.6) is easily proved to be expressed also by

D ?E =(Dr¢),e'e’ ,
(D”e)ijz—;—Dgij ) (6.9)

7. RELATION BETWEEN THE ELASTIC STRAIN INCREMENT
AND THE PLASTIC STRAIN INCREMENT

It can easily be found by comparing (5.7) and (6.6) that it holds the relation
between the elastic and plastic strain increments
D‘E=J-D’E-J (7.1)
or _
D*E=J*D°E-J! (7.2)
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for the same change in the_geometrical configuration, where J and J are given by
(4.24), and therefor J and J-* by “

Ji=e'¢, J'=ée'. (7.3)
If D*E and D *E are expressed, referring to the basic tensors é'é¢’ and e'e’ re-

spectively as shown in the first equations (5.14), and (6.8) and (6.9), the relation
(7.1) or (7.2) is reduced to the equality of their components
(De)iy=Dre;;=(D"€)s; 5 (7.4)
which is really seen in the second equations (5.14), and (6.8) and (6.9). That is,
the elastic and plastic strain increments for an infinitesimal deformation geome-
trically identical are distinguished from each other by the fact that the same

components are referred to the different basic tensors é'é’ and e'e’ respectively.
If the basic tensors are equalized, the components become different.

8. PLASTIC STRAIN, i.e. STRAIN HISTORY

The plastic strain, i.e. the strain history, ?F is obtained by integrating the
plastic strain increment D ?E along a given deformation path, that is, by
4
pE:f D'E. (8.1)
0
If ?E is assumed to have been obtained in any way as
*E =%, €e'€e’, (8.2)
it follows that
D(re, e'e’)=(D"¢), €€’ (8.3)
so that, by means of )
Dé'=—g"V (Du),e’, (8.4)
the simultaneous differential equations for the components
Dpeij_g”[perjyi(pu)s+ ?e.,V (Du),] =(D%),; . (8.5)
The presence of the coefficients Vy(Du),, V,(Du), and (D), in the equations
’ represents the dependence of their solution ?¢;; on the deformation path, i.e. ge-
nerally
56 D?E=x0. (8.6)
It will be needless to mention, on the contrary, that it holds
f DE=0, (8.7)
for the elastic deformation.
While the elastic strain components °;; obtained in section 4 are referred to

the basic tensors é'é’, the plastic strain components ?¢,;, which are to be obtained
from (8.5), are referred to e‘e’. The components of 7E referred to é'¢’ are shown
to be obtained by the method of local coordinate system [3], by which the frame
in the neighbourhood of each material point, so that the base vectors, are con-
vected with the point without deformation. Now we will indicate such coordi-
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nates, which are non-holonomic in the deformed state by daf and such basic
vectors equal to €; by e; with Gothic index, then the components ?¢; referred to
the basic tensors e‘e/(=¢€'¢’) are obtained by integrating the differential equations

(Dre); = Dre,; . (8.8)
Ly Ly

The implication of (8.8) is the same with that of (8.5), only their analytical ex-
pressions being different.

9. COMPARISON BETWEEN THE ELASTIC AND THE PLASTIC
STRAINS FOR SOME PARTICULAR DEFORMATIONS

We will now exemplify, for some particular deformations, how the elastic and
the plastic strains and their increments so far introduced are different from each
other for the geometrically identical deformation.

(1) Extensional Deformation

As shown in Fig. 1, let the Lagrangian coordinate system for ¢==0 be coincident
with the rectangular Cartesian coordinate system, and the cube with the edges of

the length [, parallel to the axes be converted into a parallelepiped with the edges
l;, I, and [, being elongated by

=
(X3
—

—
&

} P,
| S
ln%;
I
Eh — | —®
| H ' '
AR ) (P
el o] 2
i
PJ/
x!
R
FIGURE 1.
nlz‘ll, 'nz’:k and /ns_—_-_l:!_’ (9'1)
ly ly ly

times in the axial directions respectively, then, from (4.26), the components of
the elastic strain for such deformation are

o 18— _1

=—1 2 =_(nl—1),

T 2( =1
1 -0 1, ,

g = —— 0 = (n3—1),

2= : 2( i—1)

(9.2)

This document is provided by JA




Meta-theory of Mechanics of Continua 55

e pu— _— —
Eo3— E31— €2=0,

so that the components of the elastic strain increment are

Drg = lllzll =n,Dn,,
0
Deo e lquz :ngDng,
b (9.3)
Deoess-— lsp]ls =nyDn,,
0
Dreyy :De§31=De§12:0 s

/

referring to the basic tensors é'é’ composed of the unit base vectors € for the
rectangular Cartesian coordinate system.

‘ On the other hand, the components of the plastic strain increment for the same
o infinitesimal extension DI,, DI,, DI, in the axial directions are given by
(Dre)y =D =D
l, ",
(DPe)oz= DL, :___D’n2 ,
l, Ny (9.4)
(Dp5)33: Dl3 :_Q/)EZ_ R
l; Ng
(DPe)s =(D"€)3y =(D"€)12=0,
referring to the basic tensors e*e’ for the rectangular Cartesian local coordinate
system, equivalent to é’¢’. The components of the plastic strain for the same ex-

tensional deformation, as in the case of elasic deformation, are obtained as
7gy,= logm,,
Teyp= log g, 9.5)
Pea3= log Ny,
Pey3="e3; ="6,,=0,
by integrating (9.4) along the prescribed deformation path. In the case of plastic
deformation, in particular, it holds the incompressibility relation
MMM = 1. (9.6)
The comparison between (9.2) and (9.5), and (9.3) and (9.4) gives us clear in-
formation how the elastic and the plastic,strains and strain increments differ from
each other for the triaxial extensional deformation geometrically identical.

(2) Simple Shear

As shown in Fig. 2, let the cube OABCLMNP with the edges of unit length in
the axial directions be converted into a parallelepiped OABC'L'M'NP’ by the
simple shear specified by CC'=7, then the elastic strain components referred to
the basic tensors é'¢’ for such simple shear are obtained, by means of (4.26), as
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C=—T> ‘en=—1",
2 2 S (9.7)

the other °¢;;’s=0,

so that the components of the elastic strain increment as
e l 4 ]

Dtgyy=—Dy, Dgy=rDr,
2 ’ (9.8)

the other D%,;,’s=0.

J

The components of the plastic strain increment for the same simple shear as
above are obtained, from (6.9), as

Drey=L Dy,
2 (9.9)
the other D*g;/s=0,

referring to eé'e’ equivalent to €'é’, so that the components of the plastic strain
also for the same simple shear as

1
p523 :‘-2“7’ ’

(9.10)
the other ?¢;'s=0.

It is found from (9.7) and (9.10) that for elastic simple shear the normal strain
component in the z® direction has some value but zero, and therefore the principal
direction makes an angle larger than 45° with the x? axis, but for plastic simple
shear the nomal component vanishing, the angle of the principal direction is equal
to 45°, no matter how large the deformation may be.

(3) Combination of Triaxial Extension and Simple Shear

We suppose that, as shown in Fig. 3, the unit cube is converted into a parallel-
epiped by the combination of axial extensions by 7, n,, n, times and simple
shear specified by the value 7’ of the parameter y. When this deformation is
carried out plastically, its path comes into question in general, but when it is
elastic, the deformation path does not matter in determining the strain.

The elastic strain is given by the components referred to the basic tensors é'é’
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FIGURE 3.
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{ (9.11)
“Eog=-—Tol , °€31="€12=0,
2 .
and the elastic strain increment by the components
Degjy=n,Dn,, Dey=mn,Dn,, Dey=n;Dns+7rDy,
Deeza:%(nzDT'*‘TD'nz) » Dey=Dr¢,;=0. (9-12)
The plastic strain increment is given by
Dpellz Dnl s Dp€22: Dn2 " -Dp633: Dn3 9
n, (2 Ny
| D D (9.13)
Dpszaz——l*—z; L +— r » D?e33=D%g,,=0,
2 ng Ny 2 my

referring to the basic tensors e‘e’ equivalent to é€’.
The plastic strain is obtained by integrating (9.13) along a prescribed path of
deformation. As shown in Fig. 4, when the unit cube is first extended by n,, n,,

X3 23

)

~ T
~—_|

/nz

FIGURE 4. FIGURE 5.
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7, times in the !, 2%, «® directions respectively and then subjected to simple shear
up to the state r=7', keeping m,, 7., 7, constant, the strain for the final state
specified by 7, n,, n; and ' is given by
re,=logn,, Pexp=logm,, Pey3= logns,
’ 9.14
p523:‘*“r—, P31 =0, 7e2=0. (0.14)
2 M,

We suppose, on the other hand, the order of deformation being reversed, the
unit cube is first subjected to simple shear 7, and then extended by 7, n;, 75 times
in the respective axial directions as shown in Fig. 5. In this case, the value of 7
varies in the second stage of the deformation process, i.e. the stage of triaxial
extension, according to the relation

T —n,, (9.15)
To

(here n, means current value) and finally assumes the value 7’ for the prescribed
magnifications n,, 7, and n;. The strain is obtained by integrating (9.13) under
the condition (9.15), as
Peyy=logm,, Pexp=logn,, Pesz= logms,
1 17 (9.16)

Peys=—T0=— , Pez=Teg=0.

2 2 my

The comparison among the results (9.11), (9.14) and (9.16) gives us the clear
information that the strain of itself is not same for the geometrically same final
state of deformation, according as the deformation is either elastic or plastic, and
in particular, when plastic, according to the deformation path up to the state.

10. STRESS

The next fundamental problem for solution is that how to difine stresses cor-
responding to the strains and strain increments already introduced for each of
the elastic and plastic deformations. Such stresses, together with the strain in-
crements, were seen to be so defined as to satisfy the basic conditions (I) and (II)
for tensority and the virtual work principle, so that are supposed to be specific
for each kind of the deformations.

On the other hand, the stress fields for the two state of deformation, one the
elastic and the other the plastic, are to be identical, when they are caused by the
same external forces exerted on the bodies in a state of the same geometrical con-
figuration. This is considered to mean that the stress to describe the equilibrium
equations is defined independently of the kind of deformation. If so, then arises
the problem how such stress are related to those which are to describe the state
equations and specific to each of the elastic and plastic deformations.

Before proceeding to such cardinal subject as above, we must now begin with
the stress which is caused by the external forces so that governs the equilibrium
condition. The physical state of such stress is definite, but its mathematical

%
g
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expression as a tensor would be given in various ways. Namely, expressed
analogously to the case of simple extension, we can think of, for example, the
nominal stress as well as the true stress. What stress would be used is at our
disposal, only influencing the form of the equilibrium equations, but not their
physical implication. But the true stress in its general meaning, that is, the stress
referred to unit of area in the deformed state, is most fitted, as a matter of course,
for the purpose of describing the equilibrium condition. Any other stress, when
necessary to consider, can be derived from this generalized true stress.

Denoting the surface element in the deformed state by ndS, n being unit normal,
and the force exerted through it by fdS, the generalized true stress is defined by
the tensor T which satisfies

(ndS)-T=£dS,
so that
nT= f’ (101)
whether the deformation may be elastic or plastic.

The stress tensor T" which satisfies (10.1) is determined by prescribing the stress
vectors f£;, f;; and fi; corresponding to the three mutually independent directions
n,, n;; and n,y; as

T =n'f,, (10.2)
where the Greek index, say 2, corresponding to some directions different in general
from the axial directions with the Roman index represents I, II, III.

If now n* and £, are represented as
n’ = n''e,, (10.3)
f,="fje, (10.4)
(10.2) can be written as
T = c'ee
) s
If, in particular, n;, r;; and ny; are chosen equal to ey, e, and €, so that r', n'!
and n!! to €', e and e® respectively, 7' is expressed as

T =¢€'f,, (10.6)
instead of (10.2), bacause £, is written £;,. (10.3) and (10.4) being replaced by

e =g'e,, (10.7)

f.=fle,, (10.8)

we have

o' = giifi=fi.
When the local coordinate system is used in particular, the stress T is expressed
by
T=o*="e,-e,-. (10.10)
If the deformation, so that the relation between e; and e;, is known, ¢¥ are ob-
tainable from ¢%.
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11. EQUILIBRIUM EQUATIONS

The equilibrium conditions for the portion of the body which has in the de-
formed state the volume V and the surface S as shown in Fig. 6 are given by

FIGURE 6.
prdV+fn.TdS=o (11.1)
and
erdeV-I—frx(n-T)dS:O, (11.2)

whether the deformation may be elastic or plastic. Where p indicates the density
in the deformed state, F' the body force per unit of mass.
Applying the Gauss’ theorem

fn-Tds:fV-TdV (11.3)
s v
to (11.1), we obtain
f(pF-i—V-T)dV:O, (11.4)
\ 4
so that
V-T+oF=0. (11.5)

This is the equilibrium equation aimed at and valid in common to the both kinds
of deformation.

Then applying to (11.2) the Gauss’ theorem (11.3) whose T is replaced by T'Xr,
and considering (11.5), we obtain the relation

e-Txe.=0, (11.6)
representing the tensor 7 to be symmetric.
12. PRINCIPLE OF VIRTUAL WORK

The work when the portion of the body which is in equilibrium in the deformed
state as shown in Fig. 6 is displaced virtually by du is given by

W= | oF-6udV+ | n-T-6udS . (12.1)
Jor-sav ]
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whether the deformation may be elastic or plastic. By applying the Gauss’
theorem (11.3) and then the equilibrium equation (11.5), to the second term in
the right hand side of (12.1), it can be transformed to a volume integral

SW = f T~-—;-(Vau+au7)dv. (12.2)
By (6.6), (12.2) is written
BszT--apEdV. (12.3)

This is the expression of the virtual work principle for the plastic deformation.
On account of the relation (7.1) between DE and D°E, (12.3) is further con-
verted to the form

5W:fj‘1.T.J—l,,5eEdV. (124)
Putting
d T=INTT (12.5)
\ -
g 1 \ (12.4) is rewritten as
awzfeT..aeEdv, (12.6)

This is the virtual work principle for the elastic deformation, and means that the
elastic stress corresponding to the elastic strain increment 6°E is not T, but T de-
fined by (12.5).

It is natural to express the stress tensor 7' by

T =dVee;, (12.7)
as seen in (10.5), consequently the stress tensor °T' given by (12.5) is obtained as
°T =g'%ée,;, (12.8)

by the use of (4.24) and (7.3). It is found that °T is the tensor obtained from T by
converting its basic tensor e.e; into é,6, keeping its components unchanged.

By means of (6.8) and (12.7), the virtual work principle (12.3) is expressed in
terms of components, as

SW = f 6(57€),,dV . (12.9) -
Similarly by means of (5.14) and (12.8), (12.6) is represented as
Bsza"féeoei,dV. (12.10)

As it holds (5%¢);;=¢&°¢,,, as shown in (7.4), the expressions (12.9) and (12.10) of
the virtual work principle are not distinguished at all, whether the deformation
is elastic or plastic. But this being all a mere appearance, the stress and strain
increment tensors of themselves are distingished by the basic tensors, to which
their components are referred.

In fact, if we use, in the case of plastic deformation in particular, the local
coordinate system whose basic tensors e;e; and e'e’ are equal to the basic tensors
é.6, and é'é’ respectively natural for analysing elastic deformation, (12.9) is re-
placed by the expression
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5W:,foiib‘pei,~dV. (12.11)
which is clearly distinguishable from (12.10).

13. THE STRESS, STRAIN AND STRAIN INCREMENT FOR
THE PURPOSE OF DESCRIBING STATE EQUATIONS

The fact that the virtual work principle assumes as simple the forms (12.3) and
(12.6) for the finite elastic and plastic deformations as for the small ones, war-
rants the existence of the elastic and plastic potentials, consequently the possibili-
ty of the derivation of the state equations such as the laws of elasticity and
plasticity, quite similarly to the case of small deformation. Thus the respective
combinations of stress, strain increment and strain (°T, D°E, °E) and (T, D*E,
»E) are seen to be reasonable for the description of each of the state equations
for the elastic and the plastic deformations. q

14. AN EXAMPLE OF THE STRESSES

The stress T, representing the field of force of itself at the point under con-
sideration, is not effected by deformation. But its expression as shown in (10.5)
is not possible, unless the state of deformation is known. The stress T, on the
other hand, is further associated with deformation by the tensor J. So that, in
order to illustrate 7" and *T and the distinction between them, it is necessary that
the type of stress and that of the corresponding strain are known. And for this
we need the elasticity and plasticity laws to be known in general. The only case
that we can know the types of stress and strain without any information about those
laws is that of extension (uni- to tri-axial) of isotropic bodies, in which tensile
stress is clear to produce extension in its direction, whether it is elastic or plastic.

Suppose that the cube with the edges of length [, is deformed into a rectangular
parallelepiped with the edges of length l;, [, and [; as shown in Fig. 1, under the
action of some triaxial tensile loads P,, P, and P;. Then remembering (9.1), the
orthogonal unit base vectors €,, € and é; are converted into

e, =n6, €="6, € =mnN6 (14.1)

respectively by the extensional deformation.
As the tensile loads P,, P, and P; are exerted on the sufaces of the parallelepi-
ped with the areas lyl;, l;l, and [,l;, the normal stresses on these surfaces are

P, P, Py
o= , =2, 0= , 14.2
S T T (142
and therefore the stress tensor is given by

T:01é1é1+02é2é2+03é3é3 . (14.3)

é, being equal to e, o,, 0, and g, in (14.3) are the components o regarding to the
local coordinate system [see (10.10)].
By means of (14.1), (14.3) is written as
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T:i'—‘;elel—l——”—?z—ezez—l——"—??—esea - (14.4)
7y UA N3
and these components ¢,/n}, g,/n} and o,/ni are none other than those for the
Lagrangian coordinate, ¢*/, given in (10.5).
The elastic stress °T' is obtained from (14.4) as
T =946+ 8by+ 26, (14.5)
1 Ny N3

The distinction between T and T is clearly shown in (14.3), (14.4) and (14.5).
That is, referred to the same basic tensors 6,6, for the undeformed state, the com-
ponents of the plastic stress T being ¢,, o, and g, those of the elastic stress °T'
are a,/n}, oo/n3 and o4/n3; while the components of T referred to e;e; and those of
*T referred to é,6; are equal to each other and also to 0,1, o/ and as/ns.

15. CONCLUSION

Deformations of continua from fluids to solids can be classified into the two
groups, one is the elastic deformation due to the change in the distances among
particles constituting the material and the other the plastic deformation due to
the change in the mode of the interconnection of particles. On account of this
distinction of the mechanism of deformation, the difinitions of the strain, strain
increment and stress for descibing deformation are essentially different, according
as the deformation is either elastic or plastic.

That is, the elastic strain is specified by the difference of the geometrical con-
figuration, so that of the metric, before and after deformation, and the elastic
strain increment is derived as the increment of the elastic strain thus defined.
The quantity introduced imprimis in plastic deformation is the strain increment,
and it is specified by the change in the geometrical configuration from the state ¢
to the state t+dt, the current state ¢ being assumed as an undeformed state. The
plastic strain is obtained by integrating this strain increment along a given path
of deformation. Consequently, while the elastic strain is independent of the de-
formation path, being specified only by the geometrical shape of the deformed
state, the plastic strain depends on the deformation path up to the final state.
There are, however, close relation between the both strain increments.

The plastic stress, that is the stress adequate for describing the plasticity law
together with the plastic strain increment, is the stress resulting from the gener-
alization of the true stress for the case of simple tension. The elastic stress rea-
sonable for describing elasticity law together with the elastic strain is a modified
one, which can be deduced from the plastic stress. Contrary to the stress valid
for the description of the state equation, that for the description of the equilibri-
um equation is the same for the both deformations, and equal to the plastic stress.
But as for this view of the common stress for describing the equilibrium condi-
tion, it might not necessarily be said that there remains no ambiguity.

These differences of strain, strain increment and stress between the two kinds
of deformation geometrically identical are of finite order for finite deformation,
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“ | 8
and are negligible for small one. But essentially this will not give any justifica-
tion, even for the case of small deformation, to their common definitions accepted
so far in general. Thus the theories of elasticity and plasticity are regarded to
stand on the dualistic foundations respecting the basic concepts of strain, strain
increment and stress as well as the state equations. And without this idea, it will
be impossible to construct theories of elasticity and plasticity consistent for the
whole range of small and finite deformations. Such a theory of plasticity has
already been proposed by the present author, and that of elasticity whose outline
has also been established in his mind will be published in the near future.

Department of Aerodynamics and Structures
Aeronautical Research Institute
University of Tokyo, Tokyo

March 24, 1959 0
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